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ABSTRACT

Coronavirus disease (COVID-19) broke out at the end of 2019, and has resulted in an ongoing global pan-
demic. Segmentation of pneumonia infections from chest computed tomography (CT) scans of COVID-19
patients is significant for accurate diagnosis and quantitative analysis. Deep learning-based methods can
be developed for automatic segmentation and offer a great potential to strengthen timely quarantine
and medical treatment. Unfortunately, due to the urgent nature of the COVID-19 pandemic, a systematic
collection of CT data sets for deep neural network training is quite difficult, especially high-quality anno-
tations of multi-category infections are limited. In addition, it is still a challenge to segment the infected
areas from CT slices because of the irregular shapes and fuzzy boundaries. To solve these issues, we
propose a novel COVID-19 pneumonia lesion segmentation network, called Spatial Self-Attention network
(SSA-Net), to identify infected regions from chest CT images automatically. In our SSA-Net, a self-attention
mechanism is utilized to expand the receptive field and enhance the representation learning by distilling
useful contextual information from deeper layers without extra training time, and spatial convolution is
introduced to strengthen the network and accelerate the training convergence. Furthermore, to alleviate
the insufficiency of labeled multi-class data and the long-tailed distribution of training data, we present a
semi-supervised few-shot iterative segmentation framework based on re-weighting the loss and selecting
prediction values with high confidence, which can accurately classify different kinds of infections with a
small number of labeled image data. Experimental results show that SSA-Net outperforms state-of-the-
art medical image segmentation networks and provides clinically interpretable saliency maps, which are
useful for COVID-19 diagnosis and patient triage. Meanwhile, our semi-supervised iterative segmentation
model can improve the learning ability in small and unbalanced training set and can achieve higher per-
formance.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

more than 5.3 million deaths, according to the COVID-19 situation
dashboard in the World Health Organization (WHO) website?, and

Since the end of 2019, coronavirus disease 2019 (COVID-19),
an infectious disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)!, has spread in the worldwide, which
can cause acute respiratory illness and even lead to fatal acute res-
piratory distress syndrome (ARDS) (Chen et al., 2020). So far (Cen-
tral European Time of December 20, 2021), the number of con-
firmed cases of COVID-19 has been more than 273.9 million, with
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the number is continuing to increase. The health of human be-
ing all over the world are threatened and everyones life has been
greatly affected due to the outbreak of the virus. Since it is highly
contagious and we still lack appropriate treatment and vaccines,
early detection of COVID-19 is essential to prevent spreading in
time and to properly allocate limited medical resources. Among
all virus detection methods, antigen testing is fast, but the sen-
sitivity is also poor (Fang et al., 2020). Reverse transcription poly-
merase chain reaction (RT-PCR) has been considered as the gold

2 https://www.who.int/data/.
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Table 1
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A summary of the Datasets in our experiments. Sum denotes the total number of COVID-19 slices.
Class denotes the number of labeled infection categories. Lung, GGO, Con, G + C denote the per-
centage of pixels of lung area, GGO, consolidation, the total infection of GGO and consolidation,
respectively. COVID-19 CT Segmentation dataset is available at https://medicalsegmentation.com/

covid19/.

Dataset Sum

Class  Lung GGO Con G+C

COVID-19-CT-Seg (Jun et al., 2020) 1848
COVID-19 CT Segmentation dataset 98
COVID-19 CT Segmentation dataset 370

1 15.46% - - 1.84%
3 26.90%  4.66%  2.29%  6.95%
2 21.46% 197% 0.51%  2.48%

standard for COVID-19 screening (Ai et al., 2020), which detects vi-
ral nucleic acid using nasopharyngeal and throat swabs (Bai et al.,
2020). However, the results of RT-PCR testing are susceptible to
low viral load or sampling errors, and result in high false negative
rates (Xie et al., 2020). Meanwhile, the requirements for the test-
ing laboratory environment are extremely strict and there is always
a shortage of equipment under the epidemic (Liang et al., 2020),
which would greatly limit and delay the diagnosis of suspected
subjects. To find a fast and sufficiently accurate patient screening
way becomes an unprecedented challenge to prevent the spread of
the infection. Since most patients infected by COVID-19 are diag-
nosed with pneumonia, radiological examinations have also been
used to diagnose and assess disease evolution as important com-
plements to RT-PCR tests (Rubin et al., 2020). X-ray and computed
tomography (CT) are two typical imaging methods for patients in
the COVID-19 study (Shi et al.,, 2020). CT has a 3D view and the
ribs in X-ray images may affect the lesion detection. The diag-
nostic accuracy of CT is much higher than that of X-ray in the
early stage of the disease (Wong et al., 2020). Furthermore, chest
CT screening on clinical patients has showed that its sensitivity
outperforms that of RT-PCR (Fang et al., 2020) and it can even
confirm COVID-19 infection in negative or weakly-positive RT-PCR
cases (Xie et al., 2020). Therefore, in view of the particularity of
prevention and control during the COVID-19 epidemic, it is sug-
gested that CT should be the first choice for screening COVID-19
under the condition of limited nucleic acid detection (Huang et al.,
2020; Chung et al., 2020; Lei et al., 2020). Although imaging fea-
tures alone cannot make a definite diagnosis, combined with epi-
demiological history, clinical manifestations and imaging examina-
tions, CT can greatly improve the accuracy of screening, especially
for suspected patients and asymptomatic infections. This can help
to effectively discover and isolate the source of infection as soon
as possible and cut off the route of transmission, which has a pos-
itive effect on controlling the development of whole epidemic. In
short, chest CT plays a key role in the diagnostic procedure for
suspected patients and some recent reports have emphasized its
performances (Dong et al., 2020). However, image reading in se-
vere epidemic areas is a tedious and time-consuming task for radi-
ologists, and the visual fatigue would increase the potential risk
of missed diagnosis of some small lesions. In addition, radiolo-
gists’ judgement is usually influenced by personal bias and clini-
cal experience. Thus, Artificial Intelligence (Al) technology is play-
ing an increasingly important role in the struggle against COVID-19
(Shi et al., 2020).

In recent years, with the gradual deepening study of artificial
intelligence technology, image segmentation has been developed
rapidly, but it is still challenging to automatically segment the
COVID-19 pneumonia lesions from CT scans, especially for multi-
class pixel-level segmentation. First, the typical signs of infected
lesions observed from CT slices have various complex and change-
able appearances, irregular shapes and fuzzy borders. For exam-
ple, as shown in Fig. 1, the boundaries of ground-glass opacity
(GGO) have low contrast and blurred appearance, and the blurring
of boundaries also increases the difficulty of labeling. Second, the

U-Net Inf-Net

SSA-Net (Ours) Ground Truth

CT Image

Fig. 1. Two examples of COVID-19 positive CT scans from two different datasets and
their corresponding segmentation results. The first row is a single-class lesion seg-
mentation with lesions labeled in blue, and the second row is a multi-class lesion
segmentation with ground-glass opacity (GGO) in red and consolidation in green.
We can clearly see the fuzzy boundaries of the infected areas, highlighted with or-
ange arrows. The red number and the green number marked in the last graph rep-
resent the proportions of GGO and consolidation respectively, which shows the is-
sue of imbalanced class distribution. It can be seen that SSA-Net performs better in
complicated lesion segmentation and the proposed semi-supervised few-shot learn-
ing framework outperforms other state-of-the-art algorithms in multi-class COVID-
19 infection segmentation with limited training data, especially in regions labeled
with orange boxes.

successful performance of popular deep convolutional neural net-
works (CNN), the core technology of the rising Al, is largely de-
pended on the availability of large-scale, well-annotated data sets
in the real world. However, it is quite difficult to collect sufficient
training data from patients systematically due to the urgent nature
of the pandemic, and high-quality annotations of multi-category
infections are specially limited. Third, for screening, most of the
pneumonia symptoms of collected patients are usually at the early
stage, and the proportion of infected lesions in available image
samples is small and uneven, which leads to the problem of long-
tailed data distribution. In Table 1, we can see that the number of
annotated lesion pixels are far fewer than the background pixels,
particularly the proportion of pulmonary consolidations in the data
is quite small. In this paper, we deal with the above issues and
propose a novel semi-supervised framework for COVID-19 lung in-
fection segmentation from limited and incompletely annotated CT
datasets.

The main contributions in our work are threefold:

(1) We present an encoder-decoder based deep neural network
named spatial self-attention network (SSA-Net) for lesion segmen-
tation. To take full advantage of the context information between
the encoder layers, a self-attention distilling method is utilized,
which can expand the receptive field and strengthen the self-
learning without extra training time. For the sake of obtaining the
low contrast and fuzzy boundary area effectively, spatial convolu-
tion is introduced for slicing the feature map and then convoluting
slicer by slicer, so that the features can be effectively transferred
in the direction of row and column.

(2) According to the long-tailed distribution of COVID-19
datasets and limited labeled data, we provide a semi-supervised
few-shot iterative segmentation framework for multi-class infec-
tion segmentation, which leverages a large amount of unlabeled
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data to generate their corresponding pseudo labels, thereby aug-
menting the training dataset effectively. A re-weighting module
is introduced to rebalance the category distribution based on the
number of pixels for each category, and a trust module is added to
select high confidence values and improve the credibility of pseudo
labels.

(3) We conducted extensive experiments on two publicly avail-
able datasets. Ablation studies have demonstrated that both the
spatial convolution and self-attention distilling are beneficial to
improve the performance of infection segmentation. And compar-
ative studies have revealed that SSA-Net with our semi-supervised
few-shot learning strategy outperformed the state-of-the-art seg-
mentation models and showed competitive performance compared
with the state-of-the-art systems in COVID-19 challenge.

2. Related work

In this section, we mainly talk over three aspects of works
closely related to our work, including context-enhanced deep
learning for segmentation, few-shot learning and class balancing
and COVID-19 pneumonia infection segmentation.

2.1. Context-enhanced deep learning for segmentation

In order to segment lesions in medical images, deep learning
technology is widely used. U-Net is commonly used for lung re-
gion and lung lesion segmentation (Shi et al., 2020). U-Net is a full
convolution network proposed by Ronneberger et al. (2015), which
has a U-shaped architecture and symmetric encoding and decod-
ing paths. Skip connections connect the layers of the same level
in the two paths. Therefore, the network can learn more seman-
tic information with limited data, and it is widely used in medical
image segmentation. Thereafter, many variants of networks based
on U-Net have been proposed, such as no-new-U-Net (nnU-Net)
(Isensee et al., 2019), which is based on 2D and 3D vanilla U-
Nets and can adapt the preprocessing strategy and network ar-
chitecture automatically without manual tuning. Milletari et al.,
2016 propose V-Net, which uses residual blocks as the basic con-
volution blocks for 3D medical images. He et al. (2016) put forward
a new encoder-decoder network structure, ResNet, by introducing
the residual blocks. Compared with the U-Net and other variants,
ResNet can avoid the gradient vanishing and accelerate the net-
work convergence, so we prefer to use ResNet as backbone. How-
ever, lesions in medical images are sometimes subtle and sparse,
and the number of annotated lesion pixels is much fewer than
the background pixels, which brings new challenges. Therefore, we
need more contextual and spatial information to train deep models
for the task.

Several schemes have been proposed to reinforce the repre-
sentation ability of deep networks, e.g. some researches improve
performance by deepening the network. The UNet++ (Zhou et al.,
2018) inserts a nested convolutional structure between the encod-
ing and decoding paths. In order to detect the ambiguous bound-
aries in medical images, Lee et al. (2020) present a structure
boundary preserving segmentation framework, which uses a key
point selection algorithm to predict the structure boundary of tar-
get. Indeed, the deeper the network is, the more information we
can get. However, deepening the network is inefficient, and as the
network deepens, it is easy to cause gradient explosion and gra-
dient disappearance, and the optimization effect degrades. Mean-
while, these methods can greatly improve the performance of seg-
menting large and clustered objects, but they are easy to fail when
encountering small and scattered lesions.

Another way is to exploit attention mechanism to optimize
the deep learning. For example, Wang et al. (2020b) com-
bine two 3D-ResNets with a prior-attention residual learning
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block to screen COVID-19 and classify the type of pneumonia.
Ren et al. (2020) present a strategy with hard and soft attention
modules. The hard-attention module generates coarse segmenta-
tion map, while the soft-attention module with position attention
can capture context information precisely. Zhong et al. (2020) pro-
pose a squeeze-and-attention network which imposes pixel-group
attention to conventional convolution to consider the spatial-
channel interdependencies. However, the above methods need ad-
ditional computation cost. Gao et al., 2020 propose a dual-branch
combination network for COVID-19 classification and total lesion
region segmentation simultaneously. A lesion attention module is
used to combine classification features with corresponding seg-
mentation features. Hou et al. (2019) propose a self-attention
distillation (SAD) approach, which makes use of the networks own
attention maps and perform top-down and layer-wise attention
distillation within the network itself. Through the feature maps be-
tween the encoder layers, the model can learn from itself without
extra labels and consumptions. The intuition of SAD is that useful
contextual information can be distilled from the attention maps
of successive layers through those of previous layers. The time-
point of training to add SAD to an existing network may affect the
convergence time, and it is recommended to use SAD in a model
pretrained to some extent. In this paper, we introduce the self-
attention learning mechanism into a strengthened U-shaped seg-
mentation network without pre-training. Then stronger labels will
be generated from the feature maps of lower layers to guide the
deeper layers for further representation learning. And our method
is helpful to strengthen some obscure and scattered objects.

Many studies have confirmed that more information can be
obtained at the encoder and the bottleneck of network. CE-Net
(Gu et al,, 2019) presents two modules at the bottleneck. One
module uses multi-scale dilated convolution to extract rich fea-
tures, while the other uses multi-scale pooling operation to fur-
ther obtain context information. Besides, Shan et al. (2020) propose
VB-Net, which is based on V-Net, to achieve more effective seg-
mentation by adding bottleneck blocks by convolutions, but such
models are computationally expensive. To utilize spatial informa-
tion in neural networks, Pan et al. (2017) propose Spatial CNN
(SCNN), in which slice-by-slice convolutions within feature maps
are employed instead of traditional deep layer-by-layer convolu-
tions, so that messages are transferred between pixels across rows
and columns in the layer. In this paper, we attempt to introduce
a spatial convolution block into the bottleneck of the encoder-
decoder network by using a sequential message passing scheme
similar to SCNN. This kind of message passing mechanism helps to
propagate the information between neurons, avoid the influence
of sparse and subtle supervision, and make better use of the con-
textual relationships of pixels. Therefore, the U-shaped neural net-
work is strengthened and the training convergence of network can
also be accelerated.

2.2. Few-shot learning and class balancing

Because manual labeling is time-consuming, laborious and ex-
pensive, many researchers have conducted studies in few-shot
learning. Some researchers choose transfer learning (Raghu et al.,
2019; Minaee et al.,, 2020), which refers to applying the learned
knowledge to other problems in different but related fields to solve
new tasks. In addition, many studies augment the data through
Generative Adversarial Networks (GAN) (Goodfellow et al., 2014)
or its extensions (Mahapatra et al., 2018; Zhou et al., 2020), which
create new images and corresponding masks, and then add the
synthesized data to the training set to expand the training im-
age. Mahapatra et al., 2018 propose a model to generate many
synthetic disease images from real disease images by Conditional
GAN. These algorithms are computationally intensive and may re-
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quire additional annotation data. Apart from that, most advanced
methods use class activation map (CAM) (Zhou et al.,, 2016) and
gradient-weighted class activation map (Grad-CAM)(Selvaraju et al.,
2017) for object localization and image-level weakly supervised se-
mantic segmentation, which get results from feature heatmaps of
the network. Sometimes, these methods are used as a basic step
for semantic segmentation of large and clustered objects. For in-
stance, Wang et al. (2020d) propose a self-supervised equivariant
attention mechanism, in which CAM is combined with pixel cor-
relation module to narrow the gap between full and weak super-
visions. So that, for the segmentation of COVID-19 lesions, which
are small and scattered, these methods are not ideal. Furthermore,
Lee (2013) propose a semi-supervised framework to learn from
limited data, which utilize the segmentation results with pseudo
labels generated from the model to retrain the model. Then by
continuous iterations, this strategy can use few labeled data and
pseudo data to improve the performance of network, which is also
confirmed in Fan et al,, 2020. In this work, we build a similar it-
erative framework and add a trust module after each iteration to
make the pseudo labels more reliable.

The issue of long-tailed training datasets has attracted a lot of
attention in machine learning. Zhou et al. (2020b) propose a deep
learning algorithm to solve the large-scene-small-object problem.
In addition, Cui et al., 2019 present that as the sample number
of a class increases, the penalty term of this class decreases sig-
nificantly. Therefore, through theoretical derivation, they design a
re-weighting scheme to re-balance the loss, so as to better achieve
long-tailed classification. Kervadec et al. (2019) propose a bound-
ary loss for highly unbalanced segmentation, which uses integrals
over the interface between regions rather than using unbalanced
integrals over regions. Wu et al. (2020) also present a new loss
function called distribution-balanced loss for the multi-label recog-
nition of long-tailed class distributions. This loss re-balances the
weights considering the impact of label co-occurrence, and miti-
gates the over-suppression of negative labels. Different from these
methods, we introduce a re-weighting module before the training
of each iteration to balance the class distribution.

2.3. COVID-19 Pneumonia infection segmentation

Due to the lack of high-quality pixel-level annotation, a large
number of Al-based studies are aimed at solving the issue of
COVID-19 diagnosis (Kang et al., 2020) and lesion segmenta-
tion from the perspective of using limited training datasets. For
example, Oh et al. (2020) provide a method of patch-based
convolutional neural network, which has less trainable parame-
ters for COVID-19 diagnosis. He et al. (2020) not only build a
publicly-available dataset, but also propose a self-trans method
to combine contrastive self-supervised learning with transfer
learning to learn strong and unbiased feature representations.
Wang et al. (2020c) propose a weakly-supervised deep learning
framework for COVID-19 classification and lesion localization by
using 3D CT volumes. The 3D deep neural network is used to pre-
dict the probability of infections, while the location of COVID-19
lesions is the overlap of the activation region in classification net-
work and the unsupervised connected components. These works
are much concerned about the detection of infectious locations and
cannot obtain the shape and classification.

Certainly, many deep learning networks have been established
to segment COVID-19 lesions. However, most of them are based on
adequate data and supervised learning. Yan et al. (2020) introduce
a deep CNN, which provides a feature variation block to adjust the
global properties of features for the segmentation of COVID-19 le-
sions. Shan et al. (2020) use the human in the loop strategy for
efficient annotation, which can help radiologists improve the auto-
matic labeling of each case. In terms of public datasets, pixel-level
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annotations are often noisy. Wang et al. (2020a) present an adap-
tive mechanism to better deal with noisy labels. In their work, they
propose a COVID-19 pneumonia lesion segmentation network and
a noise-robust dice loss to better segment lesions of various scales
and appearances as well. Although the adaptive mechanism can
effectively obtain more high-quality annotations, it is very com-
plicated to implement. Fan et al., 2020 propose Inf-Net to auto-
matically segment infected area from CT images. A parallel par-
tial decoder is used to aggregate high-level features and generate
global features. Then, a reverse attention module and an edge at-
tention module are used to enhance the representation of bound-
ary. Meanwhile, a semi-supervised training strategy is also intro-
duced.

Nevertheless, most research work ignores the imbalance of in-
fection categories in datasets. In fact, whether it is GGO or consol-
idation, for doctors, better identification of the distribution of le-
sions in different stages is more conducive to understand patients
condition and make treatment. Therefore, it is necessary to seg-
ment not only the total infected regions but also multi-class pneu-
monia infections with limited data.

3. Method

In this section, we first present the details of our proposed
spatial self-attention network in terms of network architecture,
self-attention learning, spatial convolution and loss function. We
then present the semi-supervised few-shot learning framework for
COVID-19 lesions segmentation based on the re-weighting module
and the trust module.

3.1. Spatial self-attention network (SSA-Net)

For the sake of obtaining more contextual and spatial informa-
tion in the learning network and extracting the complex and ob-
scure COVID-19 lesion areas effectively, we propose an encoder-
decoder based deep neural network named Spatial Self-Attention
network (SSA-Net) for lesion segmentation. As shown in Fig. 2, the
proposed SSA-Net consists of three major parts: a feature encoder
with self-attention learning, a feature re-extractor with spatial con-
volution, and a feature decoder. Each CT slice is concatenated with
its lung mask as the input of our proposed network to remove
the background except the lungs. In this proposed method, we use
ResNet34 (He et al., 2016) as the backbone approach in feature en-
coder module. Herein, a self-attention learning module is added
after four residual blocks to enhance the representation learning
by distilling layer-wise attention and useful contextual informa-
tion from deeper layers. The feature map obtained from the fourth
residual block is fed to perform spatial convolution in the feature
re-extractor to transmit spatial information. Skip connections are
used to concatenate the encoder and the decoder. Meanwhile, for
the sake of improving the decoding performance, we use upscaling
and deconvolution (Apostolopoulos et al., 2017) operations. Finally,
after the sigmoid activation function, the result generated from the
feature decoder has the same size as input.

3.1.1. Feature encoder

In this work, the feature encoder consists of four residual blocks
for down-sampling operations, which is the same as the encoder
of ResNet34. To strengthen the representation, we introduce a self-
attention learning module after each residual block, and then the
attention maps of previous layers can distil useful contextual in-
formation from those of successive layers, and the better represen-
tation learned at lower layers will in turn benefit the deeper lay-
ers. Through this kind of self-learning, the representation can be
strengthened without extra training time and additional labels.
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Fig. 2. The architecture of Spatial Self-Attention network (SSA-Net), which consists of three major parts: feature encoder, feature re-extractor and feature decoder. Each CT
slice is concatenated with its lung mask as the input of network. In the feature encoder, a self-attention learning module is added after four residual blocks to enhance the
representation learning by distilling layer-wise attention and useful contextual information from deeper layers.The feature map obtained from the fourth residual block is fed
to perform spatial convolution in the feature re-extractor using a sequential scheme to transmit spatial information. Skip connections are used to concatenate the encoder
layers with four decoder layers with upscaling and deconvolution operations. Finally, after a sigmoid activation function, the result is generated from the feature decoder.

Self-Attention Learning: Several works (Hou et al., 2019; Ren
et al., 2020; Zhong et al., 2020) have shown that attention mech-
anism can provide useful contextual information for segmentation.
Thus, we introduce a self-attention learning mechanism to exploit
attention maps derived from its own layers of network, without
the need of additional labels and external supervisions. The atten-
tion maps used in this paper are activation-based attention maps.
Specifically, Ay € RGmxHn>xWm js ysed to denote the output of m-th
residual blocks (m =1, 2, 3, 4), where Cy,, Hn, Wy, denote the chan-
nel, height and width of output, respectively. The attention map
is to map the three-dimensional feature of channel, height and
width into a two-dimensional feature of height and width, namely
REmxHmxWingHmxWm The distribution of spatial features is deter-
mined by considering the activated eigenvalues of each channel.
The importance of each element on the final output depends on
its absolute value in the map. Therefore, the attention map can be
generated by a mapping function designed to calculate statistics of
all the absolute values of elements across the channel dimension
as follows:

Cm
Generator?,,, (Am) = Z | Ami |7 . (1)
i=1
where A,; denotes the i-th slice of Ay in the channel dimension,
and z can be a natural number greater than 1. The larger the z, the

more attention will be paid to these highly activated regions. In
our experiment, z is set to 2, because it has been verified that this
can maximize the performance improvement (Hou et al., 2019).
And then we perform spatial softmax operation (S) on
Generator?,,, (Am). The size of attention map is different between
two adjacent layers, so bilinear upsampling operation (B) is used
to make the original feature and the target feature the same size.
Formally, the whole process is represented by a function:

D (An) = S(B(Generatorz,,, (Am))). (2)

Finally, we use mean square difference loss (Lpnse) function to cal-
culate the attention loss (AT_Loss, which is shown in Fig. 2) be-
tween the four adjacent features after each residual blocks. The
formulation is:

AT—LOSS(Amy Am+1) = Lmse(CD(Am): q)(Am-H )) (3)

So the total loss of self-attention learning is formulated as follow:

N M-1

1
Losssy = N > > AT _Loss(Anm, Anmi1),

n=0 m=1

(4)

where N is the number of samples, M is the number of residual
blocks, and M is equal to 4 in this paper.
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H slices in total

Fig. 3. Detailed example of downward in spatial convolution.

3.1.2. Feature re-extractor

The feature extractor is a newly spatial convolution module at
the bottleneck of our encoder-decoder network. By using a sequen-
tial message passing scheme, this module is aimed to extract more
spatial information between rows and columns in the feature map
and strengthen the training.

Spatial Convolution: Several works (Gu et al., 2019; Pan et al.,
2017) have made innovations at the bottleneck of encoder-decoder
structures and achieved effective results. In order to improve the
ability to explore spatial information of the network and better
interpret the common low contrast and fuzzy boundary areas in
COVID-19 CT images, we add a spatial convolution module to ob-
tain the feature maps through channel wise convolutions with
large kernels.

Specifically, the feature map obtained from the feature encoder
is a 3D tensor T with the size of C x H x W, where C, H and W is
the number of channel, height and width respectively. As shown in
Fig. 3, taking the H dimension as an example, that is, passing the
message from top to bottom, the feature map would be cut into H
slices. k denotes the kernel width. It represents that a pixel in the
next slice can receive messages from k x C pixels in the current
slice. The first slice is convoluted by a 1 x k x C convolution layer,
and the output is added to the second slice, then the new output is
then fed to the next 1 x k x C convolution. This process is iterated
for H times to get the final output. The above operations are car-
ried out in four directions, including downward, upward, leftward
and rightward, to complete the spatial information transmission.

Further, T; ; denotes the element of a 3D tensor T, and i, j,
k represent the indexes of channel, height and width respectively.
Thus, the spatial convolution function is

’I;'.j,ks ]=l
Tk =4 Tijk + £ 2on , (5)
T xKnin) j=2.3....H

m,j—1,k+n—1

where T’ denotes the update of the element, £ is the nonlinear
activation function of ReLU. K, ; , denotes the weight between an
element in channel m of the last slice and an element in channel i
of the current slice, with an offset of n columns between the two
elements.

3.1.3. Feature decoder

The feature decoder is designed for constructing the segmen-
tation results from feature encoder and feature extractor. Through
skip connections, the feature decoder can get more details from
encoder to make up for the loss of information after pooling and
convolutional operations. Each decoder layer includes a 1 x 1 con-
volution, a 3 x 3 transposed convolution and a 1 x 1 convolution.
Based on skip connections and the concatenations of decoder lay-
ers, the output has the same size as input. In the end, we adopt
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the Sigmoid function as the activation function to generate the seg-
mentation result.

3.14. Loss function

The total loss comprises of two terms. One term is a segmen-
tation loss, and the other is a self-attention loss. The COVID-19
infected areas at an early stage, shown as GGO, are often scat-
tered and occupy only a small region of image. When the propor-
tion of foreground is too small, the Dice loss function proposed in
Milletari et al., 2016 has been proved to be effective, so we prefer
to consider Dice loss function as a segmentation loss in our task.
All the networks for comparison are trained with the same loss
function (Dice loss), so all the experiments were carried out under
the same experimental settings. The Dice loss function is defined
as follows:
2|GNS| ’ 6)
IGl+]S]|
where G denotes the ground truth and S represents the segmenta-
tion. The self-attention loss is mentioned in Eq. (4). Thus, as shown
in Eq. (7), the sum of segmentation loss and self-attention loss is
regarded as the total loss of the network.

LosSseg =1 —

LosSsym = L0SSseg + 0tL0SSs4, (7)

where « is the weight of self-attention learning loss to balance
the influence of attention loss on the task, and set to 0.1 in our
experiment.

3.2. Semi-supervised few-shot learning

Due to the class unbalanced and limited labeled data of COVID-
19 datasets, we propose a semi-supervised few-shot learning
framework, which consists of two major parts: the lung region
segmentation, and multi-class infection segmentation, as shown in
Fig. 4.

3.2.1. Lung region segmentation

The lung region segmentation is an initial step of our COVID-19
lesion segmentation. First, we use a trained U-Net model provided
by Hofmanninger et al. (2020) for the segmentation of lung region.
Then, all unlabeled CT slices are segmented by the pre-trained U-
Net to obtain all the boundaries of lung.

3.2.2. Multi-class infection segmentation

Because the manual labeling of professional doctors is not only
time-consuming but also expensive, there are limited labeled pub-
lic datasets, and fewer labels for multi-class infection areas. In
this work, we present a semi-supervised few-shot learning strat-
egy, which leverages a large number of unlabeled CT images to ef-
fectively augment the training dataset. Moreover, we introduce a
re-weighting module and a trust module to balance the distribu-
tion of different lesion classes and to obtain more reliable pseudo
labels.

An overview of our semi-supervised few-shot learning frame-
work is shown in Fig. 4. Our framework is based on a random
sampling strategy and uses unlabeled data to gradually expand the
training dataset and generate pseudo labels. Each CT slice is con-
catenated with its lung mask generated by lung region segmenta-
tion as the input of our proposed SSA model. When training, we
exploit a re-weighting module, which is a class re-balancing strat-
egy based on the number of pixels for each class. And more reli-
able pseudo labels can be obtained from trust module by selecting
high confidence values.

Specifically, the labeled dataset Do is divided into an orig-
inal training set Dygining, @ validation set Dygjigqrion and a test set
Drest. We firstly pretrain a SSA model M; with reweighting module
using original labeled dataset D¢ygining. Meanwhile, we use the vali-
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Multi-class Infection Segmentation
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Fig. 4. The architecture of the semi-supervised few-shot learning framework, which consists of two major parts: the lung region segmentation and iteration infection
segmentation. A trained U-Net model is used to segment the lung region in each CT image as an initialization of multi-class infection segmentation. Then, each lung mask is
concatenated with its CT image as the input of our multi-class infection segmentation. In this part, we firstly train the model with SSA-Net, and we introduce a re-weighting
module to rebalance the class distribution. The unlabeled data are test by the pre-trained SSA model with a trust module to obtain more reliable pseudo labels. Secondly,
we take the original data and generated pseudo data as new trainning dataset. Thirdly, we train a new SSA model using this dataset in the same way. Follow this method

until all unlabeled images are predicted and the latest model is no longer improved.

dation set with true labels to measure the performance of the new
trained SSA model, and images in the unlabeled dataset D, apeled
are tested by the pre-trained M; with trust module to gener-
ate pseudo labels. Next, we randomly select t generated pseudo
samples, and add them into the original training set to make a
strengthened training dataset. Then, we use this dataset to train
a new SSA model in the same way and repeat this process. There-
fore, the strengthened training set consists of the original train-
ing set Dyygining and the pseudo-label training set D4, Once a
new SSA model M; is generated, all the pseudo labels of images
in Dpgeygo Will be renewed. If the number of unlabeled images in
Dynigbeled 1 Teduced to be less than t, we add all the remaining
images in Dy gpe1eq With their pseudo labels into the strengthened
training set. If all the images of D, qpeieq has been used, we will
only update the pseudo labels of Dpg,4, during the iteration. The
iteration will stop when the DSC of validation set D,gjigarion 1S NO
longer improved.

Re-weighting module: In this module, we introduce the cross
entropy loss, which is more suitable for the condition of class im-
balance in multi-class training tasks. However, because not only
the number of consolidation samples in datasets is small, but the
consolidation proportion of pixels in each image is also very small.
In view of this kind of class imbalance, we calculate the pixel ra-
tios of the two categories (GGO and consolidation) in all training
data, and exploit the result to set their weights of the cross en-
tropy loss. Therefore, the final loss function is defined as follow:

T 1
L= n ZZ m}/ic log(pic). (8)

i=0 c=1

where C denotes the number of total categories, and P. represents
the pixel proportion of class c in the training set, which consists of
the original labeled training set Dygining and the current pseudo-
label training set D, 4. The initial labeled training set is a multi-
class data set. To guide the model to identify different types of
lesions, we need to ensure that the original labeled training set
contains samples of all categories. If the category is the same as
the class of sample i, y;. is 1, otherwise it is 0. p;. is the prediction
probability of class ¢ of sample i. In this way, it can ensure that
the weight of a class with small proportion is more than 1, and
the weight of a class with large proportion is less than 1, so as to
achieve a balance of categories.

Trust module: Usually, we only pick up a class label which
has the maximum predicted probability for each unlabeled sam-
ple. However, not all the predicted values are true values, and false
values will guide the model to errors during the iterative process.
The work in Lee (2013) has proved that the pseudo labels with
high confidence are more effective. Hence, we add a trust model
to re-evaluate the pseudo infection class labels obtained from cur-
rent SSA model, by setting a threshold n to select high confidence
values, and the predicted pseudo label with credibility is defined
as:

c_Je if pe>n
p _{O, otherwise’ (9)
where p’ denotes the final pseudo label after re-evaluation, ¢
represents the predicted infection category from the current SSA
model, and p. denotes the maximum predicted probability of an
unlabeled pixel. The pseudo label is set to 0 and the pixel is
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Table 2
A summary of the Datasets in our experiments. Sum* denotes the total
number of COVID-19 slices. Class* denotes the number of lesion cate-

gory.
Dataset From Sum*  Class*
Dataset; COVID-19-CT-Seg 1848 1
Dataset,  COVID-19 CT Segmentation dataset 98 1
Datasets COVID-19 CT Segmentation dataset 468 2

treated as uninfected lung region when the probability of pre-
dicted category is less than the threshold. The setting of 7 is quite
important. n is the threshold for re-evaluating the pseudo infec-
tion class labels and selecting high confidence values. The higher
n is, the more confident of the pseudo label will be. Based on
the experience, we try several values and 7 is set to 0.95 in our
experiments.

4. Experiments and results
4.1. COVID-19 pneumonia infection datasets

At present, many public datasets on COVID-19 are available for
free. However, as mentioned above, due to the difficulty of manual
labeling, most of the data only have image-wise labels for COVID-
19 detection, and only a few datasets are labeled precisely for
segmentation. Clinical CT scans collected from currently published
COVID-19 CT datasets are used for our experiments.

One of the datasets is the COVID-19-CT-Seg dataset, which has
been publicly available at here® with CC BY-NC-SA license, and
contains 20 public COVID-19 CT scans from the Coronacases Ini-
tiative and Radiopaedia. The corresponding annotations (Jun et al.,
2020) including left lung, right lung, and infection can be freely
downloaded at here?. In Ma et al. (2020), we know that the last
10 cases in this dataset from Radiopaedia have been adjusted to
lung window [-1250,250], and then normalized to [0,255]. While
the other, the COVID-19 CT Segmentation dataset and its annota-
tions are available at here®, which includes 100 axial CT images
from more than 40 patients with COVID-19 collected by the Italian
Society of Medical and Interventional Radiology and 9 axial volu-
metric CT scans from Radiopaedia®. In this dataset, the lung masks
are contributed by Hofmanninger et al. (2020), and the images and
volumes were segmented using three labels: ground-glass, consol-
idation and pleural effusion.

We use three datasets (Dataset;, Dataset,, Datasets) for our
experiments as shown in Table 2. Firstly, the COVID-19-CT-Seg
dataset consists of 1848 slices with lesion, which have been seg-
mented by experienced radiologists. This dataset is used to demon-
strate the effectiveness and stability of our proposed segmenta-
tion network. We consider these 1848 slices as Dataset;. Same as
the experiment in Ma et al. (2020), we split the twenty cases in
Dataset; into five groups randomly for 5-folder cross validation.
Secondly, Dataset, consists of 98 slices from the COVID-19 CT Seg-
mentation dataset and we divide them into the same training set
and validation set in the experiment of Fan et al., 2020. Finally,
from the COVID-19 CT Segmentation dataset, we can obtain 468
slices with multi-class infection labels in total as Dataset; which
is used to confirm that our multi-class semi-supervised few-shot
model is feasible and effective.

3 https://github.com/ieee8023/covid-chestxray-dataset.
4 https://zenodo.org/record/3757476.

5 https://medicalsegmentation.com/covid19/.

6 https://radiopaedia.org/articles/covid-19-4?lang=us.
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4.2. Experimental settings

Data preprocessing: In Dataset;, in the light of the sugges-
tions from instructions of the COVID-19-CT-Seg dataset’, we pre-
processed the image data, including adjusting the gray values to
lung window [-1250,250], and then normalizing it to [0,255] for
the previous ten groups of volumes. Besides, we cropped the last
ten groups of images from 630 x 630 to 512 x 512, making them
the same size as the previous ten groups. And we also performed
the same operations in Dataset; as well. The operating procedure
of cropping is to calculate the center of gravity by using the lung
label available in the corresponding dataset, and then calculate the
cutting position by using the center of gravity.

Evaluation metrics: We used four metrics for quantitative eval-
uation between segmentation results S and the ground truth G, i.e.,
the Dice similarity coefficient (DSC), the 95-th percentile of Hausd-
off Distance (HD), the Mean Absolute Error (MAE) and Normalized
surface Dice (NSD). The first three measures are widely used in the
evaluation of medical image processing, and the last one can better
evaluate the situation of edge segmentation. For the measurements
based on DSC and NSD (Nikolov et al., 2018), the higher the scores
are, the better the segmentation performs. While on the contrary,
for metrics of HD and the MAE, lower scores are supposed to be
the better segmentation.

1) Dice Similarity Coefficient (DSC): This was first proposed in
Milletari et al., 2016, and then widely used in medical image seg-
mentation. The DSC is a similarity measure function, which is usu-
ally used to calculate the similarity of two samples. The formula-
tion is as follows:

2|GNnS|

[Gl+IST
2) Hausdoff Distance (HD): This is also a commonly used mea-

sure to describe the similarity between segmentation result and

the ground truth. DSC is sensitive to the inner filling of mask,
while HD is sensitive to the boundary. HD is defined as follows:

DSC = (10)

HD = max{max mind(x,y), maxmind(x, y)}. (11)
xeG yeS yeS xeG

The 95-th percentile of Hausdoff Distance (HDgs) is the final value
multiplied by 95% in order to eliminate the effect of a very small
subset of outliers.

3) Mean Absolute Error (MAE): This is the average of absolute
errors, which can better reflect the prediction error and it is de-
fined as:

1 W H
MAE=WXH;;|5(X,J’)—G(X,J/)I- (12)

4)Normalized Surface Dice (NSD): Unlike the DSC, this measure
assesses the overlap of the segmentation and ground truth sur-
faces with a specified tolerance (7) instead of the overlap of these
two volumes. The surface here is represented by the boundary of
mask. Then the segmentation surface and ground truth surface are
expressed by G’ and S’ respectively, where G’ = dG and S’ = 9S.
And the border region of these two surfaces at tolerance t are
denoted by B(Gf) c R® and Bé,’) c R3, where Bg) ={xeR¥ | Joe
G, llx-&@)|l <t} Béf) ={xeR |Jo e, ||x—£&(0)|| <} The
formula is:

|GnBY |- S nB |

|G+ 151 ’
where 7 is set to 3mm in our experiment, which is the same as
Ma et al. mentioned in the Ma et al. (2020).

NSD = (13)

7 https://gitee.com/junma11/COVID-19-CT-Seg-Benchmark.
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Table 3
Ablation studies of our SSA-Net. SA denotes self-attention learning. SC de-
notes spatial covolution. The best results are highlighted in bold.

Dataset1
Method

DSC HDgs MAE NSD
(M; )backbone 0.6003 5.6866  0.0102  0.5126
(M;)backbone+SA 0.5498  6.5469  0.0263  0.4736
(E1)backbone+10episodes+SA  0.5529  6.3746  0.0219  0.4843
(E3)backbone+20episodes+SA  0.5878 6.0544 0.0182 0.5076
(E3)backbone+30episodes+SA  0.6069 5.8735 0.0147 0.5141
(E4)backbone+40episodes+SA  0.6144 57689  0.0121 0.5253
(Es)backbone+50episodes+SA  0.6100 5.7523 0.0139 0.5197
(Eg)backbone+60episodes+SA  0.6032 5.8466 0.0156 0.5130
(Ms3)backbone+SC 0.6294 5.6036  0.0100  0.5375
(Mg4)backbone+SC+SA 0.6522 5.5260 0.0096 0.5643

4.3. Ablation study

In this subsection, we evaluate different variants of the mod-
ules presented in Section 3 in order to prove the effectiveness of
key components of our model, including the self-attention learning
module and spatial convolution module in SSA-Net, and the re-
weighting module and trust module in semi-supervised few-shot
model.

4.3.1. Ablation experiments of SSA-Net

In order to investigate the importance of each component
in SSA-Net, we combine spatial convolution (SC) and self-
attention learning (SA) with backbone to get new models and
use Dataset; to train these models, which are devised as fol-
lows: backbone (M), backbone+SA (M, ), backbone+10episodes+SA
(E1), backbone+20episodes+SA (E;), backbone+30episodes+SA (E3),
backbone+40episodes+SA (E4), backbone+50episodes+SA (Es), back-
bone+60episodes+SA (Eg), backbone+SC (Ms3), backbone+SC+SA
(My).

Effectiveness of self-attention learning: We compare M3 and
M, in Table 3 to evaluate the contribution of self-attention learn-
ing mechanism. The results clearly show that spatial convolution
together with self-attention learning mechanism are useful to drive
up performance. However, from model M; to model M,, by adding
self-attention learning directly, we can also notice a drop in accu-
racy. As mentioned in Hou et al. (2019), the self-attention learn-
ing is assumed to be added to a half-trained model and the time
to add the SA module has an effect on the convergence speed
of the networks. Here, we also train the backbone by adding the
single SA module at different timepoints (from 10 episodes to 50
episodes) and get new models (E; - Eg) of M,. Table 3 displays
the segmentation results in dataset 1 and all the networks are
trained up to 150 episodes. The backbone with single SA module
can achieve the best segmentation results when introducing the
single SA started from the 40 episodes. It proves from one aspect
that valuable self-attention contextual information can only be ex-
tracted from a model trained to a reasonable level. This accuracy
decline reflects the effectiveness of the spatial convolution module
as well, which strengthens the network and accelerates the train-
ing convergence. Fig. 5 displays two segmentation examples from
Dataset;. From the visual comparisons of M, and My, we can obvi-
ously observe that the segmentation results, which is highlighted
with orange boxes, show better performance in the model after in-
troducing self-attention learning. It proves that the context infor-
mation generated from self-attention learning is able to guide the
network for better extracting more complex regions.

Effectiveness of spatial convolution: From Tabel 3, all the met-
rics show that the models with spatial convolution make a bet-
ter performance than models without this module. This clearly
demonstrates that the use of spatial convolution can make the
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Fig. 5. Ablation studies of different modules for segmentation of COVID-19 pneu-
monia lesions. The model results show more details similar to ground truth after
introducing spatial convolution, while after introducing self-attention learning, the
contextual information generated is able to guide the network for better extracting
more complex and scattered regions. The segmentation results highlighted with or-
ange boxes show best performance in the model trained with both self-attention
learning and spatial convolution.

model segment the lesions more accurately. Furthermore, as shown
in Fig. 5, we observe that the model shows more details similar to
ground truth after introducing spatial convolution, especially the
highlighted part in the orange box. Compared with the results of
M3 and Mg, it also demonstrate that the spatial convolution mod-
ule can not only help transfer the information between cows and
columns in the backbone network, but also make better use of the
context information to detect scattered and obscure lesions after
introducing self-attention learning.

4.3.2. Ablation experiments of semi-supervised few-shot model

We further extend our SSA-Net to the segmentation of small
samples multi-class lesions (GGO and consolidation). We use 98
slices in Datasets to train the semi-supervised models and the rest
data is used for validation. The baselines we devised are as follows:
SSA-Net with iteration (S;), SSA-Net based on re-weighting with
iteration (S,), SSA-Net based on trust module with iteration (S3)
and SSA-Net based on re-weighting module and trust module with
iteration (S4).

Effectiveness of re-weighting module: As shown in Table 4,
some evaluation metrics of S, reduce slightly compared with S;.
The main reason is pseudo labels generated from the iteration
model may contain more inaccurate results, so the re-weighting
module can be affected and cannot work effectively in the follow-
ing iterations. Therefore, we derive S3 and S, based on trust mod-
ule. The DSC of GGO and consolidation increase at the same time
after introducing the re-weighting module. Although the HDgs5 and
NSD of GGO have a faint decline, the average of most evalua-
tion metrics have improved. The DSC and NSD raise to 0.5608 and
0.5128 respectively, while the HD95 descends to 0.0071.

Effectiveness of trust module: From these results of S; and S3
in Table 4, it is evidential that trust module boosts the segmen-
tation performance both in GGO and consolidation. Generally, we
boost the performance by 3.28% and 1.07% in terms of the average
DSC and average NSD, and reduce the average HDgs to 4.2751, the
average MAE to 0.0072. Furthermore, we can observe from S, and
S4 that trust module is the basis of the re-weighting module. The
re-weighting module can be effective under the condition of the
trust module which is able to make pseudo labels more reliable.

4.4. Comparison of different deep learning networks

We compare our SSA-Net with two state-of-the-art deep learn-
ing networks, U-Net and nnU-Net, for semantic or medical image
segmentation performance, and with Inf-Net, a COVID-19 infection
segmentation network.

From the quantitative comparison shown in Table 5, we can ob-
serve that nnU-Net, as an improved version of U-Net, has a better
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Table 4
Quantitative results of Different semi-supervised models trained with Datasets. I denotes the model with iteration. R denotes the model based on re-weighting module. T
denotes the model based on trust module. The best results are highlighted in bold.

Ground-glass opacity (GGO) Consolidation Average
Method

DSC HDgs MAE NSD DSC HDgs MAE NSD DSC HDgs MAE NSD
(51)SSA-Net+I 0.4058 7.3735 0.0237 0.3576 0.6251 3.1018 0.0025 0.5991 0.5155 52377 0.0131 0.4784
(S2)SSA-Net+I + R 0.4225 7.4845 0.0192 0.3605 0.6010 3.2384 0.0028 0.5661 0.5118 5.3615 0.0110 0.4633
(S53)SSA-Net+I + T 0.4622 5.5402 0.0117 0.4061 0.6343 3.0100 0.0026 0.5720 0.5483 4.2751 0.0072 0.4891
(S4)SSA-Net+I + T + R 0.4654 5.9266 0.0116 0.4016 0.6562 2.9541 0.0026 0.6239 0.5608 4.4404 0.0071 0.5128

Table 5

Quantitative evaluation of different networks for segmentation of single-class COVID-19 pneumonia lesions. The best results are highlighted in bold. The data marked with
# are inconsistent with that in Fan et al., 2020. The DSC and MAE of infnet here are better than the those in Fan et al., 2020 (0.682 and 0.082 respectively). The reason is
that we are different in pre-processing. In Fan et al., 2020, they resize all the images to 352 x 352. But here, the size of images is adjusted to 512 x 512.

Dataset; Dataset,
Method

DSC HDgs5 MAE NSD DSC HDgs MAE NSD
U-Net Ronneberger et al. (2015) 0.5850 6.2653 0.0216 0.5151 0.6723 8.2343 0.1142 0.5489
nnU-Net Isensee et al. (2019) 0.6447 5.7383 0.0106 0.5347 0.7500 7.1841 0.0275 0.5862
Inf-Net Fan et al., 2020 0.6408 5.5155 0.0092 0.5633 0.7236° 7.0808 0.0311* 0.5464
SSA-Net(Ours) 0.6522 5.5260 0.0096 0.5643 0.7540 7.0464 0.0305 0.5876

CT Image U-Net nnU-Net Inf-Net SSA-Net(Ours) Ground Truth

Fig. 6. Visual comparison of single-class infection segmentation results. The regions highlighted with orange boxes show the better performance of SSA-Net.
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Table 6
Quantitative evaluation of different models trained with Dataset; for segmentation of multi-class COVID-19 pneumonia lesions. The best results are highlighted in
bold.
ground-glass opacity (GGO) Consolidation Average
Method
DSC HDgs MAE NSD DSC HDgs MAE NSD DSC HDgs MAE NSD
U-Net 0.3596 7.3888 0.0320 0.3391 0.5277 3.6676 0.0030 0.4838 0.4437 5.5282 0.0175 0.4115
nnU-Net 0.4049 7.7792 0.0214 0.3395 0.4239 4.5909 0.0051 0.3697 0.4144 6.1851 0.0133 0.3546
Inf-Net 0.3021 8.9342 0.0448 0.3084 0.3987 4.8367 0.0054 0.2934 0.3504 6.8855 0.0251 0.3009
SSA-Net 0.4152 6.7788 0.0186 03713 0.4953 3.5529 0.0029 0.4529 0.4553 5.1659 0.0108 0.4121
SSA-Net(I) 0.4654 5.9266 0.0116 0.4016 0.6562 2.9541 0.0026 0.6239 0.5608 4.4404 0.0071 0.5128

k'
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Inf-Net
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Proportion

Con

SSA-Net(I) Ground Truth

Fig. 7. Visual comparison of multi-class infection segmentation results, where the red and green labels denote the GGO and consolidation, respectively. The first three
examples are from Dataset;, while the rest two are from Dataset,. Besides, the bar charts in the last column are the proportional distributions of different categories, where
the red, green and gray columns represent the GGO, consolidation and uninfected lung area, respectively.

performance in segmentation tasks. This is mainly because nnU-
Net has a more robust structure to adapt to a variety of datasets.
Furthermore, the proposed SSA-Net is slightly better than nnU-Net
in terms of DSC, HDgs and NSD in both Dataset; and Dataset;. Our
SSA-Net improves the average DSC from 0.6447 to 0.6522, the av-
erage NSD from 0.5347 to 0.5643 and reduces the average HDgs
from 5.7383 mm to 5.5260 mm in Dataset;. While in Dataset,, our
SSA-Net improves the average DSC from 0.7500 to 0.7540, the av-
erage NSD from 0.5862 to 0.5876 and reduces the average HDgs
from 7.1841 mm to 7.0464 mm. The improvements demonstrate
that spatial convolution has the ability to obtain more informa-
tion between rows and columns in images, and on this basis, the
self-attention learning mechanism can offer more reliable context
information. Compared with Inf-Net, the advantage of SSA-Net in
Dataset; is not obvious. In terms of DSC and NSD, our proposed
SSA-Net outperforms by 1.14% and 1% respectively. But in Dataset,,

1

it is evident that all evaluation metrics of all networks increase sig-
nificantly. However, our proposed SSA-Net has more advantages in
this dataset. We observe that most patients represented by the CT
images are in moderate or severe conditions, the lesion includes
not only the fuzzy GGO in the early stage, but also the consoli-
dation in the later stage in this small sample Dataset,. Although
the segmentation task in Dataset, is more challenging than that
in Datasety, our proposed SSA-Net can obtain more spatially com-
plex information in a limited data set. And even if the lesions
have a complex structure, it can perform better as well. The DSC,
HDgs and NSD are better than others, reaching 0.7540, 7.0464 and
0.5876, respectively.

Fig. 6 shows a visual comparison of the results obtained from
different networks in two different datasets. It can be observed
that most of the current methods have improved the results, but
they still perform poorly in the case of fuzzy areas and irregular
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shapes of COVID-19 lesions. However, our SSA-Net effectively alle-
viates this problem. Specifically, the segmentation results of SSA-
Net are close to the ground truth, and there are fewer incorrectly
segmented regions as well, especially for misty and scattered re-
gions, which is attributed to the strengthened representation abil-
ity for fuzzy boundaries and irregular shapes of spatial convolu-
tion. Meanwhile, even in case of limited data in Dataset,, SSA-Net
can perform well, which is due to the role of self-attention learn-
ing to enable the model learn from itself, thereby further enhanc-
ing the ability of contextual expression.

4.5. Results of semi-supervised few-shot learning

From Table 6, our proposed SSA-Net has shown more compet-
itive performance than other baseline methods. Besides, our pro-
posed semi-supervised few-shot model (SSA-Net(I)) outperforms
other algorithms in all evaluation metrics. By introducing the re-
weighting module for class balancing and the trust module for
generating more credible pseudo labels, our SSA-Net based semi-
supervised learning framework enables the limited data to be uti-
lized as much as possible. Compared with SSA-Net, in terms of
GGO, SSA-Net(I) boost the performance by 5.02% in average DSC,
3.01% in NSD, and decrease the HDgs and MAE to 5.9266 and
0.0116 respectively. While in terms of consolidation, SSA-Net(I) still
shows the best performance. The reason is that SSA-Net can obtain
stronger receptive field and contextual information, which helps to
detect scattered and complex lesions. In addition, the training of
SSA-Net is a process of continuous reinforcement of spatial infor-
mation, so SSA-Net can improve the self-learning ability of the net-
work in the case of few training samples.

Fig. 7 shows the multi-class lesion segmentation results. Due
to the small amount of training dataset, it is more prone to ob-
tain wrong segmentations. Therefore, the baseline methods gen-
erate more incorrect results. On the contrary, the results of SSA-
Net(I) are closer to the ground truth, because we set a threshold
to get high confidence values and drop off the incorrect values. In
addition, as can be observed in Fig. 7, the proportional distribu-
tion of classes in the last column shows that the data categories
in dataset are unbalanced. Among them, lesions containing GGO
and consolidation only account for a small proportion of the im-
age, and the most part of images are uninfected lung regions. For
small consolidations are quite difficult to segment correctly, but
also easily affect the segmentation of GGO. However, our proposed
small samples semi-supervised learning model based on SSA-Net
can segment lesions more accurately, even if the lesions are small
or the boundary is blurred. We can also draw the conclusion that
our model can get the results more correctly, which is contributed
to the effect of re-weighting module.

5. Conclusion and future work

In this paper, we have proposed a novel COVID-19 pneumonia
lesion segmentation learning network called Spatial Self-Attention
network (SSA-Net), which exploits self-attention learning and spa-
tial convolution to obtain more contextual information and can
improve the performance in challenging segmentation task of
COVID-19 infection areas. Furthermore, we have introduced our
SSA-Net for multi-class lesion segmentation with small samples
datasets. And we have presented a semi-supervised few-shot learn-
ing framework, in which a re-weighting module is utilized to re-
balance the loss of different classes and solve the issue of long-
tailed distribution of training data, and also a trust module is used
to select high confidence values. Extensive experiments on pub-
lic datasets have demonstrated that our proposed SSA-Net outper-
forms state-of-the-art medical image segmentation networks. At
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the same time, our semi-supervised iterative segmentation model
also achieves higher performance by training limited data.

The proposed deep learning network can identify scattered and
blurred lesions in complicated backgrounds, and which usually
happens in medical images. In the future, we will apply it to
other related tasks. In addition, due to the urgent nature of the
COVID-19 global pandemic, it is difficult to systematically collect
large datasets and annotations, especially multi-class annotations,
for deep neural network training. Our few-shot multi-class semi-
supervised training model only improves the model in process of
getting more credible labels. In the near future, we plan to de-
sign a comprehensive system to detect, segment and analyze the
COVID-19 pneumonia lesions automatically. Besides, we can get
initial segmentation results to utilize class activation maps (Zhou
et al., 2016; Selvaraju et al., 2017) generated from the feature maps
of the network for data augmentation.
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