
RESEARCH ARTICLE

Three-gene prognostic biomarkers for

seminoma identified by weighted gene co-

expression network analysis

Hualin Chen, Gang ChenID*, Yang Pan, Xiaoxiang Jin

Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

* chengang2308@163.com

Abstract

Testicular germ cell tumors (TGCTs) are common in young males, and seminoma accounts

for a large proportion of TGCTs. However, there are limited records on the exploration of

novel biomarkers for seminoma. Hence, we aimed to identify new biomarkers associated

with overall survival in seminoma. mRNA-seq and clinical traits of TGCTs were downloaded

from UCSC XENA and analyzed by weighted gene co-expression network analysis. After

intersection with differentially expressed genes in GSE8607, common genes were sub-

jected to protein-protein interaction (PPI) network construction and enrichment analyses.

Then, the top 10 common genes were investigated by Kaplan–Meier (KM) survival analyses

and univariate Cox regression analyses. Ultimately, TYROBP, CD68, and ITGAM were con-

sidered three prognostic biomarkers in seminoma. Based on correlation analysis between

these genes and immune infiltrates, we suggest that the three biomarkers influence the sur-

vival of seminoma patients, possibly through regulating the infiltration of immune cells. In

conclusion, our study demonstrated that TYROBP, CD68, and ITGAM could be regarded as

prognostic biomarkers and therapeutic targets for seminoma patients.

Introduction

Testicular germ cell tumors (TGCTs) are the most common malignancy in males between the

ages of 15 and 35 years [1]. According to the GLOBOCAN database, there are approximately

71,000 new cases and 9500 deaths from TGCTs per year, worldwide [2]. Pathological studies

reveal that seminoma accounts for over 60% of TGCT cases and this proportion is increasing

[3]. Additionally, approximately 80% of seminomas are classified as stage I according to the

clinical staging system [4]. Although the primary treatment for seminoma can result in a

5-year survival rate of over 90%, some patients fail cisplatin-based first-line chemotherapy and

about 3%–5% of them will eventually die of the disease [5]. Moreover, for patients with solitary

testicle or bilateral testicular tumors, novel treatment methods are needed to increase survival

rate. Recently, from in-depth studies surrounding tumor immunity, immunotherapy has

become a potential therapeutic method for patients with seminoma [5]. Hence, it is essential

to identify novel biomarkers and understand the molecular mechanism of tumorigenesis with
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an attempt to obtain early diagnosis, better clinical application of novel treatment strategies,

and prognostic prediction.

In recent years, the rapid development of microarray technologies and high-throughput

sequencing technologies has provided promising approaches for screening and identifying

novel therapeutic targets and prognostic biomarkers for seminoma. Weighted gene co-expres-

sion network analysis (WGCNA), which was primarily developed by Peter Langfelder and

Steve Horvath, is an advanced method for exploring the correlations between genes and clini-

cal traits. In WGCNA, the concept of soft threshold has been raised, instead of the hard thresh-

old used in traditional bioinformatics analysis. Therefore, potential key genes with small fold

changes, which may be strongly correlated with clinical traits and play important roles in

tumorigenesis, may be identified through the network [6, 7].

In the present study, we used WGCNA to identify seminoma-correlated modules and core

genes in an attempt to provide novel therapeutic targets and obtain a better understanding of

the molecular mechanisms driving seminoma.

Materials and methods

Data acquisition and pre-processing

The workflow of this study is presented in Fig 1. The transcriptome data and clinical informa-

tion of TGCT were downloaded from the TCGA Hub of the UCSC XENA database (https://

tcga.xenahubs.net). Pure samples of seminoma and non-seminoma (embryonal carcinoma,

choriocarcinoma, yolk sac tumor and teratoma) were screened for further analysis, while sam-

ples without clinical traits and mixed samples were removed. Subsequently, 121 samples

including 66 samples of seminoma and 55 samples of non-seminoma were identified. Then,

genes were ranked by median absolute deviation (MAD) from high to low, and the top 5000

MAD genes were identified for co-expression network analysis.

Construction of a weighted correlation network and identification of

modules associated with seminoma

Primarily, a correlation matrix was constructed using Pearson’s correlation coefficient matri-

ces which were calculated by average linkage method for all pairwise genes. Then, the correla-

tion matrix was transformed into a weighted adjacency matrix using the soft-thresholding

function. By utilizing the soft-connectivity algorithm, a co-expression network with a balance

between scale-independence and mean connectivity was obtained. Scale-independence>0.85

and average connectivity <100 were used as the criteria for a suitable soft threshold. Subse-

quently, the adjacency matrix was transformed into a topological overlap matrix (TOM). Dis-

similarity (1-TOM) was calculated and considered as the distance measurement to cluster

genes with similar expression profiles into gene modules with a minimum size cutoff of 30. A

merge height of 0.25 was used as a criterion to cluster similar modules. P-values and correla-

tion coefficients were calculated to identify the association between a co-expression module

and the clinical phenotype.

After that, the blue and green modules were considered as the two hub seminoma-corre-

lated modules. Then, preliminary Kyoto Encyclopedia of Genes and Genomes (KEGG) path-

way enrichment analyses were performed for genes in these two modules to determine the

more significant module. Ultimately, the blue module was identified as the candidate semi-

noma-correlated module since the preliminary KEGG analyses revealed no enriched pathway

for genes in the green module and some interesting pathways potentially related to tumor biol-

ogy for genes in the blue module. Hence, these genes were selected for further analyses. The
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clusterProfiler package in R was used for KEGG analyses [8]. The workflow of WGCNA is pre-

sented in S1 Fig.

Identification of DEGs in GSE8607

We screened the DEGs between seminoma and controls in GSE8607 using the ‘limma’ R pack-

age [9]. Adjust P-value < 0.01 and |logFC|�2 were set as the cutoff criterion for improved

accuracy and significance, as described previously [10]. Heatmap and volcano maps were

drawn to present the DEGs.

Identification of common genes, PPI network construction and functional

annotation

Common genes in both the blue module and DEGs obtained in GSE8607 were identified

using the VennDiagram package in R [11].

The common genes were submitted to The Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING) database for protein-protein interaction (PPI) network

Fig 1. Flow chart indicating the workflow used for prognostic biomarkers selection in the analysis. TGCT, testicular germ cell tumors. MAD,

median absolute deviation. PPI, protein-protein interaction.

https://doi.org/10.1371/journal.pone.0240943.g001
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construction. Then, the PPI network was downloaded and visualized with Cytoscape software

[12]. Hub genes were identified using the plug-in CytoHubba [13]. With the application of

betweenness centrality (BC) algorithm, the top 50 genes were identified for further functional

annotation [14].

Gene Ontology (GO) and pathway functional enrichment analysis were performed using

the clusterProfiler package in R and REACTOME Pathway databases (https://reactome.org),

respectively. Next, the top 10 genes by highest BC were further identified for identification of

hub genes.

Identification of prognostic biomarkers

To investigate the clinical significance of the top 10 gene signatures, Kaplan–Meier survival

analyses and univariate Cox regression analyses were performed based on survival data and

normalized expression profiles of TGCT obtained from the UCSC XENA platform. The

Human Protein Atlas was used for validating the immunohistochemistry (IHC) of latent hub

genes [15, 16]. The Survival and Survminer packages in R were used to analyze and visualize

the survival data and P<0.05 was considered as indicating a statistically significant difference.

After identification of significant genes, their expression values in multiple tumors were

identified by consulting the GEPIA, a newly developed interactive web server for analyzing the

RNAseq data of tumors and normal samples from TCGA and GTEx projects [17].

Immune infiltrate analysis in seminoma

The Tumor Immune Estimation Resource (TIMER) database, which is a comprehensive

resource for the systematic analysis of immune infiltrates across multiple tumors, was

employed to analyze the correlation between prognostic biomarkers and the abundance of

immune cell infiltrates, including B cells, CD4+ T cells, CD8+ T cells, Neutrophils, Macro-

phages, and Dendritic cells [18]. Tumor purity was calculated using R package and CHAT, as

described in a previous study [19]. Subsequently, correlations between prognostic biomarker

expression and gene markers of tumor-infiltrating immune cells were further explored using

Spearman’s correlation. Gene markers have been reported in previous studies [20].

Results

Construction of the co-expression network and identification of

seminoma-correlated modules

As presented in Fig 2A, a power of 9 was selected as the soft threshold to construct the

weighted adjacency matrix. Based on the dissimilarity of the topological overlap matrix, a clus-

ter dendrogram was generated (Fig 2B).

As presented in Fig 2C, seminoma was significantly correlated with the blue module (r2 =

0.54, P = 10-10) and green module (r2 = 0.78, P = 5x10-26). Scatterplots of Gene Significance vs.

Module Membership in the two modules were plotted (Fig 2D and 2E).

Then, preliminary KEGG enrichment analyses for genes in the two modules were per-

formed. No term was enriched in the 407 genes in the green module, while 738 genes in the

blue module were mainly enriched in pathways related to tumor growth, metastasis and

immunology, including cytokine-cytokine receptor interaction, cell adhesion molecules, anti-

gen processing, and presentation, chemokine signaling pathway, natural killer cell mediated

cytotoxicity, primary immunodeficiency and Th17 cell differentiation. The top 20 enriched

pathways are presented in Fig 2F.
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Identification of DEGs in GSE8607

Under the cutoff criteria of Adjust P-value < 0.01 and |logFC|�2, 1297 DEGs were screened

from the GSE8607 dataset. A heatmap and volcano map were plotted to show the DEGs (Fig

3A and 3B).

Fig 2. Identification of hub seminoma-correlated module. (A) Analysis of the scale-free fit index and mean

connectivity for various soft-thresholding powers. (B) Cluster dendrogram of genes, with dissimilarity based on

topological overlap. (C) Heatmap of the correlation between module eigengenes and clinical phenotypes. S, seminoma.

NS, non-seminoma. Scatter plots of module eigengenes in the blue module (D) and green module (E). (F) Preliminary

KEGG pathway enrichment analysis for genes in the blue module.

https://doi.org/10.1371/journal.pone.0240943.g002

Fig 3. Identification of DEGs in GSE8607. (A) Heat map of the DEGs. (B) Volcano plot of the DEGs (cut-off criteria:

adjust P-value< 0.01 and |logFC|�2).

https://doi.org/10.1371/journal.pone.0240943.g003
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Identification of common genes, PPI network construction, and

enrichment analysis

A total of 155 common genes were identified for further analysis, by application of the Venn-

Diagram package in R (Fig 4A). Subsequently, an interaction network of 155 common genes

was constructed and visualized using Cytoscape software. Then, the top 50 genes by highest

BC were selected for enrichment analysis (Fig 4B). The results of biological process enrichment

analysis revealed that the top 50 genes were mainly enriched in inflammation and immunity

(Fig 4C). REACTOME Pathway enrichment analysis showed that the top 50 genes were mainly

enriched in the immune system and signal transduction (Fig 4D).

Investigation of the prognostic significance of hub genes

The top 10 genes by highest BC were identified in the PPI network and further analyses were

performed on these candidate hub genes. According to Kaplan–Meier survival analyses, over-

expression of TYROBP and CD68 were significantly correlated with poor prognosis in semi-

noma (P< 0.05) (Fig 5A and 5B). The univariate Cox proportional hazards regression analyses

showed that CD68 and ITGAM were positively correlated with overall survival in seminoma

(Table 1). The protein level of ITGAM was higher in seminoma tissues than in normal tissues

(Fig 5C).

The expression levels of TYROBP, CD68 and ITGAM in various tumors are presented in

Fig 5D and 5E. We noticed that the expression values of these three genes were higher in

TGCT compared to normal samples.

Correlations of prognostic biomarkers with lymphocyte infiltration levels

in seminoma

The enrichment analyses revealed that the top 50 genes were mainly enriched in immune-

related pathways. Previous studies have demonstrated independent predictive roles for tumor-

infiltrating lymphocyte grade in the survival of cancer and sentinel lymph node status [21].

Therefore, using the TIMER database, we further analyzed the correlations between the

expression of the three candidate biomarkers and immune infiltrates in seminoma. TYROBP,

CD68, and ITGAM expression had a significant positive correlation with infiltrating levels of B

cells, CD4+ T cells, Macrophages, Neutrophils and Dendritic cells, as depicted in Fig 6.

Furthermore, the relationships between the expression of three prognostic biomarkers and

immune marker genes for B cells, CD8+ T cells, neutrophils, macrophages, dendritic cells, NK

cells, Th1 cells, Treg and monocytes, as reported in a previous study [20], were also explored

in the TIMER database. The results demonstrated that most of the immune marker genes were

significantly associated with TYROBP, CD68 and ITGAM expression (Table 2).

These important findings further confirmed that the expression of the three prognostic bio-

markers in seminoma was correlated with immune infiltration.

Discussion

In recent decades, accumulated experiences and rapid development in surgeries, medicine,

and radiology have provided an extremely high five-year survival rate for patients with TGCT,

and this malignancy has become a kind of curable solid neoplasm [22]. However, for patients

who fail first-line treatment or have solitary testicles, immunotherapy can be considered an

alternative treatment strategy [5]. In such situations, it is necessary to identify novel biomark-

ers, which may be potential therapeutic targets and play critical roles in improving the progno-

sis of seminomas.
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Fig 4. Identification of hub biomarkers. (A) Venn plot of common genes. (B) Top 50 genes by highest BC obtained from PPI

network analysis. (C) Biological process enrichment analysis for the top 50 genes. (D) REACTOME Pathway enrichment analysis for

the top 50 genes.

https://doi.org/10.1371/journal.pone.0240943.g004
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In the present study, the blue module with 738 genes was selected as the hub seminoma-

correlated module. After intersection with 1297 DEGs in GSE8607, 155 common genes were

identified for further analysis. Based on PPI network construction and analysis, the top 50 hub

genes were screened, followed by functional enrichment analyses. The results revealed that the

top 50 genes were mainly enriched in inflammation, immune response and signal transduc-

tion. Subsequently, the 10 genes with the highest BC were identified and evaluated by survival

analyses and Cox hazards regression analyses, after which TYROBP, CD68 and ITGAM were

identified as prognostic biomarkers in seminoma. In addition, the correlation between these

three biomarkers with immune infiltration implies an important role in tumor immunity in

seminoma.

TYROBP, also known as DAP12, KARAP or PLOSL, encodes a transmembrane signaling

polypeptide that contains an immunoreceptor tyrosine-based activation motif (ITAM) in its

Fig 5. Prognostic significance of hub biomarkers. Kaplan–Meier survival analysis for TYROBP (A) and CD68 (B). (C)

Immunohistochemistry graph of ITGAM according to the Human Protein Atlas database (Reprinted from The Human Protein Atlas

under a CC BY license, with permission from Inger Åhlén, original copyright August 28, 2020). Left: protein levels in normal tissues

(staining: not detected, intensity: negative, quantity: none). Right: protein levels in seminoma tissues (staining: medium, intensity:

moderate, quantity:> 75%). The expression level of TYROBP (D), CD68 (E), and ITGAM (F) according to the GEPIA.

https://doi.org/10.1371/journal.pone.0240943.g005
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cytoplasmic domain. The encoded protein may associate with the killer cell immunoglobulin-

like receptor (KIR) family of membrane glycoproteins and may act as an activating signal

transduction element. That is to say that TYROBP plays critical roles in the immune system

and signal transduction. Currently, its expression and clinical value have been studied in mul-

tiple cancers. Upregulated TYROBP, as previously reported by Stelios et al., was associated

with advanced breast cancer grade and metastasis to the bone and liver [23]. Liu et al. con-

ducted a bioinformatics analysis to identify biomarkers for liver cancer and found that TYR-
OBP was the hub gene and may be a potential therapeutic target in liver cancer [24]. In

addition, the results of a genome-wide cDNA microarray analysis showed that TYROBP was

upregulated 5-fold or more in seminoma. The authors did not further explore the biological

process for this gene in seminoma [25]. The overexpression of TYROBP in seminoma was also

observed in our study and had predictive value for poor prognosis in patients with seminoma.

Table 1. The results of survival analyses and univariate cox analyses of the top 10 genes in the PPI network.

Gene symbol Gene title P value in Survival analysis HR P value in Univariate Cox analysis

CD68 CD68 molecule 0.047 3984.767 0.0467

TYROBP TYRO protein tyrosine kinase binding protein 0.049 207.445 0.0858

ITGAM integrin subunit alpha M 0.073 1494.224 0.0257

PTPRC protein tyrosine phosphatase, receptor type C 0.079 169.022 0.1833

IL10RA interleukin 10 receptor subunit alpha 0.082 3961.419 0.0840

CCR5 C-C motif chemokine receptor 5 (gene/pseudogene) 0.090 603.833 0.1036

SELL selectin L 0.195 17.488 0.2364

CD4 CD4 molecule 0.195 897.657 0.0826

IFNG interferon gamma 0.447 1.110 0.8818

CD2 CD2 molecule 0.807 3.727 0.4816

HR, hazard ratio.

https://doi.org/10.1371/journal.pone.0240943.t001

Fig 6. Correlation between expressions of TYROBP (A), CD68 (B) and ITGAM (C) and immune infiltration in seminoma

according to the TIMER database.

https://doi.org/10.1371/journal.pone.0240943.g006
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Elena et al. reviewed relevant literature and concluded that TYROBP is a wiring component

for NK cell anti-tumor function via its association with NKp44. In addition, TYROBP is associ-

ated with inflammation through its binding to specific receptors displayed by inflammatory

cells such as monocytes/macrophages, neutrophils, and dendritic cells. Furthermore, the

authors reported that TYROBP played essential roles in brain function and bone remodeling

[26]. The roles of this gene seemed contradictory in the literature, due to its high expression in

tumor samples and anti-tumor function through NK cell activation. We further searched the

GEPIA to determine the expression of TYROBP in multiple cancers and normal samples. The

results revealed that this gene was upregulated in most cancer samples, such as TGCT, breast

cancer and cervical cancer, while in large B-cell lymphoma and thymoma, this gene was down-

regulated. Taken together with its important role in tumor immunity, this suggests the gene

may be cancer-specific and its aberrant expression is correlated with tumorigenesis.

CD68, as reported in a previous study, provided a good predictive value as a prognostic

marker for survival in cancer patients. The authors described that low expression of this gene

was found in tumor cells [27]. After consulting the GEPIA, we noticed that the gene was upre-

gulated in most cancers including TGCT and downregulated in lung adenocarcinoma and

thymoma.

The expression and effects of CD68 have mostly investigated in immunohistochemical

studies of various tumors. For example, positive immunophenotypical features of CD68 have

Table 2. Correlation analysis between three prognostic biomarkers and immune cell type markers in the TIMER database.

Cell type Gene markers CD68 ITGAM TYROBP

COR P COR P COR P

B cells FCRL2 0.536 P < 0.01 0.406 P < 0.01 0.606 P < 0.01

CD19 0.393 P < 0.01 0.262 P < 0.01 0.467 P < 0.01

MS4A1 0.473 P < 0.01 0.358 P < 0.01 0.544 P < 0.01

CD8+ T cells CD8A 0.639 P < 0.01 0.470 P < 0.01 0.671 P < 0.01

CD8B 0.621 P < 0.01 0.386 P < 0.01 0.623 P < 0.01

Neutrophils FCGR3B 0.212 P < 0.01 0.096 0.243 0.162 0.048

CEACAM3 0.462 P < 0.01 0.468 P < 0.01 0.568 P < 0.01

SIGLEC5 0.794 P < 0.01 0.637 P < 0.01 0.617 P < 0.01

FPR1 0.680 P < 0.01 0.559 P < 0.01 0.564 P < 0.01

CSF3R 0.791 P < 0.01 0.661 P < 0.01 0.840 P < 0.01

S100A12 0.182 0.026 0.136 0.098 0.212 P < 0.01

Macrophages CD68 1.000 P < 0.01 0.741 P < 0.01 0.817 P < 0.01

CD84 0.834 P < 0.01 0.669 P < 0.01 0.640 P < 0.01

CD163 0.461 P < 0.01 0.315 P < 0.01 0.318 P < 0.01

MS4A4A 0.650 P < 0.01 0.480 P < 0.01 0.594 P < 0.01

Dendritic cells CD209 0.490 P < 0.01 0.399 P < 0.01 0.412 P < 0.01

NK cells KIR3DL3 0.383 P < 0.01 0.249 P < 0.01 0.367 P < 0.01

NCR1 0.038 0.645 0.123 0.135 -0.150 0.066

Th1 cells TBX21 0.681 P < 0.01 0.522 P < 0.01 0.738 P < 0.01

Treg FOXP3 0.641 P < 0.01 0.588 P < 0.01 0.708 P < 0.01

CCR8 0.296 P < 0.01 0.404 P < 0.01 0.088 0.283

Monocyte C3AR1 0.893 P < 0.01 0.764 P < 0.01 0.791 P < 0.01

CD86 0.874 P < 0.01 0.727 P < 0.01 0.912 P < 0.01

CSF1R 0.865 P < 0.01 0.689 P < 0.01 0.784 P < 0.01

NK cells, Natural killer cells; Th1 cells, type I helper T cells; Treg, regulatory T cells; COR, r value of Spearman’s correlation.

https://doi.org/10.1371/journal.pone.0240943.t002
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been observed in bellini carcinoma, a rare type of renal malignancy [28], and testicular

myeloid sarcoma [29]. Regarding the features of CD68 in seminoma, Tine et al. studied the

phenotypic characterization of immune cell infiltrates in 41 TGCTs and found that a high pro-

portion of them were identified as CD68+ macrophages [30]. Moreover, the authors reported

the absence of active immune surveillance in TGCT, suggesting a potential role for CD68 in

tumor immunity. Sam et al. performed immunohistochemistry in 51 seminomas and 26 non-

seminomatous germ cell tumors, and found that germ cell tumors primarily expressed PD-L1

(a known checkpoint in tumor immunity) on tumor-associated CD68+ macrophages [31].

Furthermore, the expression features of these macrophages were more significant in semino-

mas than in non-seminomatous germ cell tumors. These results provide robust evidence that

CD68 is a key molecule in the pathological process of seminoma. Additionally, we speculate

that the gene may have a potential association with immune checkpoint pathways according to

the findings provided in the published literature.

ITGAM, also known as macrophage-1 antigen (Mac-1) or complement receptor 3 (CR3),

has been explored in multiple types of diseases. Numerous previous studies have reported a

biological function for ITGAM in the development of systemic lupus erythematosus [32, 33].

Agarwal et al. conducted proteomic analysis to identify core sperm proteins in patients with

seminoma via cryopreserved semen samples [34]. The results revealed that ITGAM protein

was downregulated in seminoma, and may be involved in spermatogenesis, motility function,

and infertility. The potential mechanism for ITGAM-relevant asthenozoospermia in patients

with testicular cancer was also studied by Selvam et al. [35]. However, direct evidence on

ITGAM and its molecular mechanism in seminoma are limited in the present literature.

Moreover, potential roles for ITGAM in various malignant tumors have also been reported.

One study by Joanna et al. explored ITGAM in the progression and prognosis of renal cancer

and found that aberrant expression of ITGAM was significantly correlated with renal cell carci-

noma as compared with controls. Moreover, the expression signature of this gene was strongly

associated with poor survival [36]. ITGAM and ITGB6 have been confirmed to play critical

roles in ovarian cancer invasion and implant metastasis [37]. One study investigating biomark-

ers in breast cancer brain metastasis via integrated genomic and epigenomic analysis showed

that hypermethylation and downregulation of ITGAM were associated with defects in cell

migration and adhesion [35]. One meeting report in 2016 described that ITGAM protein posi-

tive tumor associated macrophages were associated with tumor angiogenesis promotion and

immunosuppression [38].

Nevertheless, the limitations of this study must be clearly pointed out. First, future studies

in vivo or in vitro are needed to elucidate the detailed molecular mechanisms for these hub

genes in seminoma. Second, a larger number of samples are required to make our findings

more convincing. Third, in our study, three prognostic biomarkers were identified and ana-

lyzed. Zaman and colleagues also performed an integrated network analysis by integrating

genomic alteration information and functional genetic data. They found that the networks

could effectively predict subtype-specific drug targets which have been experimentally vali-

dated. By taking advantage of this integrated network analysis, more immunotherapy targets

for seminoma could be identified and clinically applied [39]. Emerging evidence has shown

that non-coding RNA biomarkers play important roles in various human diseases including

seminoma [40]. With the rapid development of computational prediction models, Chen et al.

proposed several innovative prediction models to identify non-coding RNA biomarkers corre-

lated with human diseases [41–44]. Future studies will attempt to find significant non-coding

RNA biomarkers of seminoma and may take advantage of these state-of-the-art computational

models.
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Conclusion

Three novel biomarkers, TYROBP, CD68 and ITGAM, were identified from databases and cor-

related with poor prognosis in patients with seminoma. Furthermore, all of them were signifi-

cantly positively correlated with immune infiltration, indicating that they may be potential

targets for immunotherapy. Future experimental studies are needed to validate our findings

and explore the molecular mechanisms of the three genes in the context of seminoma.
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