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Abstract
The peptidyl-prolyl cis/trans isomerase (PPIase) class of proteins comprises three
member families that are found throughout nature and are present in all the major
compartments of the cell. Their numbers appear to be linked to the number of genes in
their respective genomes, although we have found the human repertoire to be smaller
than expected due to a reduced cyclophilin repertoire. We show here that whilst the
members of the cyclophilin family (which are predominantly found in the nucleus
and cytoplasm) and the parvulin family (which are predominantly nuclear) are
largely conserved between different repertoires, the FKBPs (which are predominantly
found in the cytoplasm and endoplasmic reticulum) are not. It therefore appears
that the cyclophilins and parvulins have evolved to perform conserved functions,
while the FKBPs have evolved to fill ever-changing niches within the constantly
evolving organisms. Many orthologous subgroups within the different PPIase families
appear to have evolved from a distinct common ancestor, whereas others, such as the
mitochondrial cyclophilins, appear to have evolved independently of one another. We
have also identified a novel parvulin within Drosophila melanogaster that is unique to
the fruit fly, indicating a recent evolutionary emergence. Interestingly, the fission yeast
repertoire, which contains no unique cyclophilins and parvulins, shares no PPIases
solely with the budding yeast but it does share a majority with the higher eukaryotes
in this study, unlike the budding yeast. It therefore appears that, in comparison with
Schizosaccharomyces pombe, Saccharomyces cerevisiae is a poor representation of the
higher eukaryotes for the study of PPIases. Copyright  2005 John Wiley & Sons,
Ltd.
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Introduction

The peptidyl-prolyl cis/trans isomerase (PPIase)
class of protein is comprised of three known pro-
tein families, the cyclophilins (cyclosporin A bind-
ing proteins), FKBPs (FK506-binding proteins) and
parvulins. These structurally distinct families are
linked by their shared ability to catalyse the bond
preceding a proline residue between its cis and
trans forms. While they are all believed to employ
the ‘twisted amide’ mechanism of catalysis, as

is seen with prolyl isomerization in water, the
cyclophilins (Eisenmesser et al., 2002; Hur and
Bruice, 2002) and parvulins (Ranganathan et al.,
1997) achieve this through the use of near attack
conformers, whereas the FKBPs use hydropho-
bic distortion (Harrison and Stein, 1992; Hur and
Bruice, 2002). They are found widely distributed in
eukaryotes, prokaryotes and archaea (Galat, 1993,
1999; Galat and Metcalfe, 1995; He et al., 2004;
Ivery, 2000; Maruyama and Furuani, 2000; Rul-
ten et al., 1999), implying that their function is

Copyright  2005 John Wiley & Sons, Ltd.
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required in cellular processes from bacteria to man,
and in all the major compartments of the cell (Bose
et al., 1994; Halestrap and Davidson, 1990; Hand-
schumacher et al., 1984; Jin and Burakoff, 1993;
Lu et al., 1996; Nigam et al., 1993; Siekierka et al.,
1989; Uchida et al., 1999; Wang et al., 1996).

All of the cyclophilins and FKBPs in the budding
yeast Saccharomyces cerevisiae have been individ-
ually and collectively knocked out with no effect
on cell viability (Dolinski et al., 1997a; Hemen-
way and Heitman, 1993). Only Ess1, the S. cere-
visiae orthologue of the human parvulin Pin1, has
been shown to be essential within S. cerevisiae
(Hanes et al., 1989), as has the Pin1 orthologue
in the pathogenic yeast Candida albicans (Devasa-
hayam et al., 2002). However, the Pin1 orthologues
in their fellow yeast Schizosaccharomyces pombe
(Huang et al., 2001), the fruit fly Drosophila
melanogaster (Maleszka et al., 1996) and Crypto-
coccus neoformans (Ren et al., 2005) have been
shown to be non-essential, indicating that the essen-
tial function of Pin1 orthologues is limited to cer-
tain organisms or that redundancy mechanisms are
present in these other organisms. In the eubac-
terium Bacillus subtilis, the two cytosolic PPIases,
PpiB and trigger factor, have been shown to be nec-
essary for cell viability under starvation conditions
(Gothel et al., 1998) but they appear not to pos-
sess an essential function within a cell under nor-
mal growth conditions. In mammals, an FKBP12
knock-out mouse showed normal skeletal muscle
but suffered from severe cardiomyopathy and ven-
tricular septal defects that mimic a human con-
genital heart disorder (Shou et al., 1998), an effect
assigned to its modulation of calcium release activ-
ity of both skeletal and cardiac ryanodine recep-
tors. Recently a mutation of the D. melanogaster
cyclophilin CG3511, which severely truncates the
protein, has been shown to confer a synthetic lethal
phenotype on cells that lack the retinoblastoma
(Rbf) protein (Edgar et al., 2005). Despite the high
conservation of the PPIases throughout the eukary-
otes and prokaryotes, it appears that they do not
possess an essential function within many cells
under normal growth conditions but may become
essential in the absence of other cellular factors.

Much of the research on the PPIases has been
on individual proteins spread throughout many dif-
ferent organisms. Some recent reviews have con-
sidered different families of PPIases individually
(Galat, 1999, 2004; Patterson et al., 2002) but none

have considered PPIases repertoires on a whole. We
report here the comparative analysis of the PPIase
repertoires of the mammal Homo sapiens, the fruit
fly D. melanogaster, the nematode Caenorhabditis
elegans and the two yeasts Sz. pombe and S. cere-
visiae. By comparing these five diverse repertoires
we hope to identify key conserved PPIases that are
found within all their repertoires as well as those
that are specific to each. By comparing the identi-
fied functions of each PPIase and its orthologues,
we hope to understand better their functions within
the cell and to identify those that function within
a broad range of eukaryotes from those that are
specific to multicellular eukaryotes.

Materials and methods

BLAST searching

The identification of putative PPIases and their
orthology between repertoires was performed using
both BLASTP (protein vs. protein) and TBLASTN
(protein vs. DNA sequence) searches of the com-
plete annotated genome sequences of H. sapiens
(Lander et al., 2001), D. melanogaster (Adams,
2000), C. elegans (The C. elegans Genome Con-
sortium, 1998), Sz. pombe (Wood et al., 2002) and
S. cerevisiae (Goffeau et al., 1996; Wood et al.,
2001) maintained by either the National Center for
Biotechnology Information (NCBI) (Altschul et al.,
1997) (http://www.ncbi.nlm.nih.gov/BLAST/) or
The Institute for Genomic Research (TIGR) (Gish
et al., 1990) (http://tigrblast.tigr.org/tgi/).

Identification of the PPIase repertoires

The peptidyl-prolyl cis/trans isomerase (PPIase)
repertoires present in the complete annotated
genome sequences of H. sapiens (Lander et al.,
2001), D. melanogaster (Adams, 2000), C. ele-
gans (The C. elegans Genome Consortium, 1998),
Sz. pombe (Wood et al., 2002) and S. cerevisiae
(Goffeau et al., 1996; Wood et al., 2001) were
identified using the protein sequences of human
cyclophilin A (hCypA; Accession No. P05092),
human FKBP12 (hFKBP12; P20071) and human
Pin1 (hPin1; Q13526) as probes in BLASTP and
TBLASTN searches of their sequences. Proteins
were selected based upon the level of homology,
both in regard to actual sequence homology and/or
the presence of characteristic motifs, their PPIase
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catalytic domain exhibited towards that of their
probes sequence.

Protein sequence analysis

The identification of putative domains within the
identified PPIases was performed using two NCBI
search engines, the CDD (Conserved Domain
Database) world-wide web-based BLAST server
(Altschul et al., 1997) (http://www.ncbi.nlm.nih.
gov/Structure/cdd/wrpsb.cgi) and their CDART
(Geer et al., 2002) (Conserved Domain Architec-
ture Retrieval Tool; http://www.ncbi.nlm.nih.gov/
Structure/lexington/lexington.cgi) analysis pro-
gram.

The predicted localization of the PPIases and the
identification of sequence motifs that support this
were identified using the PSORT world-wide web-
based search program (Horton and Nakai, 1996,
1997) located on the National Institute for Basic
Biology (NIBB) server (http://psort.nibb.ac.jp/).
The theoretical molecular weights of the predicted
proteins were calculated using the calculation
tool on the ExPaSy server (http://www.expasy.ch/
tools/pi tool.html).

Comparative sequence analysis

Alignments of each family of PPIases were pro-
duced using version 1.81 of the ClustalX pro-
gram (Thompson et al., 1997) downloaded from
http://inn-prot.weizmann.ac.il/software/
ClustalX.html. This program performs a pair-
wise alignment of the sequences prior to the con-
struction of a dendrogram, which describes the
approximate groupings of the sequences by sim-
ilarity, with the final alignment carried out using
this dendrogram as a guide. The dendrogram was
visualized using TreeView version 1.6.6 (Dr R
Page; University of Glamorgan) downloaded from
http://taxonomy.zoology.gla.ac.uk/rod/rod.html
from the files generated by the ClustalX alignment.
The scales of the different dendrograms are not
cross-comparable.

Identification of orthologues

PPIases were considered to be orthologues if they
fulfilled three criteria. First, they should be of
approximately the same size and possess the same
domain architecture. Second, in BLAST searches

they should identify each other ahead of all other
PPIases within their respective genomes. This is
because they should, in theory, share a more recent
common ancestor than they do with the other
PPIases. Sequence variation, resulting from the
distinct divergent evolution of each protein, should
therefore be less between two orthologues than
with other PPIases. Third, they should have the
same intracellular location and function. This latter
criterion is, however, reliant upon prior research,
which is not applicable to all PPIases. In these
cases, so long as the first two criteria were met, the
proteins were deemed to be putative orthologues.

Three methods were employed to identify the
orthology between the repertoires and answer the
above criteria. First, the individual PPIases were
used as probes in BLAST searches of the other
species’ genomes. Second, the sequences for all
the member proteins from all of the comparative
organisms of each of the three different PPIase
families (cyclophilins, FKBPs and parvulins) were
subjected to global sequence comparison by fam-
ily, using the ClustalX program (Thompson et al.,
1997) for the purpose of creating a dendrogram.
This analysis creates a putative model for how
the individual subgroups of each PPIase family
may have diverged from one another, based on
relationships between their individual sequences,
which allow us to infer a putative model for their
evolution in the species compared here. As each
orthology group should share a more recent com-
mon ancestor with themselves than with the other
PPIases, they should group together within the den-
drogram, ideally as an individual branch with a
distinct common ancestor. Third, literature analy-
sis looking for prior publications on the individ-
ual PPIases was performed, which in some cases
has allowed putative function(s) to be assigned to
orthology groups.

Results

The identified PPIase repertoires of H. sapiens, D.
melanogaster, C. elegans, Sz. pombe and S. cere-
visiae can be found in Tables 1 and 2. Table 3
shows a comparison of the number of mem-
bers of each PPIase family found within the dif-
ferent species. The repertoire orthology of the
cyclophilins, FKBPs and parvulins as identified
by BLAST analysis can be found in Table 4.
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Table 1. Peptidyl-prolyl cis/trans isomerases identified by BLAST searching of the NCBI database of the complete genome
and proteome of the multicellular organisms (A) H. sapiens (Lander et al., 2001), (B) D. melanogaster (Adams, 2000) and
(C) C. elegans (The C. elegans Genome Consortium, 1998). Localization was predicted using the PSORT II server, molecular
weight was predicted using the ExPaSy server and domains were identified using the CCD BLAST program on the NCBI
server apart from the Moca domain, which was included for those cyclophilins identified as possessing one by Cavarec et
al. (2002)

A PPlase
Uniprot
Acc. # kDa

Signal
Seq.

Predicted
Localisation Domain Architecture

Cyp-A P62937 18.0 — Cytoplasmic PPlase Only
PPIL1 (CGI-124) Q9Y3C6 18.2 ∼ Cytoplasmic PPlase Only
PPIL3 Q9BXZ1 18.6 ∼ Cytoplasmic PPlase Only
USA-CyP (Cyp-H) O43447 19.2 — Cytoplasmic PPlase Only
Cyp-F (D) P30405 22.0 — Mitochondrial PPlase Only
Cyp-B Q9BVK5 22.7 N-term ER PPlase Only
Cyp-C P45877 22.8 N-term ER PPlase Only
‘‘Cyp29’’ P49069 28.9 ∼ Nuclear N-term PPlase Only
Cyp33 (E) Q9UNP9 33.4 — Cytoplasmic N-term RRM, C-term PPlase

C
yc

lo
ph

ilin
s

Cyp40 (D) Q08752 40.8 — Cytoplasmic N-term PPlase, C-term TPR (3x) motifs
SDCCAG10 Q6UX04 53.8 — Nuclear N-term PPlase, positively charged C-term
‘‘Cyp57’’ Q8WUA2 57.2 ∼ Nuclear N-term PPlase, Central RRM
Cyp60 Q13356 58.8 ∼ Nuclear N-term U-box, C-term PPlase
HAL539 Q96BP3 73.6 — Cytoplasmic N-term WD40 (×3) motifs, C-term PPlase
Cyp88 (CARS/G) Q13427 88.6 — Nuclear N-term PPlase, C-term RS domain
NK-Cyp (158/SR) P30414 165.7 — Nuclear N-term PPlase C-term RS domain containing a Moca motif
RanBP2 P49792 358.2 — Nuclear N-term TPR, central Zn-fingers, central/C-term RB1 domains,

C-term PPlase

FKBP12.6 P68106 11.8 — Cytoplasmic FKBP (×1) Only
FKBP12 P62942 12.0 — Cytoplasmic FKBP (×1) Only
FKBP13 P26885 15.6 N-term Mitochondrial FKBP (×1) Only
FKBP19 Q9NYL4 22.2 N-term ER FKBP (×1) Only
FKBP22 Q9NWM8 24.3 N-term ER FKBP (×1) Only
FKBP23 Q9Y680 30.0 — ER N-term FKBP (×1), C-term EF-Hand motif
FKBP25 Q00688 25.2 — Cytoplasmic C-term FKBP (×1) Only

FK
BP

s

FKBP36 O75344 37.2 ∼ Cytoplasmic N-term FKBP (×1), C-term TPR (×2) motifs
FKBP38 Q14318 38.4 — Cytoplasmic N-term FKBP (×1), C-term TPR (×2) motifs
FKBP51 Q13451 51.2 — Cytoplasmic N-term FKBP (×2), C-term TPR (×2) motifs
FKBP52 Q02790 51.6 — Cytoplasmic N-term FKBP (×2), C-term TPR (×3) motifs
FKBP60 O95302 57.2 ∼ ER N-term FKBP (×4), C-term EF-Hand motif
FKBP65 Q96AY3 64.7 N-term ER N-term FKBP (×4), C-term EF-Hand motif

Pin1 Q13526 9.0 — Nuclear N-term WW domain, C-term Rotamase

Pa
rv

s

Par14 Q9Y237 13.9 — Cytoplasmic Rotamase Only

Figure 1 shows the dendrograms generated for the
cyclophilins, FKBPs and parvulins.

Cyclophilin orthology

Table 4D shows that D. melanogaster and H.
sapiens share the greatest number of orthologues,
closely followed by their orthology to C. elegans.
Of the two yeasts, Sz. pombe shares its entire
repertoire of nine in common with D. melanogaster
and H. sapiens, compared to only three shared by S.
cerevisiae, which has a potential fourth in common
(ScCwc27) that is discussed below. Sz. pombe is

therefore the only organism in this comparison that
has no unique cyclophilins within its repertoire and,
interestingly, its repertoire shows less orthology to
that of its fellow yeast S. cerevisiae than to the
higher eukaryotes.

Table 4A shows that there are only two cyclo-
philin groups found in all five of the organisms.
One group are the cyclophilin A orthologues, a
ubiquitous group of cyclophilins that have been
identified within the cytoplasm (Handschumacher
et al., 1984; Harding et al., 1986; Huh et al.,
2003), although a recent report has found ScCpr1

Copyright  2005 John Wiley & Sons, Ltd. Comp Funct Genom 2005; 6: 277–300.



Comparison of peptidyl-prolyl cis/trans Isomerase Repertoires 281

Table 1. Continued

B PPlase
Uniprot
Acc. # kDa

Signal
Seq.

Predicted
Localisation Domain Architecture

CG7768 Q9VUD6 17.8 — Cytoplasmic PPlase Only
CG11777 Q8MKJ6 17.8 — Cytoplasmic PPlase Only
Cyp1 P25007 17.9 ∼ Cytoplasmic PPlase Only
CG13892 Q9W0Q2 19.5 ∼ Cytoplasmic PPlase Only
CG17266 Q9V9B9 20.2 — Cytoplasmic PPlase Only
CG2852 Q9W227 22.2 N-term ER PPlase Only
NinaA P15425 26.4 N-term ER PPlase Only

C
yc

lo
ph

ilin
s

Cyp-33 Q9V3G3 33.3 ∼ Cytoplasmic N-term RRM, C-term PPlase
CG8336 Q9VT21 43.1 ∼ Cytoplasmic N-term PPlase, C-term TPR (2×) motifs
CG10907 Q9VTN7 56.6 — Nuclear N-term PPlase, C-term RS domain
CG7747 Q9V7M9 59.0 — Nuclear N-term U-box, C-term PPlase
CG3511 Q960Q8 71.8 ∼ Cytoplasmic N-term WD40 motif, C-term PPlase
CG5808 Q9XYZ6 75.5 ∼ Nuclear N-term PPlase, central RRM, C-term RS domain
Moca-Cyp Q8ISE5 112.5 — Nuclear N-term PPlase C-term RS domain containing a Moca motif

FKBP12 P48375 11.6 ∼ Cytoplasmic FKBP (1×) Only
CG14715 Q9VGK3 14.8 N-term ER FKBP (1×) Only
FKBP13 Q8MLW1 25.7 — ER Central FKBP (1×), C-term EF-Hand motif
FKBP39 P54397 39.3 — Nuclear Positively charged N-term, C-term FKBP (1×)

FK
BP

s

CG5482 Q9V8K4 44.9 — Cytoplasmic N-term FKBP (1×), C-term TPR (2×) motifs
FKBP59 Q9VL78 48.8 ∼ Cytoplasmic N-term FKBP (2×), C-term TPR (2×) motifs
shutdown Q9W1I9 51.8 ∼ Nuclear Central FKBP (1×), C-term TPR (1×) motif

Dodo P54353 18.4 — Nuclear N-term WW domain, C-term Rotamase
CG11858 Q9VBU4 13.9 ∼ Cytoplasmic Rotamase Only

Pa
rv

ul
in

s

CG32845 Q8IRJ5 44.3 ∼ Nuclear Central Rotamase Only

C PPlase
Uniprot
Acc. # kDa

Signal
Seq.

Predicted
Localisation Domain Architecture

Cyp1 P52009 20.7 ∼ Mitochondrial PPlase Only
Cyp2 P52010 18.5 ∼ Cytoplasmic PPlase Only
Cyp3 P52011 18.6 ∼ Cytoplasmic PPlase Only
Cyp4 P52012 58.5 — Cytoplasmic N-term U-box, C-term PPlase
Cyp5 P52013 22.4 N-term ER PPlase Only
Cyp6 P52014 21.9 N-term ER PPlase Only
Cyp7 P52015 18.4 ∼ Cytoplasmic PPlase Only
Cyp8 P52016 53.6 — Nuclear N-term PPlase C-term RS domain containing a Moca motif
Cyp9 Q09637 35.8 ∼ Nuclear N-term PPlase C-term RS domain containing a Moca motif
Cyp10 P52017 18.0 — Cytoplasmic PPlase Only
Cyp11 P52018 20.2 ∼ Cytoplasmic PPlase OnlyC

yc
lo

ph
ilin

s

Cyp12 Q18445 18.5 ∼ Cytoplasmic PPlase Only
Cyp13 Q9U2S6 36.4 — Cytoplasmic N-term RRM, C-term PPlase
Cyp14 O18161 50.4 — Nuclear N-term PPlase, C-term RRM
Cyp15 Q9U1Q3 70.8 — Cytoplasmic N-term WD40 motifs, C-term PPlase
Cyp16 Q9XX17 25.2 ∼ Cytoplasmic PPlase Only
Cyp17 O01880 57.7 ∼ Nuclear Positively charged N-term, C-term PPlase

Fkb1 Q20107 15.5 N-term Cytoplasmic FKBP (1×) Only
Fkb2 Q9U2Q8 11.6 ∼ Cytoplasmic FKBP (1×) Only
Fkb3 O16309 29.1 N-term ER FKBP (2×) Only
Fkb4 Q23338 29.3 N-term ER FKBP (2×) Only

FK
BP

s

Fkb5a P91180 29.9 N-term ER FKBP (2×) Only
Fkb6 O45418 48.1 ∼ Cytoplasmic N-term FKBP (2×), C-term TPR (3×) motifs
Fkb7 O61826 36.2 N-term ER N-term FKBP (1×), C-term EF-hand motif
Fkb8 Q8I4L5 32.4 ∼ Cytoplasmic FKBP (2×) Only

Pin1 Q9N492 19.2 — Nuclear N-term WW domain, C-term Rotamase

Pa
rv

s

Pin2 Q9NAF9 13.3 — Nuclear Rotamase Only
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Table 2. Peptidyl-prolyl cis/trans isomerases identified by BLAST searching of the NCBI database of the complete genome
and proteome of the unicellular organisms (A) Sz. pombe (Wood et al., 2002) and (B) S. cerevisiae (Goffeau et al., 1996).
Localization was predicted using the PSORT II server, molecular weight was predicted using the ExPaSy server and domains
were identified using the CCD BLAST program on the NCBI server

A PPlase
Uniprot
Acc. # kDa

Signal
Seq.

Predicted
Localisation Domain Architecture

Cyp1 P87051 17.4 — Cytoplasmic PPlase only
Cyp2 P18253 16.9 ∼ Cytoplasmic PPlase only
Cyp3 O74729 18.9 ∼ Cytoplasmic PPlase only
Cyp4 O94273 22.2 N-term ER PPlase only
Cyp5 Q11004 40.2 — Cytoplasmic N-term. PPlase, C-term. TPR(×3)

C
yc

lo
ph

ilin
s

Cyp6 Q9UUE4 50.8 — Nuclear N-term. PPlase, C-term. RRM
Cyp7 O42941 52.2 — Nuclear N-term. PPlase, C-term. positively charged
Cyp8 Q09928 53.6 ∼ Nuclear N-term. U-Box, C-term. PPlase
Cyp9 O74942 69.0 ∼ Cytoplasmic N-term. WD40(×3), C-term. PPlase

FKBP12 O42993 12.0 — Cytoplasmic FKBP only
FKBP39 O74191 39.3 — Nuclear N-term. Positively charged, C-term. FKBP

FK
BP

s

FKBP39a Q10175 40.5 — Cytoplasmic N-term. Positively charged, C-term. FKBP

Parv Pin1 O74448 19.8 ∼ Nuclear N-term. WW domain, C-term. Rotamase

B PPlase
Uniprot
Acc. # kDa

Signal
Seq.

Predicted
Localisation Domain Architecture

Cpr1 P14832 17.4 ∼ Cytoplasmic PPlase Only
Cpr2 P23285 22.8 N-term ER PPlase Only
Cpr3 P25719 19.9 — Mitochondrial PPlase Only
Cpr4 P25334 35.8 N-term ER Central PPlase Only
Cpr5 P35176 25.3 N-term ER PPlase Only
Cpr6 P53691 42.1 — Cytoplasmic N-term PPlase, C-term TPR(3×) motifs

C
yc

lo
ph

ilin
s

Cpr7 P47103 45.1 — Cytoplasmic N-term PPlase, C-term TPR (3×) motifs
Cpr8 P53728 34.9 — Membrane Central PPlase
Cwc27 Q02770 35.0 ∼ Nuclear Divergent N-term PPlase Only

Fpr1 P20081 12.2 ∼ Cytoplasmic FKBP (1×) Only
Fpr2 P32472 14.5 N-term ER FKBP (1×) Only

FK
BP

s

Fpr3 P38911 46.6 — Nuclear Negatively charged N-term, C-term FKBP (1×)
Fpr4 Q06205 43.9 — Nuclear Negatively charged N-term, C-term FKBP (1×)

Parv ESS1 P22696 21.7 — Nuclear N-term WW domain. C-term Rotamase

to be nuclear (Arevalo-Rodriguez and Heitman,
2005), which is contrary to that found by Huh
et al. (Huh et al., 2003). Members of this group
have been reported to function in protein folding
(Davis et al., 1989; Kern et al., 1995; Reader et al.,
2001; Steinmann et al., 1991), protein activity
regulation (Ansari et al., 2002; Brazin et al., 2002;
Yurchenko et al., 2005), transcriptional regulation
(Ansari et al., 2002; Arevalo-Rodriguez et al.,
2000; Pijnappel et al., 2001), receptor signalling
pathways (Allain et al., 1994; Bukrinsky, 2002;
Syed, 2003; Huang et al., 2002; Nagata et al.,
2000; Pushkarsky et al., 2001; Rycyzyn et al.,
2000; Yurchenko et al., 2001, 2002), apoptosis

(Cande et al., 2004), the cellular oxidative stress
response (Jin et al., 2000; Lee et al., 2001), a
vesicular import pathway (Brown et al., 2001)
and in the control of both the meiotic (Arevalo-
Rodriguez and Heitman, 2005) and mitotic cell
cycles in S. cerevisiae (Fujimori et al., 2001).

The other group are the cyclophilin B ortho-
logues, a group identified by their targeting to
the endoplasmic reticulum (ER) (Frigerio and Pel-
ham, 1993; Kumar et al., 2002; Price et al., 1991)
courtesy of their N-terminal signal peptide. They
function within the secretory pathway, where they
have been reported to be involved in the chaper-
oning of plasma membrane proteins (Horibe et al.,

Copyright  2005 John Wiley & Sons, Ltd. Comp Funct Genom 2005; 6: 277–300.
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Figure 1. Dendrograms depicting the predicted history of divergence of (A) the cyclophilins, (B) the FKBPs and (C) the
parvulins of Sz. pombe (Sp), S. cerevisiae (Sc), D. melanogaster (Dm), C. elegans (Ce) and H. sapiens (h), based upon a
comparison of their protein sequences by the ClustalX program (Thompson et al., 1997) with the dendrogram generated
using TreeView version 1.6.6 (Dr R Page; University of Glamorgan). Background and text colours identify their PSORT
predicted localization. Bars up the right hand side indicate groups identified as orthologous by BLAST analysis (Table 4).
Black bars indicate a group where all members are found at the same point in the dendrogram. Groups with members
in more than one location are shown by grey bars and identified by the numbers to their right (key: (A) CypA, group 1;
CypB, group 2; Cyp40, group 3; (B) FKBP12, group 1)

2002; Klappa et al., 1995; Meunier et al., 2002;
Price et al., 1991, 1994; Zhang and Herscovitz,
2003) and also have proposed functions in receptor
signalling pathways (Allain et al., 1994; Bukrin-
sky, 2002; Nagata et al., 2000; Obata et al., 2005;
Rycyzyn and Clevenger, 2002; Rycyzyn et al.,
2000; Yurchenko et al., 2001).

Only two other groups have an S. cerevisiae
member but both lack an apparent C. elegans
orthologue (Table 4A). The cyclophilin 40 ortho-
logues are a group of heat shock-inducible (Lebeau
et al., 1999; Mark et al., 2001; Mayr, 2000; Weis-
man et al., 1996), predominantly nuclear (Huh
et al., 2003; Lebeau et al., 1999; Mark et al.,

2001) cyclophilins that interact with the C-terminal
MEEVD pentapeptide of heat shock protein 90
(Hsp90) (Ward et al., 2002) and have been reported
to function within the Hsp90 complex (Davies
et al., 2005; Duina et al., 1998; Sykes et al., 1993),
potentially regulating its ATPase activity (Prodro-
mou et al., 1999) during its functions in cellu-
lar signalling pathways that regulate transcription
(Pratt and Toft, 1997; Sanchez and Ning, 1996;
Ward et al., 2001; Warth et al., 1997), the cellu-
lar heat shock response (Bharadwaj et al., 1999)
and also in maintaining the cell cycle protein
kinases Mik1, Wee1 and Swe1 (Goes and Mar-
tin, 2001). Interestingly, the Hsp90 complex is
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present within C. elegans (Birnby et al., 2000),
making the absence of an associated cyclophilin
surprising.

The second group contains both ScCwc27, which
has not formed part of previous research on the
S. cerevisiae repertoire due to the presence of a
very degenerate PPIase domain, and hSDCCAG10,
which was formerly called hNY-CO-10 until its
re-annotation to include a complete cyclophilin-
like catalytic domain. They share a region rich in
S/K-R/E residues that is similar to those observed
in hnRNP-binding proteins (Romano et al., 2004;
Weighardt et al., 1999) (data not shown) and both

Table 3. The numbers of the three different families that
make up the peptidyl-prolyl cis/trans isomerase repertoires
of H. sapiens, D. melanogaster, C. elegans, S. cerevisiae and Sz.
pombe

Organism Genes
Cyclo-
philins FKBPs

Par-
vulins Total

H. sapiens 24-40.000a 17 13 2 32
C. elegans 18.424b 17 8 2 27
D. melanogaster 13.601b 14 7 3 24
S. cerevisiae 5.885c 8 4 1 13
Sz. pombe 4.824d 9 3 1 13

a Lander et al. (2001); b Rubin et al. (2000); c Goffeau et al. (1996);
d Wood et al. (2002).

Table 4. Orthology between the (A) cyclophilin, (B) FKBP and (C) parvulin repertoires of S. cerevisiae, Sz. pombe, D.
melanogaster, C. elegans and H. sapiens, identified by BLAST searching of the NCBI database of their complete genomes and
proteomes (Adams, 2000; The C. elegans Genome Consortium, 1998; Goffeau et al., 1996; Lander et al., 2001; Wood et al.,
2002, respectively). PPIases are ordered by increasing size and PSORT predicted localization with any secondary domains
or domain architecture shown down the left hand side (ND = none detected; ± = charged region). (D) The number of
orthologues shared between the different repertoires. Cyclophilins (top) and FKBPs (bottom) are shown on the right with
the parvulins shown on the left. S. cerevisiae numbers outside of brackets are exclusive of, and numbers within brackets are
inclusive of, ScCwc27
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SpCyp7 and ScCwc27 have been reported to be
components of their respective Cdc5 complexes
(Ohi et al., 2002), but their function within this
complex remains unknown. The apparent absence
of a C. elegans orthologue cannot be explained by
an absence of the Cdc5 complex, which has been
reported as present within the nematode (Ohi et al.,
1998).

There are five groups that lack only an S. cere-
visiae member (Table 4A), highlighting the large
difference between the two yeast repertoires. Three
groups are predicted to be cytoplasmic, of which
one group has hCGI-124 as a member. hCGI-
124 has been reported to be highly expressed
in the heart and adult brain (Ozaki et al., 1996)
and members of this group have been identified
as orthologues of Dictyostelium discoideum CypE
(Skruzny et al., 2001), which gives them a role
within a broad range of signal transduction path-
ways (Skruzny et al., 2001).

In the second group, hUSA-CyP (also called
hCyp20) has been previously reported to be an
orthologue of SpCyp3 (Pemberton et al., 2003) and
to associate with two components of the pre-mRNA
spliceosome (Horowitz et al., 1997), where it is
required for the second stage of pre-mRNA splicing
(Horowitz et al., 2002). Both have been found to
be predominantly nuclear (Pemberton et al., 2003;
Teigelkamp et al., 1998), contrary to the PSORT
prediction. The absence of nuclear localization
sequences within their sequence (Pemberton et al.,
2003) would imply that functional interactions lead
to their translocation to the nucleus. The role in
pre-mRNA splicing would explain the absence
of an S. cerevisiae orthologue, as the budding
yeast performs very limited mRNA splicing in
comparison with the other organisms.

The third cytoplasmic group has the human
cyclophilin HAL539 as a member. Its members
possess WD40 motifs in their N-terminal region,
which are found in all eukaryotes, but not in
prokaryotes, in a large variety of proteins that
share no obvious commonality in their functions
(Neer et al., 1994). Recently, the severe trunca-
tion of DmCG3511 has been reported to cause
synthetic lethality to cells lacking the Rbf pro-
tein (Edgar et al., 2005), an orthologue of the
human retinoblastoma protein that is linked to
many human cancers, but it remains unknown by
what mechanism this lethality is caused.

The remaining two orthology groups that lack an
S. cerevisiae member are predicted to be nuclear
(Table 4A). The group containing SpCyp6 and
CeCyp14 all possess an RNA recognition motif
(RRM), which is found in metazoan protein factors
involved in constitutive pre-mRNA splicing and
alternative splicing regulation (Birney et al., 1993),
and appear to be RNA-interacting cyclophilins
linked to cell morphogenesis, cortical organiza-
tion and nuclear reorganization (Krzywicka et al.,
2001).

The second is a predominantly nuclear group
that contains hCyp60. Its members possess a U-
Box motif, which is reported to be a modified
RING-finger motif involved in protein–protein
interactions that has been primarily identified
in proteins involved in the ubiquitin–proteasome
system (Pringa et al., 2001). Expressed in the
thymus, pancreas, testis and kidney, hCyp60 is
a nuclear cyclophilin that interacts with the
well-characterized leech serine-proteinase inhibitor
elgin-c (Wang et al., 1996). CeCyp4 has been
found to be important in larval muscle development
(Page and Winter, 1998) in the nematode,
and interestingly is predicted by PSORT to be
cytoplasmic, rather than nuclear like the rest of
this group, which is also contrary to the reported
localization of hCyp60 (Wang et al., 1996).

The three remaining groups all lack a yeast mem-
ber, containing members solely from the higher
eukaryotes (Table 4A), indicating that their role
is required solely within the additional pathways
found within these multicellular organisms. Two
of these groups are cytoplasmic, of which one con-
tains hPPIL3 (Zhou et al., 2001) and CeCyp10
(Page et al., 1996), but as yet no functions have
been identified for its members. Members of
the second group possess an RRM and include
the human RNA-binding cyclophilin hCyp33 (Mi
et al., 1996), DmCyp33, which has been reported
to interact with the trx/MLL protein family which
modulate the expression of the HOXC genes
(Anderson et al., 2002) and CeCyp13, which is
found in an essential polycistronic operon (Mazroui
et al., 1999) but has itself been shown to be non-
essential (Zorio and Blumenthal, 1999).

The final group is found within the endoplasmic
reticulum and contains only two members; hCypC
and CeCyp6 (Table 4A). hCypC is reported to
function in the secretory pathway of specific tissues
(Friedman et al., 1993), namely bone marrow,
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ovaries, testis and kidney (Friedman et al., 1994),
and CeCyp6 was reported to localize exclusively
to the nematode’s gut (Picken et al., 2002).

The dendrogram shown in Figure 1A backs up
many of the BLAST-identified orthology groupings
detailed above. These groups are found clustered
on the same distinct branch of the dendrogram
leading back to their distinct common ancestor.
Many of these branches show their members seg-
regating in agreement with the divergence of the
compared species (Sz. pombe and S. cerevisiae, fol-
lowed by C. elegans, then D. melanogaster and
finally H. sapiens). The groups with hCGI-124,
hSDCCAG10 and hCyp60 would be good exam-
ples of this (Figure 1A, lower branch). The group
containing human PPIL3 appears evolutionarily
linked to the hCyp60 group and the group con-
taining hHAL539 appears evolutionarily linked to
the hCGI-124 group. The latter shows SpCyp9 sep-
arating from the other members of its group prior
to their split with the hCGI-124 group. The others
all segregate in order of species divergence from
a distinct common ancestor, implying that SpCyp9
may be more distantly related to this group.

In the upper branch of the dendrogram
(Figure 1A) only the hCyp33 group is found to
diverge from a distinct common ancestor. The
position of their branch within the dendrogram
indicates that they are linked with the evolution of
the cyclophilin As. The latter are seen to appear
within the same branch of the dendrogram but
without a common ancestor that is distinct only
to them. They do, however, follow the same order
of divergence as the species they are a part of, with
both SpCyp2 and ScCpr1 diverging first, followed
by CeCyp7 and then finally DmCyp1 and hCypA.

As was seen with the hHAL539 group, the
hUSA-CyP group shows SpCyp3 to diverge away
from the others prior to the distinct common ances-
tor from which all the others diverged (Figure 1A).
Given the lack of a secondary functional domain to
increase the certainty of SpCyp3’s orthology to the
other members of this group, the different position
of SpCyp3 within the dendrogram may potentially
indicate that it is not a true member of this orthol-
ogy group, with it fulfilling a different function that
has led to its reduced sequence conservation with
the other members of its orthology group.

Another group that appear to have evolved
without a distinct common ancestor are the heat
shock protein 90 (Hsp90)-associated cyclophilins.

hCyp40 is found on a branch amongst the C.
elegans cyclophilin A-related proteins (Figure 1A).
hCyp40 does possess a divergent loop located to
one side of the active site which is present in both
its cyclophilin 40 orthologues (data not shown) and,
more importantly in the context of this observation,
in CeCyp3 (Dornan et al., 1999). This could in part
explain this observation, but the absence of the TPR
domain within CeCyp3 still makes the answer to
this linkage elusive. Unsurprisingly, both the yeast
cyclophilin 40 proteins (SpCyp5 and ScCpr6) are
found on the same branch. The D. melanogaster
cyclophilin 40 (DmCG8336) is found on its own as
part of a branch that links it to hCyp40 and which,
if traced back, can also be remotely linked to the
yeast proteins (Figure 1A). The published research
is the only confirmation that SpCyp5, SpCpr6 and
hCyp40 are likely to show functional orthology,
with DmCD8336 remaining uncharacterized.

Finally, we have the ER-located cyclophilins,
which are seen to appear from all three initial
branches of the dendrogram (Figure 1A), although
all putative cyclophilin B and C orthologues are
found diverging from the upper branch, with the
exception of the S. cerevisiae cyclophilin B ortho-
logue ScCpr5 (central branch). In the upper branch,
SpCyp4 is seen to diverge away from the oth-
ers first, followed by hCypB before CeCyp5 and
DmCG2852 diverge. The latter divergence is dif-
ferent from that of the respective species, implying
that sequence variation within the C. elegans and
D. melanogaster cyclophilins may have been influ-
enced for similar reasons that are distinct from
that of humans. ScCpr5 appears on a branch with
only one other distinct protein, ScCpr2, and as
this branch appears distinct from all others, it
implies that these two cyclophilins evolved inde-
pendently from a distinct common ancestor within
S. cerevisiae. The cyclophilin C group appear to
have evolved independently of each other, with
both being seen to diverge from their respec-
tive cyclophilin B orthologue (Figure 1A, upper
branch).

Besides the orthology groups identified above by
both BLAST and sequence analysis, there remain
individual cyclophilins found within the individual
repertoires of the organisms in this comparison.
The dendrogram (Figure 1A) can in some cases
help to shed light on their potential role within the
cell through linkage with other groups of known
function. An example of this would be that both
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CeCyp2 and CeCyp3, shown to have no identifi-
able orthologues by BLAST analysis (Table 4A),
are linked by a distinct common ancestor to their
cyclophilin A orthologue, CeCyp7. BLAST analy-
sis did show that they have a high similarity to the
cyclophilin As, indicating that these are likely to be
additional cyclophilin A-like cyclophilins function-
ing within the nematode. DmCG7768 is found in
the same branch as the hCyp33 group (Figure 1A,
upper branch), sharing a distinct common ancestor
with them. Although it lacks the requisite domains
to be a member of this group, looking similar in
size and structure to the cyclophilin As, this may
indicate its evolution came about by a gene dupli-
cation of the DmCyp33 gene, either prior to it
gaining the N-terminal RRM domain or in such
a fashion that the RRM was lost. hCyp29 appears
closely linked to hCypA, both sharing a distinct
common ancestor, but has since evolved to be a
larger protein with a putative function within the
nucleus. Human RanBP2 is also seen as part of
the cyclophilin A and 33 branch (Figure 1A, upper
branch), with it appearing evolutionarily linked to
the cyclophilin 33s, although its size and multido-
main structure have led to its localization to the
cytoplasmic periphery of the nuclear pore com-
plex (Wu et al., 1995), putatively as a SUMO1 E3
ligase (Pichler et al., 2002). ScCpr7 is a second
TPR-containing cyclophilin distinct to S. cerevisiae
that is found on the same branch as its cyclophilin
40 orthologue ScCpr6 (Figure 1A), with it also
reported to interact with Hsp90 (Marsh et al., 1998;
Mayr, 2000; Tesic et al., 2003). It appears from
this dendrogram that S. cerevisiae evolved a second
cyclophilin 40-like cyclophilin after its divergence
away from the other organisms within this study.

Four of the individual cyclophilins on the upper
branch of the dendrogram (Figure 1A) appear to
possess a common non-cyclophilin domain. All
are RS-cyclophilins that possess what has been
termed a ‘moca’ domain in a published characteri-
zation study on the D. melanogaster cyclophilin,
DmMoca (Cavarec et al., 2002). CeCyp8 and
CeCyp9, along with human NK-Cyp, were also
reported in this study to possess this ‘moca’
domain, but in all cases the proteins show no link-
age between species, with only the two C. elegans
cyclophilins appearing to have a recent, and in
their case distinct, common ancestor (Figure 1A).
hNK-Cyp functions almost solely on the outer cell
membrane of natural killer cells (Alkhatib et al.,

1997; Anderson et al., 1993; Giardina et al., 1996)
as an important component in the recognition of
infected cells (Chambers et al., 1994), a process
not found in the other compared organisms. The
evolution and conservation of this ‘moca’ domain
is therefore elusive when looked at in the context
of this dendrogram (Figure 1A) and the function of
the proteins that are known to possess it.

Human NK-Cyp also shows linkage to another
individual human cyclophilin, hCyp88. Also an
RS protein, hCyp88 lacks the ‘moca’ domain of
hNK-Cyp and has been reported to interact with
the C-terminal domain of RNA polymerase II
(Bourquin et al., 1997) and Cdc28 (Nestel et al.,
1996), where it is believed to function in pre-
mRNA splicing after co-localizing with splic-
ing factors into nuclear speckles (Bourquin et al.,
1997).

The remaining three ER-located cyclophilins are
distinct proteins that have evolved, with the excep-
tion of ScCpr2, from the lower of the three initial
branches (Figure 1A). Two of these individuals are
found within S. cerevisiae. ScCpr2 is reported as
present in the yeast’s secretory pathway (Dolinski
et al., 1997a; Koser et al., 1991) and induced by
heat stress and tunicamycin (Gothel and Marahiel,
1999). It appears linked to its cyclophilin B ortho-
logue, which could imply that it may have evolved
from gene duplication and has since gained an indi-
vidual role within the secretory pathway. The other
S. cerevisiae protein, ScCpr4, has been reported
to localize to the endoplasmic reticulum (Dolin-
ski et al., 1997a), function within the secretory
pathway (Gothel and Marahiel, 1999), possess a
putative transmembrane domain and to be induced
by heat shock and tunicamycin. The remaining ER
cyclophilin is D. melanogaster’s NinaA (neither
inactivation nor after potential A), which is on
a branch of its own (Figure 1A). It is expressed
solely in the eye (Schneuwly et al., 1989) and is
reported as required for visual transduction (Shieh
et al., 1989) as an integral membrane protein func-
tioning within the endoplasmic reticulum, as a
chaperone in the secretory pathway (Colley et al.,
1991; Stamnes et al., 1991) that is required for the
correct secretion of the Rh1 subset of rhodopsins
(Baker et al., 1994).

Another individual S. cerevisiae cyclophilin,
ScCpr8, is found linked with ScCpr4 and also
CeCyp17 (Figure 1A), and has been reported to be
a membrane-bound protein (Franco et al., 1991).
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CeCyp16 appears linked to the CeCyp14 RRM-
possessing cyclophilin group, with it reported to
be expressed within the anterior and posterior dis-
tal portions of the intestine in all larval and adult
stages except for the dauer stage, where it is
observed in both cell bodies and processes of the
ventral chord motor neurons but, interestingly, it
was absent from the intestine at these times (Ma
et al., 2002).

The three remaining cyclophilins have a puta-
tive mitochondrial localization. hmCypD (also
referred to as cyclophilin F) is found in the mito-
chondrial matrix (Bergsma et al., 1991; Connern
and Halestrap, 1992; Inoue et al., 1993), with
reported functions in the mitochondrial protein-
folding machinery (Rassow et al., 1995) and as
part of the mitochondrial permeability transition
pore complex (Baines et al., 2005; Basso et al.,
2005; Halestrap et al., 2002; He and Lemas-
ters, 2002; Lin and Lechleiter, 2002; Nakagawa
et al., 2005; Sullivan et al., 1999; Waldmeier et al.,
2002). ScCpr3 has been reported as a mitochondrial
cyclophilin required for mitochondrial function
under heat stress (Dolinski et al., 1997b) and as a
protein-folding chaperone within the mitochondria
(Davis et al., 1992; Gothel and Marahiel, 1999;
Matouschek et al., 1995). The function of CeCyp1
remains unknown, with no published research on
its function at the time of writing. The dendrogram
(Figure 1A, upper branch) shows that these mito-
chondrial cyclophilins share very little in common,
with each appearing near its respective cyclophilin
A orthologue. This observation is supported by
their failure to identify each other during BLAST
analysis, in which they identify their respective
cyclophilin A orthologues instead. Their function
may not, therefore, be conserved within their dis-
tinct common location within the cell or, if it is,
then this most likely came about through conver-
gent evolution.

FKBP orthology

Table 4D shows that D. melanogaster and
H. sapiens share the greatest number of ortho-
logues, which is closely followed by their orthology
to C. elegans. All except D. melanogaster share
just a sole orthologue with the yeasts, with the fruit
fly sharing two. This orthology only accounts for
at most a quarter of any given higher eukaryotic

repertoire or half of a yeast repertoire. It there-
fore appears that most FKBPs within the repertoires
of these organisms are distinct individuals found
solely within that repertoire.

Table 4B shows that the only FKBP group to
have members in all the compared organisms are
those related to hFKBP12. This group has been
implicated in transcriptional regulation (Yang et al.,
1995), as a regulated inhibitor of tumour growth
factor (TGF)-β type I signalling (Bryant et al.,
1999), as well as in the regulation of the cell cycle
(Chen et al., 1997; Okadome et al., 1996; Yao
et al., 2000) and calcium release channels (Bul-
tynck et al., 2001a, 2001b; Cameron et al., 1995;
Carmody et al., 2001; Wagenknecht et al., 1997).
SpFKBP12 has been reported to be important in the
early steps of the sexual development pathway of
the fission yeast (Weisman et al., 2001), showing
that this group appears to have wide-ranging roles.

Only two other groups have a yeast ortho-
logue (Table 4B), with each of the yeasts shar-
ing a single FKBP solely with D. melanogaster.
SpFKBP39 and DmFKBP39 (Table 4B) are the
members of one group, with DmFKBP39 shown
to be expressed throughout development (Theopold
et al., 1995), and SpFKBP39 has been reported
as nuclear (Himukai et al., 1999). A report has
implicated this group of cyclophilins in chromatin
remodelling involved in ribosomal DNA silencing
through a potential role as a histone chaperone
(Kuzuhara and Horikoshi, 2004). The second group
contains ScFpr2, which has been identified as res-
ident within the ER (Partaledis and Berlin, 1993),
but nothing further is known about this group at
the time of writing.

There are only three more identified FKBP
orthology groups, two related cytoplasmic groups
and the other believed to function within the
endoplasmic reticulum, despite the varying pre-
dicted localizations of its component members
(Table 4B). In the latter group hFKBP13 has been
reported as resident within the ER (Jin et al., 1991),
which is contrary to the PSORT-predicted mito-
chondrial localization represented in Table 4B, and
upregulated in the presence of an increased number
of unfolded proteins in the ER (Bush et al., 1994)
where it has an apparent role in vesicular trafficking
(Padilla et al., 2003).

One of the cytoplasmic groups is found only
in the three higher eukaryotes, with the sec-
ond only found in D. melanogaster and humans
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(Table 4B). Both are TPR-possessing FKBPs, with
one group having human FKBP52 as a member
as well as DmFKBP59, which is reported to be
expressed throughout the life-cycle of the fruit
fly in the lymph glands, garland cells and oeno-
cyte cells, leading to a proposed function in the
exocytic/endocytic pathways that cycle intensively
within these tissues (Zaffran, 2000). hFKBP52
(Peattie et al., 1992) is closely related to a mem-
ber of the second group, hFKBP51 (Sanchez, 1990;
Wiederrecht et al., 1992). It has been shown that
both bind competitively to the same site on the
Hsp90 complex (Nair et al., 1997; Young et al.,
1998) and that shuffling between the two effects
the subcellular localization and transport of steroid
receptors (Davies et al., 2002, 2005; Riggs et al.,
2003). The absence of a C. elegans orthologue of
the hFKBP51 group could potentially indicate a
difference in function of the Hsp90-related FKBPs
in the nematode.

The remaining FKBPs in the different organisms
all appear to be distinct individuals. There are an
additional two cytoplasmic TPR containing FKBPs
within the human repertoire (Table 4B), hFKBP36
and hFKBP38. hFKBP38 is capable of inhibiting
calcineurin in the absence of FK506 (Shirane and
Nakayama, 2003), unlike the other FKBPs, sug-
gesting that it functions as a natural inhibitor of the
protease, like the previously identified calcineurin
inhibitor CAIN (Lai et al., 1998). Its ability to
anchor Bcl-2 and Bcl-x(L) to the mitochondria has
implicated it in the regulation of apoptosis (Shi-
rane and Nakayama, 2003) and a role in homolo-
gous chromosome pairing in meiosis has also been
reported (Crackower et al., 2003). D. melanogaster
also has an additional TPR-containing nuclear
FKBP, DmShutdown (Table 4B), which appears
to have an essential function in the regulation of
germ cell division (Munn and Steward, 2000). The
remaining two distinct nuclear FKBPs are both
found in S. cerevisiae (Table 4B). ScFpr3 has been
identified as nuclear (Benton et al., 1994; Manning-
Krieg et al., 1994; Shan et al., 1994), as has ScFpr4
(Davey et al., 2000; Dolinski et al., 1997b), with
both ScFpr3 and ScFpr4 having been shown to sup-
press defects seen in the absence of the E3 ubiqui-
tin ligase TOM1 (Davey et al., 2000). SpFKBP39a
and CeFkb8 are the only distinct PSORT-predicted
cytoplasmic non-human FKBPs (Table 4B). The
former has been shown to be nuclear (Himukai

et al., 1999) but as yet neither has had any func-
tions identified for it.

The remaining two distinct cytoplasmic FKBPs
are all within the human repertoire (Table 4B).
hFKBP12.6, which shows 85% similarity to
hFKBP12 (Sewell et al., 1994), shares its ability to
bind to calcium release channels (Lam et al., 1995;
Timerman et al., 1996) and has a proposed role
in controlling calcium channel gating through an
interaction with cyclic-ADP ribose (Noguchi et al.,
1997). hFKBP25 has an N-terminal amphipathic
DNA binding helix–loop–helix structure (Hung
and Schreiber, 1992; Riviere et al., 1993) and
is found to be predominantly nuclear, contrary
to its PSORT-predicted cytoplasmic localization,
where it has putative roles in cellular control
(Jin and Burakoff, 1993), which is supported by
its downregulation following p53 induction (Ahn
et al., 1999) and transcriptional regulation (Yang
et al., 2001).

In total there are four distinct C. elegans FKBPs
and five human FKBPs that are predicted by
PSORT to be endoplasmic reticular (Table 4B).
Three of the C. elegans FKBPs (dao1 = CeFkb3;
dao8 = CeFkb4; dao9 = CeFkb7) have been iden-
tified in a study on the DAF-2 insulin receptor-
like pathway, which is involved in dauer larva
formation, as proteins whose expression is con-
trolled by this pathway (Yu and Larsen, 2001), but
quite what their function is remains unknown. The
final C. elegans FKBP is CeFkb7, whose func-
tion remains unknown, although the presence of
a calcium-binding EF-hand motif in its C-terminal
region may indicate that its function is regulated
by intracellular calcium levels (Honore and Vorum,
2000).

Besides hFKBP65, which has been reported as
localized within the ER lumen of cells only dur-
ing the growth and development of tissues when
it appears to function as a protein chaperone (Pat-
terson et al., 2000), the remaining distinct human
FKBPs have yet to have functions assigned to them.
The presence of a calcium-binding EF-hand motif
in its C-terminal region of both hFKBP60 and
hFKBP65 may indicate that their function, like that
of CeFkb7, is regulated by intracellular calcium
levels (Honore and Vorum, 2000).

The dendrogram generated from the FKBP
sequences (Figure 1B) only tentatively supports
the BLAST-identified orthology groups between
the FKBP repertoires. The group containing
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SpFKBP39 and DmFKBP39 does appear in the
same branch of the dendrogram, which also
contains SpFKBP39a, confirming that the two
39 kDa Sz. pombe FKBPs are related. This
branch also contains the two distinct nuclear
S. cerevisiae FKBPs, ScFpr3 and ScFpr4, and
hFKBP25, which has been reported to be nuclear
(Jin and Burakoff, 1993), contrary to its PSORT-
predicted localization. All but one of the nuclear
FKBPs therefore appears to have evolved from
a single common ancestor, with the exception
being DmShutdown. The TPR-containing group,
which has hFKBP52 as a member, all appear
on the same branch of the dendrogram, with a
distinct common ancestor shared with hFKBP51,
which appears to diverge from hFKBP52 after their
common ancestor diverged from the other members
of the hFKBP52 group. The other member
of the hFKBP51 group appears on a separate
branch closely associated with the TPR-containing
hFKBP38 and more loosely with hFKBP36 and
DmShutdown. The only endoplasmic reticular
group containing ScFpr2 and DmCG14715 appears
on the same branch diverging from a distinct
common ancestor, with hFKBP22, hFKBP23 and
DmFKBP13 also found linked on this branch.
DmFKBP13 is separated from the rest of its
orthology group, which are located on another
branch along with all but one of the distinct
C. elegans endoplasmic reticular FKBPs, the
exception being CeFkb7, which appears on a
separate branch on its own. Finally we have the
FKBP12 group, which are found in two different
locations. ScFpr1 and SpFKBP12 are found on the
same branch, diverging from a distinct common
ancestor, and linked to their other FKBPs, with the
exception of ScFpr2. The remaining FKBP12s all
diverge from a single branch in the same order as
their species diverged, but they share their common
ancestor with the hFKBP52 group.

Despite the dendrogram’s lack of support for the
orthology groups, it does imply that there is more
significance in their location within the cell and the
domains they possess than in orthologous function.
All the cytoplasmic and nuclear FKBPs appear
to have evolved from the upper branch of the
dendrogram (Figure 1B), with all the endoplasmic
reticular FKBPs, with the exception of hFKBP19,
appearing to evolve from the lower branch of
the dendrogram, although CeFkb7 appears to have
evolved independently. Within each of the major

branches, the subbranches can be seen to group
such that those FKBPs with the same domains
present have largely evolved from the same branch
or group of linked branches.

Parvulin orthology

Compared with the cyclophilin and FKBP reper-
toires, the parvulin repertoires are relatively small.
All the compared organisms share a single parvulin
in common, with a second parvulin only shared
between the higher eukaryotes (Table 4D). The
sole parvulin they all share in common is that
of the hPin1 group identified by BLAST analysis
(Table 4C).

hPin1 has been reported to specifically isomer-
ize only phosphorylated serine/threonine–proline
bonds (Lu et al., 2002), making it likely that all
its functions can be linked to a regulatory role
with phosphoproteins. Its catalytic activity has been
implicated in the restoration of the function of
the phosphorylated-neuronal Tau protein (Lu et al.,
1999; Zhou et al., 2000) and in maintaining Bcl2
in a phosphorylated state (Basu et al., 2002). It has
been reported to have a critical regulatory role in
the function of p53 (Wulf et al., 2002; Zacchi et al.,
2002; Zheng et al., 2002), a regulatory role in tran-
scription (Albert et al., 1999; Wen and Shatkin,
1999), a role in the cell cycle G2 –M progres-
sion (Crenshaw et al., 1998) and with a potential
function also reported in mitosis (Messenger et al.,
2002). Interestingly, the cytoplasmic component of
the transcription factor NF-AT (nuclear factor of
activated T-cells), when in a phosphorylated form,
interacts with Pin1’s WW domain and this interac-
tion stops NF-ATc being dephosphorylated by the
Ca2+-dependent protein phosphatase calcineurin
(Liu et al., 2001), indicating a role in the regu-
lation of NF-AT signalling. The immunosuppres-
sive drugs cyclosporin A and FK506 both cause
immunosuppression by this mechanism (Schreiber
and Crabtree, 1992), making it appear that Pin1 has
a role in the regulation of the immune response.

DmDodo has also been reported as involved in
signal transduction (Maleszka et al., 1997), protein
folding (Maleszka et al., 1997) and, more recently,
as a MAP kinase signal responder during oogenesis
(Hsu et al., 2001).

Of the yeast Pin1 orthologues, SpPin1 is believed
to be it a positive regulator of the cell cycle
control proteins Wee1 and Cdc25 (Huang et al.,
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2001). ScEss1 is reported as nuclear and is
involved in transcription (Kops et al., 2002; Mor-
ris et al., 1999; Wilcox et al., 2004; Wu et al.,
2000, 2003; Xu et al., 2003), cell cycle regu-
lation (Huang et al., 2001) and is essential for
vegetative growth (Hanes et al., 1989). Interest-
ingly, ScEss1 has been reported as an essential
gene (Hanes et al., 1989), whereas SpPin1 (Huang
et al., 2001), DmDodo (Maleszka et al., 1996)
and Cryptococcus neoformans Ess1 (Ren et al.,
2005) have been shown to be non-essential. Cross-
talk between ScEss1 and ScCpr1 (Fujimori et al.,
2001), its hCypA orthologue, has been shown to
modulate the activity of the Sin3–Rpd3 complex,
with excess histone deacetylation causing mitotic
arrest in ScEss1 mutants (Arevalo-Rodriguez et al.,
2000), and CnEss1-null mutants have been reported
to be hypersensitive to cyclosporin A (CsA; Ren
et al., 2005), suggesting a cyclophilin-mediated
redundancy mechanism. Disruption of ScEss1 can
be complemented by DmDodo (Maleszka et al.,
1996) and the plant Digitalis lanata’s Par13 (Met-
zner et al., 2001), which lacks the WW domain
conserved in the other proteins, indicating that a
conserved functionality may exist between all Pin1
orthologues that is essential in some but not all
organisms under normal growth conditions.

The parvulin orthology group found only within
the higher eukaryotes are related to hPar14 (EPVH;
Table 4C), which has been reported in two differ-
ent studies to localize within two different areas
of the cell, preferentially within the mitochon-
drial matrix (Rulten et al., 1999) and preferentially
within the nucleus (Uchida et al., 1999). It has been
reported to be part of the preribosomal ribonucle-
oprotein (pre-rRNP) complexes and as interacting
with fibronectin, p160 (Myb-binding), p58 cyclin-
dependant kinase (a G2/M-specific protein kinase)
and α- and β-tubulin (Fujiyama et al., 2002). The
PSORT-predicted cytoplasmic localization of both
hPar14 and DmCG11858 is in contrast to the pre-
dicted nuclear localization of CePin2. Given the
apparent functions of this group, a nuclear local-
ization is more likely, contrary to the reported
mitochondrial localization, indicating that the local-
ization events may be due more to interactions with
other molecules than sequence motifs.

The only distinct parvulin is in the repertoire
of D. melanogaster, DmCG32845. No orthologues
were identified by BLAST searching of the cur-
rently available sequence databases, indicating that

it may be unique to the fruit fly. It is just over
twice the size of the hPin1 group but only a single
parvulin-like rotamase domain is identified within
its sequence (data not shown). It has a predicted
nuclear localization but it has not been previously
reported, making this is a novel identification in
this study. Research into its function will be invalu-
able to see what function this parvulin performs
solely within D. melanogaster, thus indicating rea-
sons for its absence in the other organisms. The
dendrogram for the parvulins (Figure 1C) implies
that this novel parvulin is more closely related to
the hPar14 group, which also shares its branch with
the D. melanogaster hPin1 orthologue, DmDodo. It
therefore appears that the evolution of the parvulins
of D. melanogaster is more closely linked than
those of the other compared organisms. hPin1
appears to have evolved in a more independent
fashion, with the remaining hPin1 orthologues
appearing to evolve from a distinct common ances-
tor, with SpPin1 and ScEss1 unsurprisingly sharing
a distinct common ancestor themselves.

Discussion

Of the identified PPIase repertoires, humans unsur-
prisingly possess the greatest number, although
fewer than we would expect, given the trend of
PPIase numbers vs. genes seen with the organ-
isms in the Table 3. A repertoire size of ca. 40
would be more in keeping with its genome size.
Looking at the component PPIase member numbers
that make up their repertoires, humans possess a
lower number of cyclophilins than we would expect
but its number of FKBPs and parvulins are as
expected, indicating that its smaller than expected
PPIase repertoire can be accounted for by a smaller
cyclophilin family. With two parvulins found in
the human and C. elegans repertoires and only
a single parvulin found in both of the yeasts, D.
melanogaster is the only known eukaryote to have
three parvulins, with its third parvulin appearing to
be unique.

We have shown that the repertoires of these
organisms have both members with common func-
tion and those which appear distinct for any given
organism. Interestingly, the cyclophilin repertoire
of Sz. pombe has no unique members and the
two yeasts share no PPIases that are unique to
themselves. The proportion of cyclophilins and
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parvulins with identified orthologues within the
repertoires is high, whereas the proportion seen
with the FKBPs is low by comparison. It therefore
appears that the cyclophilins and parvulins have
evolved to perform conserved functions, while the
FKBPs have evolved to fill ever-changing niches
within these constantly evolving organisms.

There were a total of 12 distinct cyclophilin
orthology groupings identified by BLAST anal-
ysis, and confirmed in most cases by sequence
analysis, with eight identified domain architectures
between them. Only four of theses groups have
an S. cerevisiae member, whereas nine have mem-
bers in its fellow yeast Sz. pombe, leaving only
three that are unique to the repertoires of the mul-
ticellular organisms. S. cerevisiae lacks members
of three cytoplasmic groups, which include those
involved in transcriptional regulation, pre-mRNA
splicing and signal transduction, and it also lacks
members of two nuclear groups believed to be
involved in transcriptional regulation as well as cell
morphogenesis, cortical organization and nuclear
reorganization. Those orthology groups that lack
a Sz. pombe and S. cerevisiae member appear to
function in pathways that would not be found in
single-celled yeasts, such as the control of cell dif-
ferentiation, or show differential expression linked
to cell type.

Although no unique cyclophilins are present in
the Sz. pombe repertoire, there are five in that of
its fellow yeast S. cerevisiae, which equals the
number in humans and is only two less than are
found in C. elegans. D. melanogaster has only
three, one in each of the cytoplasmic, nuclear and
endoplasmic reticular compartments, with two of
these appearing to be involved in pathways spe-
cific to the fruit fly and one being similar to its
cytoplasmic cyclophilin A orthologue. One of the
S. cerevisiae unique cyclophilins appears to be a
second member of the TPR-possessing cyclophilin
40 group only found within this yeast, with another
two unique cyclophilins found within its endoplas-
mic reticulum. The final two unique S. cerevisiae
cyclophilins have distinct localizations, one to the
plasma membrane and the other within the mito-
chondria. The latter has compatriots in humans
and C. elegans, although these appear unrelated.
No mitochondrial cyclophilin is found in either Sz.
pombe or D. melanogaster. Besides this mitochon-
drial cyclophilin, C. elegans also has three unique
cyclophilins in both the nucleus and cytoplasm.

Two of the latter appear to be additional cyclophilin
A-like cyclophilins, with the third appearing to be
involved in cell morphogenesis and cortical orga-
nization. The former group has one of unknown
function, with the remaining two appearing to be
part of a family that includes a unique protein in
both D. melanogaster and human. These appear to
all possess what has been termed a ‘moca’ domain,
but their function remains largely unknown. All of
the five extra human cyclophilins, which includes
the ‘moca’-possessing protein, are located in the
nucleus with the exception of the mitochondrial
cyclophilin mentioned above. The final cyclophilin
is hRanBP2, a large multidomain cyclophilin that
functions as part of the nuclear pore complex.

S. cerevisiae appears to require a greater num-
ber within the endoplasmic reticulum than any
of the other organisms compared, implying that
either their function may have been incorporated
into the PPIases they possess within that cellular
structure, or that their function is not required in
these other organisms. The lack of a mitochondrial
cyclophilin in Sz. pombe is surprising, given its
presence in all the others with the exception of D.
melanogaster. It therefore appears that mitochon-
dria in Sz. pombe share a greater similarity with
those in D. melanogaster in this respect. How-
ever, a single Neurospora crassa cyclophilin gene
has been reported to encode both a cytosolic and
a mitochondrial isoform (Tropschug et al., 1988),
which could possibly explain the absence of a ded-
icated mitochondrial cyclophilin within Sz. pombe
and D. melanogaster. The isolation of a cyclophilin
from within the mitochondria of both these organ-
isms would therefore clarify this.

The FKBP repertoires of the compared organ-
isms show less orthology than was seen with
the cyclophilin repertoires, with the yeasts show-
ing approximately 50% orthology with the higher
eukaryotes, which themselves show little more than
a 20% orthology with each other. A majority of
FKBPs therefore appear to be distinct to any given
organism, implying that their function is organism-
specific in most cases, with the sole FKBP they
all share in common being the FKBP12 family.
This family appears to have a wide range of func-
tions within cell cycle regulation, calcium release
and transcriptional regulation that appear to place
the function of the FKBP12 group predominantly
within intracellular signalling. Whilst the functions
of the additional FKBPs in the two yeasts are
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largely unknown, those in the multicellular eukary-
otes appear to function either in processes, such
as the growth and differentiated development of
tissues, or pathways, such as the anchoring of Bcl-
proteins to the mitochondria, that are probably not
required/present within the yeasts.

Unlike with the cyclophilins, sequence analy-
sis did not support many of the BLAST-identified
FKBP orthology groups. Although most groups
clustered into the same regions within the dendro-
gram, many were not able to be traced back to a
distinct common ancestor. The main organization
of the dendrogram appeared to be based upon their
secondary domains and localization rather than by
orthologous function.

In contrast to the cyclophilin and FKBP reper-
toires, the number of parvulins within the compared
organisms is small. They all share a single parvulin
in common, orthologues of hPin1, with the higher
eukaryotes sharing an additional parvulin in com-
mon related to hPar14. The hPin1 orthology group
appear to function in a wide range of processes
from intracellular signalling to the regulation of
transcription and the cell cycle, with some appear-
ing essential for cell survival, whilst the hPar14
group also appear to potentially function in some
intracellular signalling pathways as well as within
the ribosomal processes. The reason for the absence
of a hPar14 orthologue within the genomes of both
the yeasts cannot easily be explained by their func-
tion, making the most likely explanation that, while
the yeasts can cope with just a single parvulin, the
evolution of the higher eukaryotes has required an
additional parvulin to either share the work-load or
to fill a particular niche that requires a parvulin of
divergent form to that of hPin1. A novel parvulin
that identified no orthologues in the presently avail-
able sequence databases is present solely within the
repertoire of D. melanogaster and appears, based
on sequence analysis, to be a distant relative of
the hPar14 group, whilst evolving to an unknown
function that currently appears to be required solely
within the fruit fly. Analysis of the function of
this parvulin will therefore be of great interest
in unlocking why it is present solely within the
fruit fly.

Looking at the global localization patterns of the
three PPIase families within the compared organ-
isms (Table 4A–C), the cyclophilins appear pre-
dominantly within the cytoplasm and nucleus, with

only a few present within the endoplasmic reticu-
lum. Sz. pombe has just a single cyclophilin within
the endoplasmic reticulum, unlike the other com-
pared organisms that have two, with the exception
of S. cerevisiae which has three. They all share
a single ER-resident cyclophilin in common, while
the remaining ER cyclophilins in both S. cerevisiae
and D. melanogaster are specific to each of them,
with only the additional cyclophilin in human and
C. elegans appearing orthologous.

The FKBPs, however, reside predominantly
within the endoplasmic reticulum and cytoplasm.
Nuclear FKBPs are only present within the reper-
toires of the two yeasts and D. melanogaster,
making these distinct from those of humans and
C. elegans, which possess a greater number within
the endoplasmic reticulum, although these appear
specific to each of them. Sz. pombe is unique in
lacking an FKBP within the endoplasmic reticu-
lum, unlike S. cerevisiae, which has a single one
present. This greater localization to the vesicu-
lar pathway could explain the lack of orthology
observed within the FKBP family of the compared
organisms, which we have attributed to their poten-
tial evolution to serve in variable niches within the
different organisms. As the number of genes in any
given organism increases, so do the number of pro-
teins, and with that an increase in the number of
proteins requiring chaperoning is to be expected.
Given the location of the FKBPs within the protein-
folding pathway and the apparent linkage between
the number present in any given organism and its
number of genes (Table 3), it could be that they
are evolving to serve this increased requirement
for chaperoning, driven independently within each
organism, thus leading to their observed lack of
orthology. Taking this into consideration, we would
hypothesize that the cyclophilins are evolving to
perform specific conserved functions within the dif-
ferent organisms, while the FKBPs are evolving,
in most cases, to meet the more individual needs
for protein chaperoning. The presence of nuclear
FKBPs within the two yeasts and D. melanogaster
could be examples of functions initially performed
by the FKBPs that have since evolved to be filled
by cyclophilins within C. elegans and humans. The
lack of an Sz. pombe FKBP within the endoplas-
mic reticulum and the lack of any compensatory
cyclophilins does, however, indicate that that the
true reasons behind this may be more complicated

Copyright  2005 John Wiley & Sons, Ltd. Comp Funct Genom 2005; 6: 277–300.



294 T. J. Pemberton and J. E. Kay

than the simplified hypothesis we have proposed
here.

The parvulins appear to be a family of PPIases
found solely within the nucleus. They all share a
single parvulin in common, with the higher eukary-
otes also sharing a second smaller parvulin. Their
greater presence in the prokaryotes, where in some
cases they are the largest or sole PPIase family
present (data not shown), makes it appear that their
evolution has been such that the cyclophilins and
FKBPs have replaced them in their function or that
their functions have evolved such that they do not
require them.

This comparison has shown that, while the PPI-
ase repertoire of S. cerevisiae has been the subject
of a great deal of research to identify their func-
tions within the cell, it is a poor representative
of the repertoires of the more complex organisms.
In contrast, its fellow yeast Sz. pombe appears to
be a good model organism for the study of two
of the three PPIase families, the cyclophilins and
parvulins, with it not appearing to be a good sys-
tem for the study of the FKBP family. This lack of
orthology appears global in the FKBP repertoires,
implying that they function in a capacity that is
specific to each organism. Thus, Sz. pombe repre-
sents an excellent single-celled model organism for
the study of the functions of the different PPIase
families, which can be related to the function of
their orthologues within more complex eukaryotes.
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