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ABSTRACT

The intravenous administration of remdesivir for COVID-19 confines its utility to hospitalized patients.
We evaluated the broad-spectrum antiviral activity of ODBG-P-RVn, an orally available, lipid-modified
monophosphate prodrug of the remdesivir parent nucleoside (GS-441524) against viruses that cause

diseases of human public health concern, including SARS-CoV-2. ODBG-P-RVn showed 20-fold greater
antiviral activity than GS-441524 and had near-equivalent activity to remdesivir in primary-like human

small airway epithelial cells. Our results warrant investigation of ODBG-P-RVn efficacy in vivo.
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Remdesivir (RDV; Veklury, GS-5734) is an adenosine nucleotide analog phosphoramidate prodrug with
broad-spectrum antiviral activity in vitro and in vivo (1-8), and is currently the only therapeutic approved
by the FDA for treating coronavirus 19 disease (COVID-19) in hospitalized patients over the age of 12 (9).
While RDV did not significantly reduce COVID-19 mortality, it did shorten the time to recovery compared
to a placebo control group (10). The short half-life of RDV in human and animal plasma (1, 8, 11, 12),
alongside the in vivo efficacy of RDV parent nucleoside (GS-441524, RVn) against coronaviruses including
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (13-16), have driven proposals to utilize
RVn instead of RDV to treat COVID-19 (17). A recent comparative pharmacokinetic study in non-human
primates, however, demonstrated higher nucleoside triphosphate (NTP) levels in lower respiratory tract
tissues of RDV-dosed animals than in RVn-dosed animals (8). A significant drawback of RDV is the
requirement for intravenous administration, which limits its use to hospital contexts. In an attempt to
develop an orally bioavailable form of remdesivir, we recently synthesized a 1-O-octadecyl-2-O-benzyl-
sn-glycerylester (ODBG) lipid-modified monophosphate prodrug of RVn (ODBG-P-RVn), which
demonstrated more favorable in vitro antiviral activity against SARS-CoV-2 compared to that of RVn and

RDV in Vero-E6 cells (18).

In this study, we extended our in vitro comparisons to include 14 viruses from across 7 virus families
responsible for causing diseases of significant human public health concern. These were Filoviridae:
Ebola virus (EBOV) and Marburg virus (MARV) (19, 20); Paramyxoviridae: Nipah virus (NiV), Hendra virus
(HeV), human parainfluenza virus 3 (hPIV3), measles virus (MV), mumps virus (MuV), and Sosuga virus
(SoSuV) (21-27); Pneumoviridae: respiratory syncytial virus (RSV) (28); Flaviviridae: yellow fever virus
(YFV); Arenaviridae: Lassa virus (LASV) (29); Nairoviridae: Crimean-Congo hemorrhagic fever virus
(CCHFV) (30); and Coronaviridae: SARS-CoV-2 (31). We utilized 3 previously described assays to compare
the antiviral activities of RVn, RDV, and ODBG-P-RVn against this panel of viruses: 1) directly measuring

fluorescence of a reporter protein expressed by recombinant viruses (REP) (2), (Figure 1A); 2)
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guantitating focus-forming units (FFU) via fluorescent reporter imaging (32) (Figure 1B); and 3) indirectly
measuring cytopathic effect (CPE) based on cellular ATP levels (CellTiterGlo 2.0, Promega) (2) (Figure
1C), which was also used to evaluate compound cytotoxicity (Figure 1D). Assay conditions varied based
on virus replication kinetics and on the specific assay used; multiplicities of infection (MOI) ranged from
0.01-0.25, and endpoint measurements were conducted between 72-144 hours post-infection (hpi). We
initially conducted dose-response experiments using 8-point, 3-fold serial dilutions of RVn, RDV, and
ODBG-P-RVn against our panel of viruses in Vero-E6 cells, and showed that ODBG-P-RVn consistently
had greater antiviral activity than RVn and RDV against all viruses susceptible to RVn/RDV inhibition,
with effective concentration (ECso) values ranging from 0.026 to 1.13 uM (Figure 1, Vero-E6 assays
represented in left column of panels A, B, C; Supplemental Figure S1; Table 1). RVn and ODBG-P-RVn
induced partial cytotoxicity but only at the highest concentration tested (100 uM) and without reaching
50% cytotoxicity (CCsp). We then compared these antivirals in human hepatoma (Huh7) and
bronchioalveolar carcinoma (NCI-H358) cell lines, which represent more relevant cell types targeted by
subsets of viruses used in our study. In both human cell lines, although ODBG-P-RVn showed ECsq values
remarkably similar to those observed in Vero-E6 cells and was 3- to 5-fold more active than RVn, it
consistently showed 6- to 20-fold less activity than RDV (Figure 1 [Huh7 and NCI-H358 assays
represented, respectively, in the middle and right columns of panels A, B, and C]; Supplemental Figures
S2, S3; Table 1). Whereas CCsq values for RDV in Huh7 and NCI-H358 cells were 54.2 and 77.2 uM,
respectively, ODBG-P-RVn was less cytotoxic in Huh7 cells (CCsp = 93.4 uM) and did not show
measurable cytotoxicity in NCI-H358 cells even at the highest concentration tested (100 pM) (Figure 1D,

right panel; Table 1).

To further evaluate cell type-specific effects on the antiviral activities of RVn, RDV, and ODBG-P-RVn, we
tested them against a smaller subset of filoviruses (EBOV-ZsG, MARV-ZsG) and a paramyxovirus (NiV-

Zs@G) expressing ZsGreen reporter in primary-like human telomerase reverse transcriptase (hTERT)
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immortalized human microvascular endothelial (TIME) cells (33, 34). In TIME cells, we observed a similar
trend in antiviral activity as in Huh7 and NCI-H358 cells, with ODBG-P-RVn showing 15- to 22-fold
greater activity than RVn, but 5- to 8-fold less activity than RDV in reporter-based assays (Figure 2A,
Table 2). To confirm this, we compared the respective abilities of RDV and ODBG-P-RVn to reduce
infectious yield of EBOV-ZsG and NiV-ZsG (MOI = 0.25) when cells were treated with each compound 2
hpi. Virus supernatants were collected at 72hpi and titered on Huh7 (for EBOV-ZsG) or NCI-H358 (for
NiV-ZsG) cells to determine 50% tissue culture infectious dose (TCIDs) by the method of Reed and
Muench (35). Both RDV and ODBG-P-RVn equivalently reduced infectious yield of EBOV-ZsG by up to 4
logio and of NiV-ZsG by approximately 2 logo, in a dose-dependent manner, with ECs values closely
mirroring values determined in reporter assays (Figure 2B, left and middle panels; Table 2). However,
RDV was more cytotoxic (CCsp = 17.2 pM) than ODBG-P-RVn (CCso > 50 uM) (Figure 2B, right panel; Table
2), which is reflected in its biphasic inhibition of NiV-ZsG (Figure 2B, middle panel, cytotoxic inhibition by
RDV shown at 16.6 uM). Since the ODBG lipid modification has been shown to enhance in vivo lung
tissue distribution for a different orally administered nucleoside (36), we compared the activity of the 3
compounds against filoviruses, paramyxoviruses, and RSV in another primary-like, h\TERT-immortalized
small airway epithelial cell (HSAEC1-KT) (37). Notably, the dose-response curves of RDV and ODBG-P-
RVn were strikingly similar, with ECso values in the submicromolar range within a 3-fold range of each
other; ECso values for some viruses were almost identical (Figure 2C; Supplemental Figure 4; Table 2).
Furthermore, RDV and ODBG-P-RVn equivalently reduced the infectious yields of EBOV-ZsG and NiV-ZsG
in HSAEC1-KT cells by by 5 logio and 3 logy,, respectively, and their ECs, values reflected the limited
differential in antiviral activity between them (Figure 2D, left and middle panels; Table 2). Although
ODBG-P-RVn was more cytotoxic (CCso = 20.5) in HSAEC1-KT cells than RDV (CCso > 100; Figure 2D, right

panel; Table 2), it also effectively reduced virus yields at non-cytotoxic concentrations.
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In summary, our results demonstrate that ODBG-P-RVn has greater antiviral activity than RVn in all cell
lines tested and has cell-type dependent activity levels that range from moderately lesser than to nearly
equal to those of RDV. In vivo RDV is converted rapidly to RVn (1, 8, 11, 12), which has 0.5 to 2 logio less
activity than RDV against most of the viruses tested. In contrast, ODBG-P-RVn is stable in plasma for >24
hours and at therapeutic plasma levels of ODBG-P-Rvn (above ECq, for SARS-CoV-2) after oral
administration of 16.9 mg/kg to Syrian hamsters; furthermore RVn was not observed at virologically
significant levels (38). Thus, one would predict sustained in vivo antiviral activity with ODBG-P-RVn
without substantial generation in plasma of RVn, the less active metabolite. Taken together, our results
strongly support investigation of in vivo efficacy of ODBG-P-RVn not only against SARS-CoV-2 but also

against other viruses significant to human health.
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FIGURE LEGENDS

Figure 1. Comparison of antiviral activities of RVn, RDV, and ODBG-P-RVn in African green monkey (Vero-
E6), human hepatoma (Huh7), and human bronchioalveolar carcinoma (NCI-H358) cell lines using
reporter-based, image-based, and cytopathic effect (CPE) assays. Representative dose-response
inhibition of viral replication and induction of cellular cytotoxicity by RVn (blue shapes), RDV (black
shapes), and ODBG-P-RVn (red shapes). A) Direct measurement of reporter fluorescence intensity by
recombinant Ebola virus (EBOV) expressing ZsGreen protein in Vero-E6 (left panel) and Huh7 (middle
panel) cells, and recombinant Nipah virus (NiV) expressing ZsGreen protein in NCI-H358 (right panel)
cells. B) Image-based counting of reporter fluorescence-positive cells infected with recombinant severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) expressing mNeonGreen protein (Vero-E6 and
Huh7) and recombinant respiratory syncytial virus (RSV) expressing eGFP (NCI-H358). Infected cells
treated with DMSO were considered as 100% fluorescence intensity signal and 100% fluorescence-
positive cell counts. C) Compound-based inhibition of CPE induced by yellow fever virus (YFV) in Vero-E6
and Huh7 cells and by Hendra virus (HeV) in NCI-H358 cells determined by measuring cellular ATP levels
(CellTiterGlo 2.0). ATP levels in uninfected cells treated with DMSO were considered 100% CPE
inhibition. D) Compound cytotoxicity/cell viability measured by CellTiterGlo 2.0 assay. Dose-response
curves were fitted to the mean value of experiments performed in biological triplicate for each
concentration in the 8-point, 3-fold dilution series using a 4-parameter non-linear logistic regression
curve with variable slope. Data points and error bars indicate the mean value and standard deviation of
3 biological replicates; each colored shape/line in the legend represents an independent experiment
performed in biological triplicate. RVn and RDV used in this study was obtained from MedChemExpress

(Monmouth Junction, NJ USA).

Figure 2. Comparison of cell type-dependent antiviral activities of RVn, RDV, and ODBG-P-RVn in

primary-like hTERT-immortalized microvascular endothelial (TIME) cells and small airway epithelial cells


https://doi.org/10.1101/2021.08.06.455494

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.06.455494; this version posted August 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC
105 and is also made available for use under a CCO license.

277 (HSAEC1-KT). A) Representative dose-response inhibition of recombinant EBOV, NiV, and Marburg virus
278  (MARV) expressing ZsGreen protein in TIME cells. B) Yield reduction of infectious EBOV-ZsG (left panel)
279 and NiV-ZsG (middle panel) by RDV and ODBG-P-RVn. Compound cytotoxicity/cell viability (right panel)
280 in TIME cells measured via CellTiterGlo 2.0 assay. C) Representative dose-response inhibition of

281 recombinant EBOV, NiV, and MARV expressing ZsGreen protein in HSAEC1-KT cells. D) Reduction of

282  infectious yield of EBOV-ZsG (left panel) and NiV-ZsG (middle panel) by RDV and ODBG-P-RVn in

283 HSAEC1-KT cells. Compound cytotoxicity/cell viability (right panel) in HSAEC1-KT cells measured via

284  CellTiterGlo 2.0 assay. Dose-response curves were fitted to the mean value of experiments performed in
285 biological triplicate for each concentration in the 8-point, 3-fold dilution series using a 4-parameter non-
286 linear logistic regression curve with variable slope. Data points and error bars indicate the mean value
287 and standard deviation of 3 or 4 biological replicates; each colored shape/line in the legend represents
288  anindependent experiment performed in biological triplicate. Infectious yield reduction assays were

289 conducted once with biological quadruplicates.

290  SUPPLEMENTAL FIGURE LEGENDS

291 Supplemental Figure S1. Comparison of antiviral activities of RVn, RDV, and ODBG-P-RVn in African

292 green monkey (Vero-E6) cells using reporter-based, image-based, and CPE assays. Representative dose-
293 response inhibition of virus replication by RVn (blue shapes), RDV (black shapes), and ODBG-P-RVn (red
294  shapes). Signal from infected cells treated with DMSO served as 100% fluorescence intensity signal for
295 reporter assays and 100% fluorescence-positive cell counts for image-based assays. CPE inhibition was
296 measured by determining cellular ATP levels using CellTiterGlo 2.0 assay reagent. ATP levels in

297  uninfected cells treated with DMSO served as 100% CPE inhibition. Dose-response curves were fitted to
298  the mean value of experiments performed in biological triplicate for each concentration in the 8-point,
299 3-fold dilution series using a 4-parameter non-linear logistic regression curve with variable slope. Data

300 points and error bars indicate the mean value and standard deviation of 3 biological replicates; each
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colored shape/line in the legend represents an independent experiment performed in biological

triplicate.

Supplemental Figure S2. Comparison of antiviral activities of RVn, RDV, and ODBG-P-RVn in Huh7 cells
using reporter-based, image-based, and CPE assays. Representative dose-response inhibition of virus
replication by RVn (blue shapes), RDV (black shapes), and ODBG-P-RVn (red shapes). Signal from
infected cells treated with DMSO served as 100% fluorescence intensity signal for reporter assays and
100% fluorescence-positive cell counts for image-based assays. CPE inhibition was measured by
determining cellular ATP levels using CellTiterGlo 2.0 assay reagent. ATP levels in uninfected cells
treated with DMSO served as 100% CPE inhibition. Dose-response curves were fitted to the mean value
of experiments performed in biological triplicate for each concentration in the 8-point, 3-fold dilution
series using a 4-parameter non-linear logistic regression curve with variable slope. Data points and error
bars indicate the mean value and standard deviation of 3 biological replicates; each colored shape/line

in the legend represents an independent experiment performed in biological triplicate.

Supplemental Figure S3. Comparison of antiviral activities of RVn, RDV, and ODBG-P-RVn in human
bronchioalveolar carcinoma (NCI-H358) cells using reporter-based, image-based, and CPE assays.
Representative dose-response inhibition of virus replication by RVn (blue shapes), RDV (black shapes),
and ODBG-P-RVn (red shapes). Signal in infected cells treated with DMSO served as 100% fluorescence
intensity signal for reporter assays and 100% fluorescence-positive cell counts for image-based assays.
CPE inhibition was measured by determining cellular ATP levels using CellTiterGlo 2.0 assay reagent. ATP
levels in uninfected cells treated with DMSO served as 100% CPE inhibition. Dose-response curves were
fitted to the mean value of experiments performed in biological triplicate for each concentration in the
8-point, 3-fold dilution series using a 4-parameter non-linear logistic regression curve with variable

slope. Data points and error bars indicate the mean value and standard deviation of 3 biological
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replicates; each colored shape/line in the legend represents an independent experiment performed in

biological triplicate.

Supplemental Figure S4. Comparison of antiviral activities of RVn, RDV, and ODBG-P-RVn in primary-like
human small airway epithelial (HSAEC1-KT) cells using reporter-based, image-based, and CPE assays.
Representative dose-response inhibition of virus replication by RVn (blue shapes), RDV (black shapes),
and ODBG-P-RVn (red shapes). Signal in infected cells treated with DMSO served as 100% fluorescence
intensity signal for reporter assays and 100% fluorescence-positive cell counts for image-based assays.
CPE inhibition was measured by determining cellular ATP levels using CellTiterGlo 2.0 assay reagent. ATP
levels in uninfected cells treated with DMSO served as 100% CPE inhibition. Dose-response curves were
fitted to the mean value of experiments performed in biological triplicate for each concentration in the
8-point, 3-fold dilution series using a 4-parameter non-linear logistic regression curve with variable
slope. Data points and error bars indicate the mean value and standard deviation of 3 biological
replicates; each colored shape/line in the legend represents an independent experiment performed in

biological triplicate.
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Table 1. Mean antiviral activity of RVn, RDV, and ODBG-P-RVn in Vero E6, Huh7, and NCI-H358 cell lines

Vero E6 Huh7/NCI-H358
RVn (GS-441524) RDV (G5-5734) ODBG-P-RVN RVn (GS-441524) RDV (GS-5734) ODBG-P-RVn
‘ ‘ ‘ o s s s si SI (CCso: SI(CCso:
Virus Family Virus Species/Variant Assay ECso ECyo (CCsp: >100) ECso ECyo (CCsp: >100) ECso ECyo (CCogt >100) ECso ECqyo (CCso: >100/ ECso ECyo 54.2 + 6.0/ ECso ECqo 93.4+3.0/

>100) 77.2%5.3) >100)

P EBOV Rec. Makona-ZsG REP | 203:050 7.54 £109 49 515£109 17.31 £0.89  >19 | 0392010 171 £025  >258 | 184:031 6901£179  >54  [0.020£0003 016 £0.02 _ 2710 | 0372006 213037 251
MARV Rec. Bat371-25G REP [ 096+009 4.05+142 104 | 216027 1022 £2.02  >46 | 0.19+0.04 081 £0.12 _ >521 | 1924006 447048 _ >52 _ [0.025+0.0020.075 £0.003 2128 | 0.33+0.02 099009 285

v Ree, Malaysia 25 REP | 1.10£040 2.20£1.05 73 587019 982£043  >16 | 0312004 0782028  >196 |243:031 505:110  >41  [0.075:0001 031:004 1026 | 0502006 283139  -198

CPE | 048:006 0.78+0.18 207 [334:034 539%029  >30 |019:001 030:004  >522 ND ND N/A ND ND N/A ND ND N/A

Niv-B Bangladesh cPE | 0524002 1142002 192 [284:010 5814044  >35 | 017:001 038+004  >599 [342:£0005 541029  >29  [0.12£00004 0194001 661 |082+0053 138:005  >122

) Hev 1996 CPE | 1434017 12064314 70  [456$020 17.58+391  >22 | 037:004 393+198  >270 |3.68:008 633018  >27 |016:002 025003 491 |095:012 142:003  >105
Paramxyovirdae MV Rec. IMVEZGFP(3) REP | 0.58+020 1714007 172 [497+025 612403 520 | 016£003 0214001  >609 |088:016 699+190  >113 [0.025£0.007 0.13£0.09 3074 |012£0.003 086+022  >803
hPIV3 Rec. JS-GFP FFU [014:001 0284002 70 | 043009 090:003  >232 [0.02640.0020050£0.002 >3896 | 143:016 198:005  >70  [0.031£0.002 00524001 2458 |022£001 043002  >457

Muv Rec. IA2006-eGFP FFU [511:020 7.80 t064 18  |1681£123 251197  >49 | 113004 253 £025  >56 93£030 13713024  >11 |020£0003 024£0.003 266 |185:0.11 2.24+0.23 50

Sosuv Rec. 2012-25G REP [ 100:010 272 +062 100 531+18 1910$931  >19  |031+0089 0803006  >325 | 2064009 776 +1.11 __ >48  [0.052£001 0134002 _ 1042 | 052+010 1084015 180

Peumoviridae RSV Rec. rgRSV0224 (A2) FFU_| 0495005 0624001 __ 206 | 180£008 2408027 __ >55 | 0.10%0.02 022%£003 __ >997 | 103:002 236:008 __ >51 _ [0.0780004 0175002 __ 691 _ [055£0057 1.41:009 __ 180
Coronaviridae | SARS-CoV-2_Rec. icSARS-CoV-2 mNG (WAL) | _FFU__| 042£0.09 060£006 __ 236 | 1.77%0.13 281078 __ >56__ |0.10£0.005_0.16£0.0L _ >997 | 0.60£001 1502020 __ >144 _ [0.011£0.0010.0350.002 5073 | 0.12£0.02_0.69£0.07 _ 778
Flaviviridae YRV 17D CPE_ | 3.52£0.24 30251008 28 |19.86£1.73 __ >50 55 [087£0043 737£159 _ >114 _ |3683£285 __ >50 527 0880057 3.00+147 62 |14.11£090 _ >50 66
Arenaviridae LASV Rec. Josiah-ZsG REP NI NI N/A NI NI NA_[31.14%7.79 __ >50 >3 NI NI N/A__|2.87:061 517 £033 1 NI NI N/A
Nairoviridae CCHF Rec. IbAr10200-25G REP NI NI N/A NI NI N/A NI NI N/A NI NI N/A NI NI N/A NI NI N/A

ECsp, 50% effective inhibition concentration; ECgp, 90% effective inhibition concentration; CCs,, 50% cytotoxic concentration; S, selective index = EC5,/CCso; REP, reporter; CPE, cytopathic effect; FFU, focus-forming unit; ND, not determined; NI, no inhibition; N/A, not applicable; Rec, recombinant. Mean values with +
standard deviation values were derived from 3 independent experiments performed in biological triplicates except for NiV-B (NCI-H358), HeV (NCI-H358), and YFV (Vero E6)which were performed twice in biological triplicates. Data in red text derived from Huh7 cells, data in blue derived from NCI-H358 cells. REP/FFU/CPE
assays were conducted between 72-144 hpi. EC 5, ECqg, and CCs values were calculated using Graphpad Prism 9 software.

Table 2. Mean antiviral activity of RVn, RDV, and ODBG-P-RVn in primary-like hTERT-immortalized microvascular endothelial (TIME) and small airway epithelial (HSAEC1-KT) cell lines

HSAEC1-KT TIME
RVn (GS-441524) RDV (GS-5734) ODBG-P-RVn RVn (GS-441524) RDV (GS-5734) ODBG-P-RVn
. X . . . ] ] Sl (CCsy: ] Sl (CCsy: ]
Virus Family Virus Species/Variant Assay ECyo ECyo (CCay: >100) ECso ECoo (CCay: >100) ECso ECoo 205£029) ECso ECo (CCagt >100) ECso ECyo 17.2+042) ECso ECoo (CCat 50)
8OV Rec. Makona-2G REP [107:262 21.79£3.16  >9.3 0.17+0.02 041+0.14 >587 0.21+0.02 1.06+0.18 98 14.88+0.28 17.24+0.16  >336 | 0.13+0.04 0.2+0.01 132 0.99+0.063 1.96 £ 0.043 >50
Filoviridae VTR ND ND N/A 0.11 0.82 >909 0.21 0.95 98 ND ND N/A 0.032 0.064 530 0.15 0.39 >324
MARV Rec. Bat371-ZsG REP/FFU [35.53+7.07 71.35+1.28  >2.8 0.75+0.19 2.92+0.14 >133 0.71+0.11 _3.67 +0.49 29 5.2+026  6.89+0.86  >9.61 |0.04+0.003 0.086+0.004 430 0.23+0.036 0.66+0.032  >213
REP |16.46+0.04 19.12+0.05  >6.1 0.23+0.01 0.31%0.06 >440 |0.57+0.013 0.97+0.21 36 13.53+2.44 17.52+ 077  >3.70 [0.10+ 0.01 0.20+ 0.01 172 0.75% 0.05 2.01t 0.30 >66
NiV-M Rec. Malaysia-ZsG CPE  [16.12+4.21 78.1£35.08  >6.2 0.31+0.04 0.075+0.004 >318 0.90+0.07 10.22+4.99 23 ND ND N/A 0.054 0.07 319 0.26 0.77 >195
VTR ND ND N/A 0.26 0.36 >379 0.47 0.77 a4
Paramxyovirdae NiV-B Bangladesh CPE  |11.23+0.63 33.6+158 >89 |0.21£0.063 0.62+0.20 >379  |0.41£0.039 1.71+0.66 50
Hev 1994 CPE  [11.52+1.49 2611444  >87 0.22+0.04 0.65%0.11 >463  |0.42£0.023 1.19+0.061 49
MV Rec. rMVGFP(3) REP | 4.98+0.37 12.02+27 >20 0.063+0.02 0.128+0.016  >1587  [0.082 +0.026 0.29 + 0.043 251
hPIV3 Rec. JS-GFP FFU | 4.960.05 5.77+0.06 >20 _ [0.063 £0.0010.074 £0.002__ >1582  0.091* 0.009 0.20 + 0.008 226
Pneumoviridae RSV Rec. rgRSV0224 (A2) FFU ]4.92+0.47 8.09+0.68 >20  [0.088+0.026 0.21+0.033  >1134 |0.12+0.008 0.34 +0.047 176

ECso, 50% effective inhibition concentration; ECgp, 90% effective inhibition concentration; CCs,, 50% cytotoxic concentration; S, selective index = EC5,/CCso; REP, reporter; CPE, cytopathic effect; FFU, focus-forming unit; VTR, virus titer reduction; ND, not determined; N/A, not applicable; Rec, recombinant. Mean values with +
standard deviation values were derived from a minimum of 3 independent experiments performed in biological triplicates. REP/FFU/CPE/VTR assays were conducted at 72 hpi. EC 5o, ECgg, and CCs, values were calculated using Graphpad Prism 9 software.
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Figure 1. Comparison of antiviral activities of RVn, RDV, and ODBG-P-RVn in African green monkey (Vero
E6), Human hepatoma (Huh7), and human bronchioalveolar carcinoma (NCI-H358) cell lines using
reporter-based, image-based, and cytopathic effect assays. Representative dose response inhibition of
virus replication and induction of cell cytotoxicity in by RVn (blue shapes), RDV (black shapes), and
ODBG-P-RVn (red shapes). A) Direct measurement of green fluorescence reporter intensity by
recombinant EBOV expressing ZsGreen protein in Vero E6 (left panel) and Huh7 (middle panel) cells, and
recombinant NiV expressing ZsGreen protein in NCI-H358 (right panel) cells. B) Image-based counting of
reporter fluorescence-positive cells infected with recombinant SARS-CoV-2 expressing mNeonGreen
protein (Vero E6 and Huh7) and recombinant RSV expressing eGFP (NCI-H358). Infected cells treated
with DMSO represented 100% fluorescence intensity signal and 100% fluorescence-positive cell counts.
C) Inhibition of cytopathic effect (CPE) by YFV (Vero E6 and Huh7) and HeV (NCI-H358) measured by
levels of cellular ATP (CellTiterGlo 2.0). Uninfected cells treated with DMSO served as 100% CPE
inhibition. D) Compound cytotoxicity/cell viability measured by CellTiterGlo 2.0 assay. Dose response
curves were fitted to the mean value of experiments performed in biological triplicate for each
concentration in the 8-point 3-fold dilution series using a 4-parameter non-linear logistic regression
curve with variable slope. Data points and error bars indicate the mean value and standard deviation of
3 biological replicates; each colored shape/line in the legend represents an independent experiment
performed in biological triplicate.
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Figure 2. Comparison of cell-type dependent antiviral activities of RVn, RDV, and ODBG-P-RVn in
primary-like hTERT-immortalized microvascular endothelial (TIME) and small airway epithelial cells
(HSAEC1-KT). A) Representative dose response inhibition of recombinant EBOV, NiV, and MARV
expressing ZsGreen protein in TIME cells. B) Infectious yield reduction by RDV and ODBG-P-RVn against
EBOV-ZsG (left panel) and NiV-ZsG (middle panel). Compound cytotoxicity/cell viability (right panel) in
TIME cells measured by CellTiterGlo 2.0 assay. C) Representative dose response inhibition of
recombinant EBOV, NiV, and MARV expressing ZsGreen protein in HSAEC1-KT cells. (D) Infectious yield
reduction by RDV and ODBG-P-RVn against EBOV-ZsG (left panel) and NiV-ZsG (middle panel) in HSAEC1-
KT cells. Compound cytotoxicity/cell viability (right panel) in HSAEC1-KT cells measured by CellTiterGlo
2.0 assay. Dose response curves were fitted to the mean value of experiments performed in biological
triplicate for each concentration in the 8-point 3-fold dilution series using a 4-parameter non-linear
logistic regression curve with variable slope. Data points and error bars indicate the mean value and
standard deviation of 3 or 4 biological replicates; each colored shape/line in the legend represents an
independent experiment performed in biological triplicate. Infectious yield reduction assays were
conducted once with biological quadruplicates.
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Supplemental Figure S3. Comparison of antiviral activities of RVn, RDV, and ODBG-P-RVn in human
bronchioalveolar carcinoma (NCI-H358) cells using reporter-based, image-based, and cytopathic effect
assays. Representative dose response inhibition of virus replication by RVn (blue shapes), RDV (black
shapes), and ODBG-P-RVn (red shapes). Infected cells treated with DMSO served as 100% fluorescence
intensity signal for reporter assays and 100% fluorescence-positive cell counts for image-based assays.
Inhibition of cytopathic effect was measured by levels of cellular ATP using CellTiterGlo 2.0 assay
reagent (Promega, WI). Uninfected cells treated with DMSO served as 100% CPE inhibition. Dose
response curves were fitted to the mean value of experiments performed in biological triplicate for each
concentration in the 8-point 3-fold dilution series using a 4-parameter non-linear logistic regression
curve with variable slope. Data points and error bars indicate the mean value and standard deviation of
3 biological replicates; each colored shape/line in the legend represents an independent experiment
performed in biological triplicate.
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