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Predicting arbovirus re-emergence remains challenging in regionswith limited
off-season transmission and intermittent epidemics. Current mathematical
models treat the depletion and replenishment of susceptible (non-immune)
hosts as the principal drivers of re-emergence, based on established under-
standing of highly transmissible childhood diseases with frequent
epidemics. We extend an analytical approach to determine the number of
‘skip’ years preceding re-emergence for diseases with continuous seasonal
transmission, population growth and under-reporting. Re-emergence times
are shown to be highly sensitive to small changes in low R0 (secondary cases
produced from a primary infection in a fully susceptible population). We
then fit a stochastic Susceptible–Infected–Recovered (SIR) model to observed
case data for the emergence of dengue serotype DENV1 in Rio de Janeiro.
This aggregated city-level model substantially over-estimates observed re-
emergence times either in termsof skips oroutbreakprobability under forward
simulation. The inability of susceptible depletion and replenishment to explain
re-emergence under ‘well-mixed’ conditions at a city-wide scale demonstrates
a key limitation of SIR aggregated models, including those applied to other
arboviruses. The predictive uncertainty and high skip sensitivity to epidemio-
logical parameters suggest a need to investigate the relevant spatial scales of
susceptible depletion and the scaling of microscale transmission dynamics to
formulate simpler models that apply at coarse resolutions.
1. Introduction
Epidemics of arboviruses such as dengue [1], Zika [2,3] and chikungunya [4]
result in substantial global morbidity. Over the past decade, invasions of several
arboviruses have triggered large outbreaks in the Western Hemisphere. In Brazil,
these invasions include dengue serotype DENV4 in 2012 [5] as well as Zika [2,6]
and chikungunya [7] between 2014 and 2016. Predicting and understanding the
re-emergence of arboviruses after these invasions has important consequences
for epidemic preparedness, particularly in regions where climate factors limit
mosquito transmission in the off-season. These regions typically exhibit highly
intermittent seasonal epidemics, lasting 1–3 years with long periods of no, or
low, reported cases in between, and low mean reproductive numbers (the
numberof secondary cases arising from each primary case in a completely suscep-
tible population, R0) [5,8–10]. Several proposed explanations include the
depletion of susceptible individuals following initial epidemics [11] and the
time required for their replenishment via population growth [12], inter-annual
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variation in climate [13–17], and antigenic interactions between
strains of different serotypes [18–21]. These temporal patterns
contrast with the recurrent seasonal outbreaks observed in
childhood diseases with high reproductive numbers, whose
extensive study has provided the basis for our theoretical
understanding of Susceptible–Infected–Recovered (SIR)
dynamics in infections that confer lifelong or lasting immune
protection [22–29].

Statistical models of dengue transmission that take into
account climate dependencies can be used to make short-
term re-emergence forecasts on the order of four months [30]
or 16 weeks [15]. Many epidemiological models that predict
the re-emergence of arboviruses such as Zika [11,31] on
longer time-scales of a year [11] or several decades [31] rely
however on compartmental formulations such as SIR-type
approaches [11] or Ross–McDonald equations that explicitly
incorporate vector transmission [31]. Both formulations
assume transmission between any two individuals in the
population (‘well-mixed’ conditions), typically at aggregated
spatial scales. These process-based formulations, for example
those recently applied to Zika, represent the acquisition of
immunity in the population and its loss via demographic
growth and turnover. These models do take into account
seasonality of transmission and spatial heterogeneity in the
intensity of transmission owing to climate at coarse resolutions
(at large city, state or country-level scales). Nevertheless, the
replenishment of a well-mixed susceptible population is fre-
quently assumed to be the principal driver determining when
the disease will re-emerge given a particular seasonal pattern
for R0 at a particular location [31]. Stochasticity can also play
an important role in long-term models of re-emergence [31].
Variation in reporting rates of arboviruses between locations
[32] can add further complexity.

Although childhood diseases with high reproductive num-
bers display different dynamics from emergent arboviruses
[22–26], their compartmental models share a basic SIR struc-
ture given the acquisition of long-term immunity after
infection. The resulting depletion and replenishment of the
susceptible population is known to clearly drive inter-annual
variability and re-emergence in the former [25,27,28]. In par-
ticular, recent theory [29] has derived analytical expressions
for the number of ‘skip’ years for a measles-like disease in
the pre-vaccine era, where ‘skips’ are defined as seasons
when transmission occurs but does not cause susceptible
depletion. In other words, although the number of infections
increases in such seasons, it is not large enough to offset the
growth in the susceptible population owing to demography.
The resulting expressions specifically provide a threshold con-
dition for the number of skips expected following an initial
invasion as a function of R0. Their derivation did not include
under-reporting and assumed a closed-population SIR model
with ‘school-term’ seasonality, alternating two different rates
for low and high transmission.

We examine in this workwhether replenishment of suscep-
tible individuals under the typical ‘well-mixed’ assumption
explains dengue (DENV1) re-emergence at the whole-city
aggregated level. We specifically address the uncertainty
inherent in such predictions at the low reproductive numbers
characteristic of arboviruses, not previously considered in
applications of the analytical approach. To this end, we first
extend the threshold derivation to take into account population
growth, continuous (sinusoidal) seasonality and under-
reporting of cases. We then fit a stochastic SIR model to
observed monthly dengue case counts from the DENV1
invasion in Rio de Janeiro, Brazil from 1986 to 1988 [8,10,33]
and numerically predict expected times to re-emergence. We
describe high uncertainty in re-emergence times for these
seasonal, low transmission regions, and show the insufficiency
of susceptible replenishment in a simple SIR model to explain
the short periods observed in DENV1 re-emergence. We
discuss possible explanations and the need for model
formulations that would scale to coarse spatial resolutions.
2. Results
We start with the analytical approach for a seasonally forced
SIR system with intermittent outbreaks and population turn-
over, to consider general features of re-emergence at low R0.
In such a system, the onset of the off-season can bring an end
to an initial outbreak, and the replenishment of susceptible indi-
viduals owing to births and population turnover can be amajor
determinant of recurrence times. Let S represent the number of
susceptible individuals in a population and s0, the fraction of
the population still susceptible at the end of an initial epidemic,
t0, when a prediction for the time to the next outbreak will be
made. If there are enough susceptible individuals left in the
population (i.e. if s0 is large), another outbreak will occur in
the following year once the on-season resumes. However, if
the initial outbreak was very large, s0 may be too small, and
the outbreak may ‘skip’ one or more years. A skip year is
defined as a year in which the susceptible population does
not decrease, whether or not infections increase. The smaller
the fraction of the susceptible population at the time of predic-
tion (s0), the longer it will take for the susceptible population to
replenish, and the larger the number of skips that will occur.
Previous theory [29] allows prediction of the number of skips
that will occur given s0. Specifically, it demonstrated that s0
must fall below some threshold sc(k) for k skips to occur.
An analytical expression was provided for sc(k) in terms of
the reproductive number and population turnover rate for a
closed-population SIR model with school-term seasonality
[29]. The derivation of the threshold presented in [29] requires
the assumption that the transmission rate or reproductive
number of the disease is high and that the fraction of the
population susceptible at the time of prediction (s0) is small.

We extend this approach to take into account population
growth and sinusoidal seasonality (which describes the
transmission rate of dengue more accurately than a discrete
high-low representation). Our derivation does not require
assuming that the transmission rate or reproductive number
are high or that the fraction of the population susceptible at
the time of prediction is small.We follow the criteria developed
in [29] (see details in [34]), which essentially consider the sign
of the logarithm of the ratio between the respective number of
infections at two times, t0 and tn > t0. A positive value indicates
that an outbreak will still occur at tn; conversely a negative
value indicates no outbreak at that time. By setting the logar-
ithm of this ratio to zero, the threshold sc is obtained (see the
electronic supplementary material, S1 for details).

The resulting expression for sc(n), the critical fraction of sus-
ceptible individuals required at the time of prediction for n or
more skip seasons to occur, is

sc(n) ¼ 1þ p(2nþ 1) (1� ð1=R0Þ)� 2d
vf(v,d,r,n)

, ð2:1Þ
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Figure 1. (a) Graphical illustration of how the expected number of skips (nc) is calculated. The black dots represent the threshold fraction of the population
susceptible at the time of prediction required for n skips to occur (sc(n)). The plot shows (sc(n)) as a function of n (the number of skips) obtained from equation
(2.1) with seasonality amplitude δ = 0.2 (contacts per person per day) and reproductive number R0 = 1.4. In this example, the red line represents the fraction of the
population susceptible at the time of prediction (s0). If s0 is smaller than sc(n), at least n skips will occur. To find the expected number of skips (nc), we identify the
largest number of skips n such that s0 is smaller than the susceptibility threshold required for those skips sc(n). In this example, the red line intersects the sc(n) curve
between sc(n = 6) and sc(n = 7). Therefore, a critical skip number of nc = 6 is obtained. (b,c) The critical skip value nc as a function of R0 for (b) different values of
the amplitude of seasonal transmission δ with s0 = 0.7, and (c) different values of the fraction of the population susceptible at the time of prediction (s0) with δ =
0.70. In all three panels, the frequency of transmission ω, the population turnover rate μ and population growth rate r are fixed at respective values ω = (2π/365)
d−1 corresponding to an annual periodicity, μ = 1/(74.46 * 365) d−1 corresponding to an average lifespan of approximately 75 years, and r = 1.55 µ d−1 consistent
with the growth of the city of Rio de Janeiro. These values were chosen for the purpose of illustration, based on the inverse of the average life expectancy in Brazil in
2012 according to the 2010 census [35], and the interpolation of population estimates for the resident population of the municipality of Rio de Janeiro from the
1991 [36] and 2000 [37] censuses assuming exponential growth.
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where f (ω, δ, r, n) = (1 + e−r(π/ω)(2n+1))ωδ/(ω2 + r2) − (1 −
e−r (π/ω)(2n+1))/r, R0 is the annual mean of the reproductive
number, δ, the amplitude of seasonal transmission (as infec-
tious contacts per person per day), ω, the transmission
frequency (in d−1) and r, the population growth rate (also in
d−1). The full expression for the seasonal transmission rate is
given by β(t) = β0(1 + δsin(ωt + ϕ)), where ϕ corresponds to the
phase (in radians) and β0, to the mean seasonal transmission
rate (infectious contacts per person per day). The quantity β0
is related to the annual mean reproductive number R0 via
the expression R0 = β0/γ, where γ is the recovery rate (in d−1).

Figure 1 illustrates the implications of this formula. As
before, t0 corresponds to the time of prediction, in practice
usually after a large initial epidemic or invasion. Likewise,
s0 represents the fraction of the population susceptible at
the time of prediction. Intuitively, the smaller the fraction of
the population susceptible at the time of prediction (s0), the
longer it will take for the susceptible population to replenish,
and the larger the number of skips that will occur. In practice,
as we will illustrate below, values of s0 can be computed from
surveillance data provided one has an estimate of the
reporting rate.

For n skips to occur, the fraction of the population suscep-
tible at the time of prediction (s0) must fall below the
susceptibility threshold sc(n). Figure 1a shows that the larger
the number of skips n one is considering, the smaller the
threshold sc(n) that s0 must fall below for at least n skips to
occur. Let nc denote the critical skip number corresponding
to the number of skips expected at the time of prediction (t0).
We use the fraction of the population susceptible at the time
of prediction (s0) and identify the maximum value of n for
which s0 is smaller than sc(n). In the example shown in figure 1a,
this fraction s0= 0.7 is smaller than sc(n = 6) and bigger than
sc(n = 7), which means nc = 6. We therefore expect 6 years of
skips followed by re-emergence in the seventh year. Formally,
for a given value of s0 at the end of the transmission season,
we define the critical skip number nc as the value of n for
which sc(nc) > s0 > sc(nc + 1).

With this general approach at hand, we explored the effects
of the reproductive number R0, amplitude of seasonal trans-
mission δ and fraction of the population susceptible at time of
prediction s0, on the critical number of skips nc (figure 1b,c).
Consideration of both the variation of the reproductive
number R0 and fraction of the population susceptible at
time of prediction s0 is relevant here. Different combinations
of transmission rate (β0) and duration of the infection (1/γ)
can yield the same R0 but different fractions of the population
susceptible at the time of prediction (electronic supplementary
material, figure S16). Importantly, figure 1b,c shows that the
time to re-emergence is very sensitive to R0. A singularity is
observed as R0 approaches 1 where the expected number of
skips goes to infinity. The approach to that singularity can
be very steep, meaning that small changes in R0 can result
in large increases in the expected re-emergence time. The
obtained values of nc are not as sensitive to the amplitude
of seasonal transmission (figure 1b) but are sensitive to the
fraction of the population susceptible at the time of prediction
(figure 1c). The shift of the curve in figure 1c for small values
of the fraction of the population susceptible at time of predic-
tion s0 means that, for a given R0, more time is required to
replenish the susceptible population and therefore to observe
a re-emergence.
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Figure 2. (a) Observed dengue case data. Monthly reported dengue cases in the city of Rio de Janeiro, Brazil from April 1986 to 1995. The grey shaded region
denotes observations that were included in the fitting of the stochastic model from 1 May 1986 to 1 July 1988 inclusive. Serotype DENV1 re-emerged in 1990. DENV2
was first detected in the state of Rio de Janeiro in 1990 but did not become dominant until 1991 [8,9]. Both co-circulated afterwards. We focus on the invasion of
DENV1 from 1986 to 1987 and its initial re-emergence in DENV1 in 1990 using a single serotype transmission model. This allows us to evaluate the transmission
model in a region where only one serotype was circulating, where cross-immunity could not easily be invoked to explain the absence or reduction of dengue in a
given year. (b) Deterministic critical number of DENV1 skips nc for Rio de Janeiro from September 1988. Expected number of skips nc with amplitude of seasonal
transmission δ = 0.7 and the fraction of the population susceptible after the first DENV1 invasion as of 1 September 1987 (s0) calculated from the data (a). We use a
reporting rate ρ of 3% when calculating s0, consistent with serological estimates from the literature [33]. For comparison purposes, we also include the expected
number of skips nc assuming a reporting rate of 10%.
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We next apply this approach to the surveillance data from
the 1986 invasion of DENV1 in Rio de Janeiro (figure 2).
The initial DENV1 invasion in Rio de Janeiro is an ideal initial
test case for this technique given the lack of widespread
pre-existing immunity from prior dengue epidemics or vacci-
nation campaigns, or cross-immunity from other disease
outbreaks. Specifically, the 1986 invasion occurred prior to
the development of dengue vaccines. The outbreak was the
first dengue invasion in the area since the initial eradication
of the Aedes aegypti mosquito in Brazil in the 1950s [35–38]
following a sustained intervention programme that began
in the 1930s and 1940s in Rio de Janeiro and other cities
[36]. Cross-immunity from yellow fever vaccination appears
to be very limited [39]. Given the young age distribution of
the population in 1986 [40], most individuals were not alive
during the period when mass yellow fever vaccination or
prior dengue epidemics occurred.

We let our time of prediction t0 be equal to 1 September
1987, corresponding to the end of the initial DENV1 invasion
(figure 2a). In figure 2b, we evaluate the number of expected
skips anticipated in Rio de Janeiro, nc, on the basis of a range
of R0 values from 1.18 to 2.02 from the literature [41,42]. The
critical susceptibility threshold for n skips to occur (sc(n)) is
calculated using equation (2.1) with an annual seasonality, a
population growth rate interpolated from the census (see
Material and methods section), and δ = 0.7 [41]. The fraction
of the population susceptible at the time of the prediction
(s0) is estimated as the difference between the total population
N0 (total population N at (t0 = September 1987)) and the total
number of people infected between the start of the invasion
and the time of prediction (1 September 1987). The total
number of infected people during the outbreak is computed
by summing the ratio between the observed monthly cases
and the reporting rate for DENV1 in the city. Literature
estimates from serology during the DENV1 invasion in Rio
de Janeiro indicate a reporting rate of around 3% [33] which
we use and fix for this analysis. For comparison purposes,
we also include the number of skips expected under a higher
reporting rate of 10%. These curves show that the expected
re-emergence could be very sensitive to small variation in R0

and ρ, two quantities that are difficult to estimate with
precision in the absence of serology. In particular, assuming
a reporting rate of 3%, a reproductive number of 1.2 with
20% uncertainty can yield large changes in the expected re-
emergence time. We highlight the potential sensitivity of the
expected number of skips to the reporting rate as well to illus-
trate the importance of uncertainty in this parameter in cities or
epidemics where its value is unknown.

2.1. Replenishment of susceptible individuals is
insufficient to explain re-emergence

To obtain more precise bounds for the reporting rate and R0

and to determine if the depletion and replenishment of suscep-
tible individuals could explain the rapid re-emergence of
dengue in Rio de Janeiro, we fit a stochastic aggregate SIR
model to case data from the DENV1 invasion from 1986 to
1988. The stochastic SIR model assumes that the underlying
deterministic transmission rate varies seasonally as a sinuso-
idal function with annual mean β0, seasonal transmission
amplitude δ, frequency ω (equal to 2π/365), and phase ϕ.
The model takes into account demographic stochasticity,
environmental stochasticity in the transmission rate, and
measurement error owing to under-reporting and variation
in reporting of cases (see Material and methods and the elec-
tronic supplementary material). Figure 3a–c shows the
likelihood profile of the annual mean transmission rate, β0,
the amplitude of seasonal transmission δ, and the reporting
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rate ρ, respectively. In particular, our estimate of the reporting
rate matches that from serology in the literature (figure 3c).

Overall, the model is able to capture key dynamics of the
DENV1 invasion including the two peaks of incidence in 1986
and 1987 and the subsequent reduction of transmission in
1988. This is shown by comparing the trajectories for an ensem-
ble of simulations with the fitted model to the observed values
of cases (figure 4). Estimated values for the transmission rate
indicate a low value forR0 (figure 4c). Both of these conclusions
generally hold even if one takes into account uncertainty in par-
ameter estimates by examining all parameter combinations
with log likelihoods within 2 log likelihood units of the maxi-
mum-likelihood estimate (MLE; the grey region in figure 4c as
well as electronic supplementary material, figure S1), although
some parameter combinations (not the MLE) have substantial
process noise (electronic supplementary material, figure S1).

We now apply the obtained parameter estimates from the
fitted model to address the expected re-emergence time on
the basis of, first, the analytical expression for the skip calcu-
lation (equation (2.1)), and then the stochastic simulations of
the fitted model. The parameter estimates used here are those
for the reporting rate ρ, the reproductive number R0 and the
amplitude of seasonal transmission δ from all combinations
within 2 log likelihood units of the MLE. The expected
number of skips following the DENV1 invasion in 1986–
1988 is considerably higher than the observed 2 years.
Depending on the parameter combination used, we obtain
anywhere from 27 to 100 skips (figure 5a). Even the fastest
estimated return from the skip analysis (27 years) is much
slower than the observed re-emergence time.

Forward simulation of the stochastic model likewise does
not predict the rapid re-emergence of DENV1 (figure 5b).
Under a pulse of 20 infected individuals arriving per day,
therewas a low probability of re-emergence for parameter com-
binations with low process noise (figure 5b). Only parameter
combinations with high amounts of process noise (which have
limited predictive value) had a non-zero emergence probability.
We consider alternate pulse rates in the electronic supplemen-
tary material, figure S14. Re-emergence probabilities under
forward simulation of the stochastic model thus corroborated
the deterministic skip findings. The depletion of susceptible
individuals from 1986 to 1988 and their replenishment via
population growth from 1989 to 1990 under an aggregate SIR
model was unable to explain the rapid re-emergence of
DENV1 in 1990.

2.2. Sensitivity analysis
To examine the robustness of our findings to adding an incu-
bation period or altering the form of seasonality, we
conducted a sensitivity analysis by considering both SIR and
Susceptible–Exposed–Infected–Recovered (SEIR) models with
spline seasonality. The results are presented and discussed in
the electronic supplementary material and show that our con-
clusions remain unchanged (see the electronic supplementary
material including electronic supplementary material, figures
S2–S7 and tables ST2 and ST3).

2.3. Comparison with vector model and literature R0
The fitted stochastic SIR model uses a cosine function as a sim-
plification to represent the seasonal forcing that would be
created by climate variation (temperature [43]) via the changes
in infectedmosquitoes. To evaluatewhether this simplification
is realistic, we take two approaches. The first one compares the
mean seasonal R0 resulting from our model to values of this
reproductive number directly estimated from time-series data
in the literature for DENV1 and DENV4 in Rio de Janeiro
from 2010 to 2016. There is a close match between these very
different ways to estimate R0, and in particular the shape of
the seasonality produced by our model is realistic (electronic
supplementary material, figure S18).

The second approach considers a simple temperature-
driven vectormodel. To this end, we initially show that the sea-
sonal variation in temperature in Rio de Janeiro can be
approximated via a cosine function (electronic supplementary
material, figure S19A) and use this approximation to drive a
transmission rate that includes the vector explicitly.

To obtain an expression for the seasonal transmission rate
we consider an explicit mosquito model with compartments
for infectious and susceptible mosquitoes in which a number
of parameters depend on temperature (T ) (see the electronic
supplementary material, S4). By assuming fast dynamics of
the mosquito (so that levels of infection in the mosquito popu-
lation quickly equilibrate to the dynamics of infection in the
human population), we derive the following expression for
the effective transmission rate in the mosquito–human model
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in terms of the biting rate a(T ), probability of human infection
given an infectious bite b(T ), probability of mosquito infection
given biting of an infectious human pMI(T ), adult mosquito
mortality rate µM, carrying capacity K of the mosquito
population, human population size N and mosquito demo-
graphic function g(T ):

beff ¼
a(T)2b(T) ( pMI(T))

mM

K
N

1� mM

g(T)

� �
: ð2:2Þ

The function g(T ) is the product of the eggs laid per female
mosquito per gonotrophic cycle, the mosquito egg-to-adult
survival probability, and the mosquito egg-adult development
rate divided by the adult mosquito mortality rate µM. The
temperature dependence of these components was borrowed
from the literature [44,45] (see the electronic supplementary
material, S4 for details).

Under the fast dynamics assumption, this effective trans-
mission rate βeff is an implicit representation of the force of
infection inflicted on humans by the vectors of the coupled
human–vectormodel.When re-scaled between 0 and 1, βeff cor-
responds closely with βMLE, the transmission rate from the
fitted stochastic SIR cosine model (electronic supplementary
material, figure S19B). This close correspondence indicates
that the SIR cosine model is able to capture the shape of the
seasonality of DENV1 in Rio de Janeiro.
3. Discussion
We developed two lines of evidence regarding the uncertainty
and predictability of the time to re-emergence for diseases with
low reproductive numbers, on the basis of a seasonally forced
SIR model under the ‘well-mixed’ assumption at aggregated,
city-wide, scales. We showed with an analytical approach that
the time to re-emergence (expressed as the number of ‘skip’
years) was highly sensitive to small changes in R0 and the frac-
tion of the population still susceptible s0 at the time of prediction
(e.g. at the end of the initial outbreak). This sensitivity applies to
dengue in Rio de Janeirowhere re-emergence times can vary on
the order of decades based on literature parameters. This uncer-
tainty contrasts with previous applications of this analytical
approach to SIR dynamics in childhood diseases such as
measleswithmuch higherR0 valueswhere accurate predictions
of much shorter skip times have been made [29]. We also
showedwith a stochastic SIRmodel with seasonal transmission
fit to DENV1 observed case data for Rio de Janeiro from 1986
to 1988 that susceptible depletion and replenishment are insuf-
ficient to explain dengue re-emergence. The fitted model failed
to predict by far the re-emergence of DENV1 in 1990 in terms of
either the number of skips expected or the outbreak probability
under forward simulation.

Transmission parameters like R0 are generally defined with
respect to a particular model. Given that we aggregated cases at
the city level anduseda short time series, care shouldbe taken in
interpretingparameter values.Nevertheless, fitted transmission
parameters correspond well with literature values and exhibit
well-defined confidence intervals. Estimates of the reporting
rate in particular closely match the 3% value [8] obtained via a
serological study conducted during the 1986 invasion [8,33].
Reporting rates during the onset of an epidemic may be much
lower in regions that have not recentlyexperienced transmission
[33,46] than in those with re-occurring outbreaks and an estab-
lished surveillance network. This may explain why serological
studies of the 1986 invasion [8,33] and our results, estimate a
lower reporting rate for dengue than studies conducted in
later years in Brazil [47]. Even though different combinations
of the transmission rate and duration of infection can yield the
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Figure 5. (a) Expected number of skips (nc) calculated using parameters obtained from the fitted stochastic model. The red filled circles show the expected number
of skips nc from equation (2.1) using parameters and the fraction of the population susceptible after the initial DENV1 invasion (s0) estimated from the fitted
stochastic model. Each circle corresponds to one parameter combination, and we included here all parameter combinations for the fitted model with a seasonal
transmission amplitude (δ) of 0.7 (contacts per person per day) and a likelihood value within two log-likelihood units of the maximum-likelihood estimate (MLE).
See the electronic supplementary material, figure S15 for expected skips from parameter combinations with different values of δ, and the electronic supplementary
material, figure S10 for parameter combinations from the profile of the recovery rate, γ. For comparison purposes, the black line shows the expected number of skips
for the deterministic skip calculation from figure 2b with the reporting rate ρ fixed at the literature value of 3%. (b) Probability of epidemic in 1990 under forward
stochastic simulation of fitted model. The fitted stochastic model was simulated forward in time from 1986 to 1990 with population growth. A pulse of 20 infected
individuals was assumed to arrive each day in January 1990. Each parameter combination within 2 log likelihood units of the MLE was simulated 100 times. The re-
emergence probability was calculated by determining the number of simulations in which the susceptible population decreased in 1990. The plot shows re-emer-
gence probability as a function of the process noise intensity σP. Each point represents a single parameter combination. The MLE parameter combination is circled in
red.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200273

7

same reproductive number, the parameter estimates that com-
pose R0 across all models considered in the sensitivity analysis
(which take into account those different combinations) are rela-
tively well-defined. These values are also consistent with the
effective reproductive number estimated for local dengue epi-
demics from 2012 to 2016 [41] and 1996 to 2014 [42], taking
into account differences in serotype circulation and population
size during those periods.

More complexmodel structures are possible and often used
for arboviruses that include an explicit representation of the
vector. We expect our results to hold as this vector component
should largely affect the phase and shape of seasonality in the
transmission between human hosts, which we have modelled
phenomenologically as a cosinewave.With two typical succes-
sive epidemic years from an emergent virus, parameter
inference from such short observation period is unlikely to
justify a more complex model. Nevertheless, to examine trans-
mission seasonality further, we compared the seasonal R0

resulting from the fitted model to the seasonal R0 directly esti-
mated from time series of cases in the literature [41]. We also
considered the transmission rate experienced by humans in a
simple vector–human model forced by the typical seasonality
of temperature in Rio de Janeiro. The shape and timing of the
vector–human model’s transmission rate was comparable to
that of the cosine transmission rate we employed. More com-
plex models that do not assume fast dynamics of infection in
the vector relative to epidemic spread would probably exhibit
a difference relative to our transmission rate, especially a
delayed phase, whose consequences should be examined in
future work. We posit that this difference would not influence
our results on the predictability and uncertainty of re-
emergence, because the values of other parameters (such as
the length of infection in humans) can compensate for it.

Factors that could explain the observed rapid re-emergence
include inter-annual climate anomalies, antigenic evolution, or
micro-scale spatial heterogeneity in transmission intensity and
associated susceptible depletion. Larvae washout following
flooding coupledwith temperature-driven seasonality in trans-
mission could have temporarily halted the invasion in 1988
and delayed the epidemic in 1989. Widespread flooding was
reported in February 1988 [48]. Large amounts of rainfall
washed away mosquito larvae in laboratory and field studies
[49]. High rainfall negatively affected dengue transmission in
Singapore [50,51] and India [52]. The impact could be com-
pounded in Rio de Janeiro if the high rainfall occurs during
the transmission season. If the larvae population has not
fully recovered before the start of the off-season, the impact
of the rainfall anomaly could extend to the subsequent season.

The large amount of process noise observed in the aggre-
gate model would be consistent with this effect, given that
the process noise parameter σP represents random variation
in the transmission rate owing to environmental factors.
However, the model’s inherent structure limits its ability to
take into account flooding events via σP, as the magnitude
of the process noise does not change between years. Incorpor-
ating an inter-annual climate driver could provide more
accurate re-emergence predictions. The response to rainfall
would be nonlinear: positive at low to moderate levels and
negative at higher ones.

Intra-serotype antigenic evolution from 1986 to 1990 could
also facilitate faster re-emergence. Many models focus on
inter-serotype variation and assume long-lasting homosubtypic
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immunity [18,19,21]. However, the antigenic variation within
and across dengue serotypes is comparable [53], and antigenic
differences between strains of the same serotype influence
overall dengue evolution [54]. Sequences associated with case
data were unavailable, making direct analysis challenging.
We cannot rule out the possibility that genetic differences
between the circulating strains enabled re-infection. A future
Susceptible–Infected–Recovered–Susceptible (SIRS)-type model
could incorporate this intra-serotype antigenic evolution.

Micro-scale spatial heterogeneity in transmission intensity
and the effects of human movement between neighbourhoods
could also explain the rapid re-emergence. Small-scale differ-
ences in socioeconomic status and population density between
neighbourhoods in a large city can result in different relation-
ships between mosquito and human population sizes, resulting
in widespread heterogeneity in R0 across neighbourhoods [55].
Previous studies of mosquito trap data in the city have demon-
strated that neighbourhoods with differing socioeconomic
characteristics have different vector population patterns [43]. In
fact, schoolchildren from neighbourhoods with divergent socio-
economic characteristics had varying levels of seroconversion
during the1986 invasion [33].Humanmovementbetweenneigh-
bourhoods may also influence transmission within [56] and
between [57] those neighbourhoods, potentially resulting in
non-uniform depletion of susceptible populations between
highly connected and isolated areas of a city. Whether arising
through the effects of spatial heterogeneity in transmission or
intra-city movement, non-uniform levels of herd immunity
could enable faster re-emergence.

Our findings reveal the uncertainty of re-emergence predic-
tions with the simplest SIR models, those that would be most
useful at times of emergent public health threats. Consideration
of the above factors in transmission models whose goal is to
inform public health over large regions, and to do so soon
after, if not during, an emergent outbreak, is clearly a challenge.
For example, coarse resolutions are typically used because of
the scales at which the observed cases are reported, the scales
at which the climate covariates are available, and the difficulties
inherent in incorporating microscale variation including con-
nectivity. Our results should motivate further research into
the central question of how we can scale microscale heterogen-
eity to formulate aggregatedmodels that include it implicitly. It
should also motivate the related further understanding of how
such microscale heterogeneity influences susceptible depletion
and replenishment in particular case studies. From such efforts,
we should be able to evaluate whether the increasing avail-
ability of high-resolution data makes it feasible to parametrize
transmission models at higher resolutions, or to inform new
model formulations at coarser resolutions.

The inability of susceptible depletion and replenishment in a
simple seasonal SIR formulation at a large, city-wide scale, to
explain DENV1 re-emergence has potential implications for
other arboviruses. Recent long-term Zika forecasts [31] assume
that susceptible depletion and replenishment brought an
end to the 2015–2017 epidemics and will determine when re-
emergence occurs. DENV1 and Zika share the same vector
and invaded a completely susceptible population (not account-
ing for pre-existing cross-immunity from dengue). If factors
absent from the basic model were key drivers of DENV1 inter-
annual variability, it would not be unreasonable to infer that
similar types of factors could have played a major role in the
Zika dynamics observed from 2015 to 2017. Zika re-emergence
could similarly occur much earlier than expected.
With changing temperature patterns owing to climate
change, cities in Asia, Europe and the Western Hemisphere
that currently do not have recurrent local transmission may
transition in the near future to the kinds of dynamics studied
here. Our results suggest that estimates should be interpreted
in the context of this sensitivity to small changes in the report-
ing rate and reproductive number. Factors like variation
in reporting rates, micro-scale transmission heterogeneity
and inter-annual climate drivers that are often ignored in
long-term forecasts may thus become critical in determining
re-emergence times. Overall, the large uncertainty in re-
mergence times may be unavoidable for these regions.
Improved models are needed together with richer data than
currently used, to address the question of the relevant spatial
scales of susceptible depletion.
4. Material and methods
The derivation of the expression for the number of skip years
(equation (2.1)) is included in the electronic supplementary
material, S1. We fitted a stochastic version of the SIR model to
observed monthly case counts in Rio de Janeiro from 1986 to
1988 to estimate parameters needed to apply this expression,
and also to separately predict in parallel the time to re-emergence
via numerical simulation. Expected re-emergence times were
then compared for the two approaches.

4.1. Data description
We used monthly dengue case estimates in the city of Rio de
Janeiro, Brazil from 1986 to 1990. Cases were reported to the
local public health surveillance system [9,10]. The case counts
did not contain serotype information, but prior studies indicated
that the dengue serotype DENV1 invaded the city of Rio de
Janeiro in 1986 [10] and was the dominant serotype in circulation
in the state of Rio de Janeiro from 1986 to 1990 [8] prior to the
arrival of DENV2 in 1990. DENV2 did not become dominant
until 1991 [9].

4.2. Basic model formulation
Because dengue infection confers full immunity to the same sero-
type, we considered an SIRmodel. The deterministic model for the
number of individuals in the Susceptible (S), Infected (I) or Recov-
ered (R) class is given by the following system of ordinary
differential equations:

dS
dt

¼ rN � l(t)S� mHS, ð4:1Þ
dI
dt

¼ l(t)S� gI � mHI, ð4:2Þ
dR
dt

¼ gI � mHR, ð4:3Þ

l(t) ¼ b(t)
I
N

� �
ð4:4Þ

and b(t) ¼ b0(1þ d sin (vtþ f)): ð4:5Þ

Deaths occur at rate (µH) given by the inverse of the life expect-
ancy of Brazil in 2012 (74.49 years [58]). All individuals are
born susceptible. The term r represents population growth. The
humanpopulation growth ratewas estimated from census resident
population estimates in 1991 [59] and 2000 [60] assuming exponen-
tial growth. This rate was used to interpolate the estimated
population in 1986 (see the electronic supplementary material,
S2.1.1 for details).

The per capita rate at which susceptible individuals become
infected was given by the force of infection λ(t) (equation (4.4)).
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Individuals recovered at per capita rate γ whose inverse is the dur-
ation of infection. Estimates of the duration of infection in dengue
vary. One analysis estimated that symptoms of dengue infection
last 2–7 days following an incubation period of 4–10 days
[61,62]. For our analysis, we fixed the recovery rate γ to be 1/17,
assuming an exponentially distributed duration of infection with
mean of 17 days encapsulating the maximum extent of the com-
bined incubation and symptomatic period in humans. We take
into account the possibility that duration of infection could vary
by profiling over the duration of infection in the sensitivity analy-
sis. The short duration of the available time seriesmeant that fitting
a formal vector model could prove difficult and could require
additional assumptions in terms of which parameters could be
fitted or fixed from existing formulations in the literature. We
therefore used an SIR framework in which the infected stage
served as a proxy for the exposed and infected human compart-
ments in a vector model of dengue transmission, and we
assumed infection levels in vector rapidly equilibrate with those
in humans (as described later when we consider the vector
explicitly (see the electronic supplementary material, S4).
A duration of infection was thus chosen that corresponds to the
upper bound of the estimated pre-infectious period (4–10 days)
and infectious period (2–7 days) in humans [61,62]. We profiled
over the duration of infection in the sensitivity analysis to verify
that this parametrization is reasonable.

This transmission rate β(t) was represented as a cosine func-
tion with mean β0 (units of contacts per person per day), and
seasonal oscillations of amplitude δ (same units as β0) and fre-
quency ω, which was assumed to be annual (ω = 2π/365) d−1.
The annual mean R0 was thus given by:

R0 ¼ b0

gþ m
: ð4:6Þ

The observed dengue data in Rio de Janeiro consisted of
monthly case counts. Serological studies of the DENV1 invasion
in Rio de Janeiro also indicated substantial under-reporting
[8,33]. Let C represent the true number of monthly cases that
would be obtained by summing the number of individuals enter-
ing the infected class (I ) over the course of a month. For the
purposes of the skip analysis, we assume that a fixed fraction ρ
of the true cases C are observed, where ρ is the reporting rate.

The stochastic model is an approximation of the deterministic
one used for the skip analysis. For simplicity and given the short
time interval, we assumed that there was no population growth
over the two and half years of the DENV1 invasion (r = µH) and
that births and deaths occurred at rate µH = (1/(74.9 * 365)), which
is equal to the inverse of the average life expectancy in Brazil from
the 2010 census [58]. However, population growth is taken into
account when simulating forward in time from the fitted stochastic
model.Wealso assumed that therewere no recovered individuals at
the start of the epidemic, so all other individuals in the population
not initially infected were susceptible. We considered time in units
of days and used a time step Δt of 1 day.

The stochastic model is a discrete-time model with fixed time
step Δt and a discrete state space (i.e. the number of people in
each compartment S, I, R and C, at any point in time must be inte-
gers). The number of individuals who moved from one
compartment to another over the course of each daywas calculated
via Euler simulation from the deterministic equations (see the elec-
tronic supplementary material). Demographic stochasticity was
then incorporated into the Euler approximations to obtain integer
state variable values after each time step. We specifically assumed
that the number of individuals making each state transition was
drawn from a binomial distribution with exponentially decaying
probability (see the electronic supplementary material). Environ-
mental noise (variation in the transmission rate β(t) owing to
random environmental variation) was captured via multiplicative
gamma white noise in the transmission rate as described by
[63,64]. On time-step size Δt, we multiplied the transmission rate
by ΔΓ/Δt, where ΔΓ/Δt was drawn from a Gamma distribution
with mean 1 and variance s2P=Dt:

The measurement model assumed that the observed number
of monthly dengue cases (Y(t)) at time twere drawn from a nega-
tive binomial distribution with mean equal to the true number of
monthly cases Cmultiplied by a reporting rate ρ, with dispersion
parameter σM. More details of the measurement model can be
found in the electronic supplementary material, S2.4.

4.3. Fitting the stochastic model
We fitted the transmission parameters (β0 and δ), reporting rate (ρ),
process noise parameter (σP), measurement noise parameter (σM)
and the number of infected individuals at the start of the outbreak
in May 1986 (I0). While the first cases of DENV1 were reported in
April 1986,we started themodel fitting inMay1986 to avoid compli-
cations from changes in the reporting rate as the surveillance system
was established during the start of the DENV1 invasion.We used in
an interpolated initial population size of 5 281 842 for Rio de Janeiro
inMay1986. Themodelwas fit using themif2method in theR-pack-
age pomp. The model fitting method is described further in the
electronic supplementary material and in [65].

4.4. Calculating expected skips using parameter
estimates from stochastic model

Following the completion of the Monte Carlo profiles, a MLE par-
ameter combination was obtained from theMonte Carlo profiles of
the fitted model by selecting the parameter combination with the
highest likelihood across all profiles. The table of MLE parameter
values is shown in the electronic supplementary material, table
ST1. All sets of parameter combinations within 2 log-likelihood
units of the MLE (from all profiles) were used for the expected
skip calculation. The reporting rate (ρ), β0, and δ value of each par-
ameter combination within 2 log likelihood units of the MLE were
applied to a finer gridded version of the deterministic skip calcu-
lation described earlier. A distribution for the number of skips
expected in Rio de Janeiro following the DENV1 invasion from
1986 to 1988 was obtained.

4.5. Stochastic simulation
We then simulated re-emergence probabilities under the stochastic
model. Each parameter combination within 2 log likelihood units
of the MLE estimate from the stochastic fit was simulated again
without any immigration from 1986 until 1990 butwith population
growth. During January 1990, ‘sparks’ of infectious individuals
were assumed to have arrived in the city at some fixed rate.
There were low but non-zero levels of DENV1 incidence from
1988 to 1989. We chose to wait until January 1990 before introdu-
cing new DENV1 infections to be conservative, as this is when an
uptick in DENV1 incidencewas first observed. Hadwe introduced
sparks earlier in 1988 to 1989, we would probably have observed
even earlier re-emergence times. We explored rates from 5 to 100
infected individuals per day. This process was repeated 100
times, and the probability of an epidemic occurring in 1990 was
calculated. An epidemic occurrence in this situation was defined
as a net decrease in the susceptible population over the course of
the year (after taking into account population growth), to best
match the definition of an epidemic used in the skip analysis.

4.6. Sensitivity analysis
We assessed how parameter estimates of R0 and ρmay depend on
the model formulation by fitting several more complex SIR-type
models to the same data using the fitting procedure described
in the Methods section: an SIR spline model and SEIR spline
model. As an additional sensitivity analysis, we profiled over the
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recovery rate for the SIR cosine model (electronic supplementary
material, figure S9). For details, see the electronic supplementary
material.

4.7. Comparison with vector model and literature R0
For a full description of the explicit coupled human–mosquito
model with compartments for infectious and susceptible mosqui-
toes and comparison of transmission rates between this model
and the simpler seasonally forced SIR, see the electronic
supplementary material.
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