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a b s t r a c t 

Coronavirus disease (COVID-19) broke out at the end of 2019, and has resulted in an ongoing global pan- 

demic. Segmentation of pneumonia infections from chest computed tomography (CT) scans of COVID-19 

patients is significant for accurate diagnosis and quantitative analysis. Deep learning-based methods can 

be developed for automatic segmentation and offer a great potential to strengthen timely quarantine 

and medical treatment. Unfortunately, due to the urgent nature of the COVID-19 pandemic, a systematic 

collection of CT data sets for deep neural network training is quite difficult, especially high-quality anno- 

tations of multi-category infections are limited. In addition, it is still a challenge to segment the infected 

areas from CT slices because of the irregular shapes and fuzzy boundaries. To solve these issues, we 

propose a novel COVID-19 pneumonia lesion segmentation network, called Spatial Self-Attention network 

(SSA-Net), to identify infected regions from chest CT images automatically. In our SSA-Net, a self-attention 

mechanism is utilized to expand the receptive field and enhance the representation learning by distilling 

useful contextual information from deeper layers without extra training time, and spatial convolution is 

introduced to strengthen the network and accelerate the training convergence. Furthermore, to alleviate 

the insufficiency of labeled multi-class data and the long-tailed distribution of training data, we present a 

semi-supervised few-shot iterative segmentation framework based on re-weighting the loss and selecting 

prediction values with high confidence, which can accurately classify different kinds of infections with a 

small number of labeled image data. Experimental results show that SSA-Net outperforms state-of-the- 

art medical image segmentation networks and provides clinically interpretable saliency maps, which are 

useful for COVID-19 diagnosis and patient triage. Meanwhile, our semi-supervised iterative segmentation 

model can improve the learning ability in small and unbalanced training set and can achieve higher per- 

formance. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Since the end of 2019, coronavirus disease 2019 (COVID-19), 

n infectious disease caused by severe acute respiratory syndrome 

oronavirus 2 (SARS-CoV-2) 1 , has spread in the worldwide, which 

an cause acute respiratory illness and even lead to fatal acute res- 

iratory distress syndrome (ARDS) ( Chen et al., 2020 ). So far (Cen- 

ral European Time of December 20, 2021), the number of con- 

rmed cases of COVID-19 has been more than 273.9 million, with 
∗ Corresponding authors. 

E-mail addresses: guodongyan@zjut.edu.cn (D. Guo), caicaitu@zju.edu.cn 

(X. Huang) . 
1 https://talk.ictvonline.org/ . 
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ore than 5.3 million deaths, according to the COVID-19 situation 

ashboard in the World Health Organization (WHO) website 2 , and 

he number is continuing to increase. The health of human be- 

ng all over the world are threatened and everyones life has been 

reatly affected due to the outbreak of the virus. Since it is highly 

ontagious and we still lack appropriate treatment and vaccines, 

arly detection of COVID-19 is essential to prevent spreading in 

ime and to properly allocate limited medical resources. Among 

ll virus detection methods, antigen testing is fast, but the sen- 

itivity is also poor ( Fang et al., 2020 ). Reverse transcription poly- 

erase chain reaction (RT-PCR) has been considered as the gold 
2 https://www.who.int/data/ . 
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Table 1 

A summary of the Datasets in our experiments. Sum denotes the total number of COVID-19 slices. 

Class denotes the number of labeled infection categories. Lung , GGO , Con , G + C denote the per- 

centage of pixels of lung area, GGO, consolidation, the total infection of GGO and consolidation, 

respectively. COVID-19 CT Segmentation dataset is available at https://medicalsegmentation.com/ 

covid19/ . 

Dataset Sum Class Lung GGO Con G + C 

COVID-19-CT-Seg ( Jun et al., 2020 ) 1848 1 15.46% - - 1.84% 

COVID-19 CT Segmentation dataset 98 3 26.90% 4.66% 2.29% 6.95% 

COVID-19 CT Segmentation dataset 370 2 21.46% 1.97% 0.51% 2.48% 
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Fig. 1. Two examples of COVID-19 positive CT scans from two different datasets and 

their corresponding segmentation results. The first row is a single-class lesion seg- 

mentation with lesions labeled in blue, and the second row is a multi-class lesion 

segmentation with ground-glass opacity (GGO) in red and consolidation in green. 

We can clearly see the fuzzy boundaries of the infected areas, highlighted with or- 

ange arrows. The red number and the green number marked in the last graph rep- 

resent the proportions of GGO and consolidation respectively, which shows the is- 

sue of imbalanced class distribution. It can be seen that SSA-Net performs better in 

complicated lesion segmentation and the proposed semi-supervised few-shot learn- 

ing framework outperforms other state-of-the-art algorithms in multi-class COVID- 

19 infection segmentation with limited training data, especially in regions labeled 

with orange boxes. 
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tandard for COVID-19 screening ( Ai et al., 2020 ), which detects vi- 

al nucleic acid using nasopharyngeal and throat swabs ( Bai et al., 

020 ). However, the results of RT-PCR testing are susceptible to 

ow viral load or sampling errors, and result in high false negative 

ates ( Xie et al., 2020 ). Meanwhile, the requirements for the test- 

ng laboratory environment are extremely strict and there is always 

 shortage of equipment under the epidemic ( Liang et al., 2020 ), 

hich would greatly limit and delay the diagnosis of suspected 

ubjects. To find a fast and sufficiently accurate patient screening 

ay becomes an unprecedented challenge to prevent the spread of 

he infection. Since most patients infected by COVID-19 are diag- 

osed with pneumonia, radiological examinations have also been 

sed to diagnose and assess disease evolution as important com- 

lements to RT-PCR tests ( Rubin et al., 2020 ). X-ray and computed 

omography (CT) are two typical imaging methods for patients in 

he COVID-19 study ( Shi et al., 2020 ). CT has a 3D view and the

ibs in X-ray images may affect the lesion detection. The diag- 

ostic accuracy of CT is much higher than that of X-ray in the 

arly stage of the disease ( Wong et al., 2020 ). Furthermore, chest 

T screening on clinical patients has showed that its sensitivity 

utperforms that of RT-PCR ( Fang et al., 2020 ) and it can even

onfirm COVID-19 infection in negative or weakly-positive RT-PCR 

ases ( Xie et al., 2020 ). Therefore, in view of the particularity of

revention and control during the COVID-19 epidemic, it is sug- 

ested that CT should be the first choice for screening COVID-19 

nder the condition of limited nucleic acid detection ( Huang et al., 

020; Chung et al., 2020; Lei et al., 2020 ). Although imaging fea- 

ures alone cannot make a definite diagnosis, combined with epi- 

emiological history, clinical manifestations and imaging examina- 

ions, CT can greatly improve the accuracy of screening, especially 

or suspected patients and asymptomatic infections. This can help 

o effectively discover and isolate the source of infection as soon 

s possible and cut off the route of transmission, which has a pos- 

tive effect on controlling the development of whole epidemic. In 

hort, chest CT plays a key role in the diagnostic procedure for 

uspected patients and some recent reports have emphasized its 

erformances ( Dong et al., 2020 ). However, image reading in se- 

ere epidemic areas is a tedious and time-consuming task for radi- 

logists, and the visual fatigue would increase the potential risk 

f missed diagnosis of some small lesions. In addition, radiolo- 

ists’ judgement is usually influenced by personal bias and clini- 

al experience. Thus, Artificial Intelligence (AI) technology is play- 

ng an increasingly important role in the struggle against COVID-19 

 Shi et al., 2020 ). 

In recent years, with the gradual deepening study of artificial 

ntelligence technology, image segmentation has been developed 

apidly, but it is still challenging to automatically segment the 

OVID-19 pneumonia lesions from CT scans, especially for multi- 

lass pixel-level segmentation. First, the typical signs of infected 

esions observed from CT slices have various complex and change- 

ble appearances, irregular shapes and fuzzy borders. For exam- 

le, as shown in Fig. 1 , the boundaries of ground-glass opacity 

GGO) have low contrast and blurred appearance, and the blurring 

f boundaries also increases the difficulty of labeling. Second, the 
2

uccessful performance of popular deep convolutional neural net- 

orks (CNN), the core technology of the rising AI, is largely de- 

ended on the availability of large-scale, well-annotated data sets 

n the real world. However, it is quite difficult to collect sufficient 

raining data from patients systematically due to the urgent nature 

f the pandemic, and high-quality annotations of multi-category 

nfections are specially limited. Third, for screening, most of the 

neumonia symptoms of collected patients are usually at the early 

tage, and the proportion of infected lesions in available image 

amples is small and uneven, which leads to the problem of long- 

ailed data distribution. In Table 1 , we can see that the number of 

nnotated lesion pixels are far fewer than the background pixels, 

articularly the proportion of pulmonary consolidations in the data 

s quite small. In this paper, we deal with the above issues and 

ropose a novel semi-supervised framework for COVID-19 lung in- 

ection segmentation from limited and incompletely annotated CT 

atasets. 

The main contributions in our work are threefold: 

(1) We present an encoder-decoder based deep neural network 

amed spatial self-attention network (SSA-Net) for lesion segmen- 

ation. To take full advantage of the context information between 

he encoder layers, a self-attention distilling method is utilized, 

hich can expand the receptive field and strengthen the self- 

earning without extra training time. For the sake of obtaining the 

ow contrast and fuzzy boundary area effectively, spatial convolu- 

ion is introduced for slicing the feature map and then convoluting 

licer by slicer, so that the features can be effectively transferred 

n the direction of row and column. 

(2) According to the long-tailed distribution of COVID-19 

atasets and limited labeled data, we provide a semi-supervised 

ew-shot iterative segmentation framework for multi-class infec- 

ion segmentation, which leverages a large amount of unlabeled 

https://medicalsegmentation.com/covid19/
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ata to generate their corresponding pseudo labels, thereby aug- 

enting the training dataset effectively. A re-weighting module 

s introduced to rebalance the category distribution based on the 

umber of pixels for each category, and a trust module is added to 

elect high confidence values and improve the credibility of pseudo 

abels. 

(3) We conducted extensive experiments on two publicly avail- 

ble datasets. Ablation studies have demonstrated that both the 

patial convolution and self-attention distilling are beneficial to 

mprove the performance of infection segmentation. And compar- 

tive studies have revealed that SSA-Net with our semi-supervised 

ew-shot learning strategy outperformed the state-of-the-art seg- 

entation models and showed competitive performance compared 

ith the state-of-the-art systems in COVID-19 challenge. 

. Related work 

In this section, we mainly talk over three aspects of works 

losely related to our work, including context-enhanced deep 

earning for segmentation, few-shot learning and class balancing 

nd COVID-19 pneumonia infection segmentation. 

.1. Context-enhanced deep learning for segmentation 

In order to segment lesions in medical images, deep learning 

echnology is widely used. U-Net is commonly used for lung re- 

ion and lung lesion segmentation ( Shi et al., 2020 ). U-Net is a full

onvolution network proposed by Ronneberger et al. (2015) , which 

as a U-shaped architecture and symmetric encoding and decod- 

ng paths. Skip connections connect the layers of the same level 

n the two paths. Therefore, the network can learn more seman- 

ic information with limited data, and it is widely used in medical 

mage segmentation. Thereafter, many variants of networks based 

n U-Net have been proposed, such as no-new-U-Net (nnU-Net) 

 Isensee et al., 2019 ), which is based on 2D and 3D vanilla U-

ets and can adapt the preprocessing strategy and network ar- 

hitecture automatically without manual tuning. Milletari et al., 

016 propose V-Net, which uses residual blocks as the basic con- 

olution blocks for 3D medical images. He et al. (2016) put forward 

 new encoder-decoder network structure, ResNet, by introducing 

he residual blocks. Compared with the U-Net and other variants, 

esNet can avoid the gradient vanishing and accelerate the net- 

ork convergence, so we prefer to use ResNet as backbone. How- 

ver, lesions in medical images are sometimes subtle and sparse, 

nd the number of annotated lesion pixels is much fewer than 

he background pixels, which brings new challenges. Therefore, we 

eed more contextual and spatial information to train deep models 

or the task. 

Several schemes have been proposed to reinforce the repre- 

entation ability of deep networks, e.g. some researches improve 

erformance by deepening the network. The UNet++ ( Zhou et al., 

018 ) inserts a nested convolutional structure between the encod- 

ng and decoding paths. In order to detect the ambiguous bound- 

ries in medical images, Lee et al. (2020) present a structure 

oundary preserving segmentation framework, which uses a key 

oint selection algorithm to predict the structure boundary of tar- 

et. Indeed, the deeper the network is, the more information we 

an get. However, deepening the network is inefficient, and as the 

etwork deepens, it is easy to cause gradient explosion and gra- 

ient disappearance, and the optimization effect degrades. Mean- 

hile, these methods can greatly improve the performance of seg- 

enting large and clustered objects, but they are easy to fail when 

ncountering small and scattered lesions. 

Another way is to exploit attention mechanism to optimize 

he deep learning. For example, Wang et al. (2020b) com- 

ine two 3D-ResNets with a prior-attention residual learning 
3 
lock to screen COVID-19 and classify the type of pneumonia. 

en et al. (2020) present a strategy with hard and soft attention 

odules. The hard-attention module generates coarse segmenta- 

ion map, while the soft-attention module with position attention 

an capture context information precisely. Zhong et al. (2020) pro- 

ose a squeeze-and-attention network which imposes pixel-group 

ttention to conventional convolution to consider the spatial- 

hannel interdependencies. However, the above methods need ad- 

itional computation cost. Gao et al., 2020 propose a dual-branch 

ombination network for COVID-19 classification and total lesion 

egion segmentation simultaneously. A lesion attention module is 

sed to combine classification features with corresponding seg- 

entation features. Hou et al. (2019) propose a self-attention 

istillation (SAD) approach, which makes use of the networks own 

ttention maps and perform top-down and layer-wise attention 

istillation within the network itself. Through the feature maps be- 

ween the encoder layers, the model can learn from itself without 

xtra labels and consumptions. The intuition of SAD is that useful 

ontextual information can be distilled from the attention maps 

f successive layers through those of previous layers. The time- 

oint of training to add SAD to an existing network may affect the 

onvergence time, and it is recommended to use SAD in a model 

retrained to some extent. In this paper, we introduce the self- 

ttention learning mechanism into a strengthened U-shaped seg- 

entation network without pre-training. Then stronger labels will 

e generated from the feature maps of lower layers to guide the 

eeper layers for further representation learning. And our method 

s helpful to strengthen some obscure and scattered objects. 

Many studies have confirmed that more information can be 

btained at the encoder and the bottleneck of network. CE-Net 

 Gu et al., 2019 ) presents two modules at the bottleneck. One 

odule uses multi-scale dilated convolution to extract rich fea- 

ures, while the other uses multi-scale pooling operation to fur- 

her obtain context information. Besides, Shan et al. (2020) propose 

B-Net, which is based on V-Net, to achieve more effective seg- 

entation by adding bottleneck blocks by convolutions, but such 

odels are computationally expensive. To utilize spatial informa- 

ion in neural networks, Pan et al. (2017) propose Spatial CNN 

SCNN), in which slice-by-slice convolutions within feature maps 

re employed instead of traditional deep layer-by-layer convolu- 

ions, so that messages are transferred between pixels across rows 

nd columns in the layer. In this paper, we attempt to introduce 

 spatial convolution block into the bottleneck of the encoder- 

ecoder network by using a sequential message passing scheme 

imilar to SCNN. This kind of message passing mechanism helps to 

ropagate the information between neurons, avoid the influence 

f sparse and subtle supervision, and make better use of the con- 

extual relationships of pixels. Therefore, the U-shaped neural net- 

ork is strengthened and the training convergence of network can 

lso be accelerated. 

.2. Few-shot learning and class balancing 

Because manual labeling is time-consuming, laborious and ex- 

ensive, many researchers have conducted studies in few-shot 

earning. Some researchers choose transfer learning ( Raghu et al., 

019; Minaee et al., 2020 ), which refers to applying the learned 

nowledge to other problems in different but related fields to solve 

ew tasks. In addition, many studies augment the data through 

enerative Adversarial Networks (GAN) ( Goodfellow et al., 2014 ) 

r its extensions ( Mahapatra et al., 2018; Zhou et al., 2020 ), which

reate new images and corresponding masks, and then add the 

ynthesized data to the training set to expand the training im- 

ge. Mahapatra et al., 2018 propose a model to generate many 

ynthetic disease images from real disease images by Conditional 

AN. These algorithms are computationally intensive and may re- 
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uire additional annotation data. Apart from that, most advanced 

ethods use class activation map (CAM) ( Zhou et al., 2016 ) and 

radient-weighted class activation map (Grad-CAM)( Selvaraju et al., 

017 ) for object localization and image-level weakly supervised se- 

antic segmentation, which get results from feature heatmaps of 

he network. Sometimes, these methods are used as a basic step 

or semantic segmentation of large and clustered objects. For in- 

tance, Wang et al. (2020d) propose a self-supervised equivariant 

ttention mechanism, in which CAM is combined with pixel cor- 

elation module to narrow the gap between full and weak super- 

isions. So that, for the segmentation of COVID-19 lesions, which 

re small and scattered, these methods are not ideal. Furthermore, 

ee (2013) propose a semi-supervised framework to learn from 

imited data, which utilize the segmentation results with pseudo 

abels generated from the model to retrain the model. Then by 

ontinuous iterations, this strategy can use few labeled data and 

seudo data to improve the performance of network, which is also 

onfirmed in Fan et al., 2020 . In this work, we build a similar it-

rative framework and add a trust module after each iteration to 

ake the pseudo labels more reliable. 

The issue of long-tailed training datasets has attracted a lot of 

ttention in machine learning. Zhou et al. (2020b) propose a deep 

earning algorithm to solve the large-scene-small-object problem. 

n addition, Cui et al., 2019 present that as the sample number 

f a class increases, the penalty term of this class decreases sig- 

ificantly. Therefore, through theoretical derivation, they design a 

e-weighting scheme to re-balance the loss, so as to better achieve 

ong-tailed classification. Kervadec et al. (2019) propose a bound- 

ry loss for highly unbalanced segmentation, which uses integrals 

ver the interface between regions rather than using unbalanced 

ntegrals over regions. Wu et al. (2020) also present a new loss 

unction called distribution-balanced loss for the multi-label recog- 

ition of long-tailed class distributions. This loss re-balances the 

eights considering the impact of label co-occurrence, and miti- 

ates the over-suppression of negative labels. Different from these 

ethods, we introduce a re-weighting module before the training 

f each iteration to balance the class distribution. 

.3. COVID-19 Pneumonia infection segmentation 

Due to the lack of high-quality pixel-level annotation, a large 

umber of AI-based studies are aimed at solving the issue of 

OVID-19 diagnosis ( Kang et al., 2020 ) and lesion segmenta- 

ion from the perspective of using limited training datasets. For 

xample, Oh et al. (2020) provide a method of patch-based 

onvolutional neural network, which has less trainable parame- 

ers for COVID-19 diagnosis. He et al. (2020) not only build a 

ublicly-available dataset, but also propose a self-trans method 

o combine contrastive self-supervised learning with transfer 

earning to learn strong and unbiased feature representations. 

ang et al. (2020c) propose a weakly-supervised deep learning 

ramework for COVID-19 classification and lesion localization by 

sing 3D CT volumes. The 3D deep neural network is used to pre- 

ict the probability of infections, while the location of COVID-19 

esions is the overlap of the activation region in classification net- 

ork and the unsupervised connected components. These works 

re much concerned about the detection of infectious locations and 

annot obtain the shape and classification. 

Certainly, many deep learning networks have been established 

o segment COVID-19 lesions. However, most of them are based on 

dequate data and supervised learning. Yan et al. (2020) introduce 

 deep CNN, which provides a feature variation block to adjust the 

lobal properties of features for the segmentation of COVID-19 le- 

ions. Shan et al. (2020) use the human in the loop strategy for 

fficient annotation, which can help radiologists improve the auto- 

atic labeling of each case. In terms of public datasets, pixel-level 
4 
nnotations are often noisy. Wang et al. (2020a) present an adap- 

ive mechanism to better deal with noisy labels. In their work, they 

ropose a COVID-19 pneumonia lesion segmentation network and 

 noise-robust dice loss to better segment lesions of various scales 

nd appearances as well. Although the adaptive mechanism can 

ffectively obtain more high-quality annotations, it is very com- 

licated to implement. Fan et al., 2020 propose Inf-Net to auto- 

atically segment infected area from CT images. A parallel par- 

ial decoder is used to aggregate high-level features and generate 

lobal features. Then, a reverse attention module and an edge at- 

ention module are used to enhance the representation of bound- 

ry. Meanwhile, a semi-supervised training strategy is also intro- 

uced. 

Nevertheless, most research work ignores the imbalance of in- 

ection categories in datasets. In fact, whether it is GGO or consol- 

dation, for doctors, better identification of the distribution of le- 

ions in different stages is more conducive to understand patients 

ondition and make treatment. Therefore, it is necessary to seg- 

ent not only the total infected regions but also multi-class pneu- 

onia infections with limited data. 

. Method 

In this section, we first present the details of our proposed 

patial self-attention network in terms of network architecture, 

elf-attention learning, spatial convolution and loss function. We 

hen present the semi-supervised few-shot learning framework for 

OVID-19 lesions segmentation based on the re-weighting module 

nd the trust module. 

.1. Spatial self-attention network (SSA-Net) 

For the sake of obtaining more contextual and spatial informa- 

ion in the learning network and extracting the complex and ob- 

cure COVID-19 lesion areas effectively, we propose an encoder- 

ecoder based deep neural network named Spatial Self-Attention 

etwork (SSA-Net) for lesion segmentation. As shown in Fig. 2 , the 

roposed SSA-Net consists of three major parts: a feature encoder 

ith self-attention learning, a feature re-extractor with spatial con- 

olution, and a feature decoder. Each CT slice is concatenated with 

ts lung mask as the input of our proposed network to remove 

he background except the lungs. In this proposed method, we use 

esNet34 ( He et al., 2016 ) as the backbone approach in feature en- 

oder module. Herein, a self-attention learning module is added 

fter four residual blocks to enhance the representation learning 

y distilling layer-wise attention and useful contextual informa- 

ion from deeper layers. The feature map obtained from the fourth 

esidual block is fed to perform spatial convolution in the feature 

e-extractor to transmit spatial information. Skip connections are 

sed to concatenate the encoder and the decoder. Meanwhile, for 

he sake of improving the decoding performance, we use upscaling 

nd deconvolution ( Apostolopoulos et al., 2017 ) operations. Finally, 

fter the sigmoid activation function, the result generated from the 

eature decoder has the same size as input. 

.1.1. Feature encoder 

In this work, the feature encoder consists of four residual blocks 

or down-sampling operations, which is the same as the encoder 

f ResNet34. To strengthen the representation, we introduce a self- 

ttention learning module after each residual block, and then the 

ttention maps of previous layers can distil useful contextual in- 

ormation from those of successive layers, and the better represen- 

ation learned at lower layers will in turn benefit the deeper lay- 

rs. Through this kind of self-learning, the representation can be 

trengthened without extra training time and additional labels. 
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Fig. 2. The architecture of Spatial Self-Attention network (SSA-Net), which consists of three major parts: feature encoder, feature re-extractor and feature decoder. Each CT 

slice is concatenated with its lung mask as the input of network. In the feature encoder, a self-attention learning module is added after four residual blocks to enhance the 

representation learning by distilling layer-wise attention and useful contextual information from deeper layers.The feature map obtained from the fourth residual block is fed 

to perform spatial convolution in the feature re-extractor using a sequential scheme to transmit spatial information. Skip connections are used to concatenate the encoder 

layers with four decoder layers with upscaling and deconvolution operations. Finally, after a sigmoid activation function, the result is generated from the feature decoder. 
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Self-Attention Learning: Several works ( Hou et al., 2019; Ren 

t al., 2020; Zhong et al., 2020 ) have shown that attention mech- 

nism can provide useful contextual information for segmentation. 

hus, we introduce a self-attention learning mechanism to exploit 

ttention maps derived from its own layers of network, without 

he need of additional labels and external supervisions. The atten- 

ion maps used in this paper are activation-based attention maps. 

pecifically, A m 

∈ R 

C m ×H m ×W m is used to denote the output of m -th 

esidual blocks ( m = 1 , 2 , 3 , 4 ), where C m 

, H m 

, W m 

denote the chan-

el, height and width of output, respectively. The attention map 

s to map the three-dimensional feature of channel, height and 

idth into a two-dimensional feature of height and width, namely 

 

C m ×H m ×W m R 

H m ×W m . The distribution of spatial features is deter- 

ined by considering the activated eigenvalues of each channel. 

he importance of each element on the final output depends on 

ts absolute value in the map. Therefore, the attention map can be 

enerated by a mapping function designed to calculate statistics of 

ll the absolute values of elements across the channel dimension 

s follows: 

enerator z sum 

(A m 

) = 

C m ∑ 

i =1 

| A mi | z . (1) 

here A mi denotes the i -th slice of A m 

in the channel dimension, 

nd z can be a natural number greater than 1. The larger the z, the
5 
ore attention will be paid to these highly activated regions. In 

ur experiment, z is set to 2, because it has been verified that this 

an maximize the performance improvement ( Hou et al., 2019 ). 

And then we perform spatial softmax operation ( S) on 

enerator 2 sum 

(A m 

) . The size of attention map is different between 

wo adjacent layers, so bilinear upsampling operation ( B) is used 

o make the original feature and the target feature the same size. 

ormally, the whole process is represented by a function: 

(A m 

) = S(B(Generator z sum 

(A m 

))) . (2) 

inally, we use mean square difference loss ( L mse ) function to cal- 

ulate the attention loss ( AT _ Loss , which is shown in Fig. 2 ) be-

ween the four adjacent features after each residual blocks. The 

ormulation is: 

T _ Loss (A m 

, A m +1 ) = L mse (�(A m 

) , �(A m +1 )) . (3)

o the total loss of self-attention learning is formulated as follow: 

oss SA = 

1 

N 

N ∑ 

n =0 

M−1 ∑ 

m =1 

AT _ Loss (A n,m 

, A n,m +1 ) , (4) 

here N is the number of samples, M is the number of residual 

locks, and M is equal to 4 in this paper. 
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Fig. 3. Detailed example of downward in spatial convolution. 
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.1.2. Feature re-extractor 

The feature extractor is a newly spatial convolution module at 

he bottleneck of our encoder-decoder network. By using a sequen- 

ial message passing scheme, this module is aimed to extract more 

patial information between rows and columns in the feature map 

nd strengthen the training. 

Spatial Convolution: Several works ( Gu et al., 2019; Pan et al., 

017 ) have made innovations at the bottleneck of encoder-decoder 

tructures and achieved effective results. In order to improve the 

bility to explore spatial information of the network and better 

nterpret the common low contrast and fuzzy boundary areas in 

OVID-19 CT images, we add a spatial convolution module to ob- 

ain the feature maps through channel wise convolutions with 

arge kernels. 

Specifically, the feature map obtained from the feature encoder 

s a 3D tensor T with the size of C × H × W , where C, H and W is

he number of channel, height and width respectively. As shown in 

ig. 3 , taking the H dimension as an example, that is, passing the 

essage from top to bottom, the feature map would be cut into H

lices. k denotes the kernel width. It represents that a pixel in the 

ext slice can receive messages from k × C pixels in the current 

lice. The first slice is convoluted by a 1 × k × C convolution layer, 

nd the output is added to the second slice, then the new output is 

hen fed to the next 1 × k × C convolution. This process is iterated 

or H times to get the final output. The above operations are car- 

ied out in four directions, including downward, upward, leftward 

nd rightward, to complete the spatial information transmission. 

Further, T i, j,k denotes the element of a 3D tensor T , and i , j,

 represent the indexes of channel, height and width respectively. 

hus, the spatial convolution function is 

 

′ 
i, j,k = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

T i, j,k , j = 1 

T i, j,k + L ( 
∑ 

m 

∑ 

n 

T ′ 
m, j−1 ,k + n −1 

× K m,i,n ) j = 2 , 3 . . . , H 

, (5) 

here T ′ denotes the update of the element, L is the nonlinear 

ctivation function of ReLU. K m,i,n denotes the weight between an 

lement in channel m of the last slice and an element in channel i

f the current slice, with an offset of n columns between the two 

lements. 

.1.3. Feature decoder 

The feature decoder is designed for constructing the segmen- 

ation results from feature encoder and feature extractor. Through 

kip connections, the feature decoder can get more details from 

ncoder to make up for the loss of information after pooling and 

onvolutional operations. Each decoder layer includes a 1 × 1 con- 

olution, a 3 × 3 transposed convolution and a 1 × 1 convolution. 

ased on skip connections and the concatenations of decoder lay- 

rs, the output has the same size as input. In the end, we adopt
6 
he Sigmoid function as the activation function to generate the seg- 

entation result. 

.1.4. Loss function 

The total loss comprises of two terms. One term is a segmen- 

ation loss, and the other is a self-attention loss. The COVID-19 

nfected areas at an early stage, shown as GGO, are often scat- 

ered and occupy only a small region of image. When the propor- 

ion of foreground is too small, the Dice loss function proposed in 

illetari et al., 2016 has been proved to be effective, so we prefer 

o consider Dice loss function as a segmentation loss in our task. 

ll the networks for comparison are trained with the same loss 

unction (Dice loss), so all the experiments were carried out under 

he same experimental settings. The Dice loss function is defined 

s follows: 

oss seg = 1 − 2 | G ∩ S | 
| G | + | S | , (6) 

here G denotes the ground truth and S represents the segmenta- 

ion. The self-attention loss is mentioned in Eq. (4) . Thus, as shown 

n Eq. (7) , the sum of segmentation loss and self-attention loss is 

egarded as the total loss of the network. 

oss sum 

= Loss seg + αLoss SA , (7) 

here α is the weight of self-attention learning loss to balance 

he influence of attention loss on the task, and set to 0.1 in our 

xperiment. 

.2. Semi-supervised few-shot learning 

Due to the class unbalanced and limited labeled data of COVID- 

9 datasets, we propose a semi-supervised few-shot learning 

ramework, which consists of two major parts: the lung region 

egmentation, and multi-class infection segmentation, as shown in 

ig. 4 . 

.2.1. Lung region segmentation 

The lung region segmentation is an initial step of our COVID-19 

esion segmentation. First, we use a trained U-Net model provided 

y Hofmanninger et al. (2020) for the segmentation of lung region. 

hen, all unlabeled CT slices are segmented by the pre-trained U- 

et to obtain all the boundaries of lung. 

.2.2. Multi-class infection segmentation 

Because the manual labeling of professional doctors is not only 

ime-consuming but also expensive, there are limited labeled pub- 

ic datasets, and fewer labels for multi-class infection areas. In 

his work, we present a semi-supervised few-shot learning strat- 

gy, which leverages a large number of unlabeled CT images to ef- 

ectively augment the training dataset. Moreover, we introduce a 

e-weighting module and a trust module to balance the distribu- 

ion of different lesion classes and to obtain more reliable pseudo 

abels. 

An overview of our semi-supervised few-shot learning frame- 

ork is shown in Fig. 4 . Our framework is based on a random

ampling strategy and uses unlabeled data to gradually expand the 

raining dataset and generate pseudo labels. Each CT slice is con- 

atenated with its lung mask generated by lung region segmenta- 

ion as the input of our proposed SSA model. When training, we 

xploit a re-weighting module, which is a class re-balancing strat- 

gy based on the number of pixels for each class. And more reli- 

ble pseudo labels can be obtained from trust module by selecting 

igh confidence values. 

Specifically, the labeled dataset D l abel ed is divided into an orig- 

nal training set D training , a validation set D v alidation and a test set 

 test . We firstly pretrain a SSA model M 1 with reweighting module 

sing original labeled dataset D training . Meanwhile, we use the vali- 
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Fig. 4. The architecture of the semi-supervised few-shot learning framework, which consists of two major parts: the lung region segmentation and iteration infection 

segmentation. A trained U-Net model is used to segment the lung region in each CT image as an initialization of multi-class infection segmentation. Then, each lung mask is 

concatenated with its CT image as the input of our multi-class infection segmentation. In this part, we firstly train the model with SSA-Net, and we introduce a re-weighting 

module to rebalance the class distribution. The unlabeled data are test by the pre-trained SSA model with a trust module to obtain more reliable pseudo labels. Secondly, 

we take the original data and generated pseudo data as new trainning dataset. Thirdly, we train a new SSA model using this dataset in the same way. Follow this method 

until all unlabeled images are predicted and the latest model is no longer improved. 
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ation set with true labels to measure the performance of the new 

rained SSA model, and images in the unlabeled dataset D unl abel ed 

re tested by the pre-trained M 1 with trust module to gener- 

te pseudo labels. Next, we randomly select t generated pseudo 

amples, and add them into the original training set to make a 

trengthened training dataset. Then, we use this dataset to train 

 new SSA model in the same way and repeat this process. There- 

ore, the strengthened training set consists of the original train- 

ng set D training and the pseudo-label training set D pseudo . Once a 

ew SSA model M j is generated, all the pseudo labels of images 

n D pseudo will be renewed. If the number of unlabeled images in 

 unl abel ed is reduced to be less than t , we add all the remaining 

mages in D unl abel ed with their pseudo labels into the strengthened 

raining set. If all the images of D unl abel ed has been used, we will 

nly update the pseudo labels of D pseudo during the iteration. The 

teration will stop when the DSC of validation set D v alidation is no 

onger improved. 

Re-weighting module: In this module, we introduce the cross 

ntropy loss, which is more suitable for the condition of class im- 

alance in multi-class training tasks. However, because not only 

he number of consolidation samples in datasets is small, but the 

onsolidation proportion of pixels in each image is also very small. 

n view of this kind of class imbalance, we calculate the pixel ra- 

ios of the two categories (GGO and consolidation) in all training 

ata, and exploit the result to set their weights of the cross en- 

ropy loss. Therefore, the final loss function is defined as follow: 

 = 

1 

n 

n ∑ 

i =0 

C ∑ 

c=1 

1 

C × P c 
y ic log ( p ic ) , (8) 
7 
here C denotes the number of total categories, and P c represents 

he pixel proportion of class c in the training set, which consists of 

he original labeled training set D training and the current pseudo- 

abel training set D pseudo . The initial labeled training set is a multi- 

lass data set. To guide the model to identify different types of 

esions, we need to ensure that the original labeled training set 

ontains samples of all categories. If the category is the same as 

he class of sample i , y ic is 1, otherwise it is 0. p ic is the prediction

robability of class c of sample i . In this way, it can ensure that 

he weight of a class with small proportion is more than 1, and 

he weight of a class with large proportion is less than 1, so as to

chieve a balance of categories. 

Trust module: Usually, we only pick up a class label which 

as the maximum predicted probability for each unlabeled sam- 

le. However, not all the predicted values are true values, and false 

alues will guide the model to errors during the iterative process. 

he work in Lee (2013) has proved that the pseudo labels with 

igh confidence are more effective. Hence, we add a trust model 

o re-evaluate the pseudo infection class labels obtained from cur- 

ent SSA model, by setting a threshold η to select high confidence 

alues, and the predicted pseudo label with credibility is defined 

s: 

p 
′ = 

{
c, i f p c > η
0 , otherwise 

, (9) 

here p 
′ 

denotes the final pseudo label after re-evaluation, c

epresents the predicted infection category from the current SSA 

odel, and p c denotes the maximum predicted probability of an 

nlabeled pixel. The pseudo label is set to 0 and the pixel is 
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Table 2 

A summary of the Datasets in our experiments. Sum 

∗ denotes the total 

number of COVID-19 slices. Class ∗ denotes the number of lesion cate- 

gory. 

Dataset From Sum 

∗ Class ∗

Dataset 1 COVID-19-CT-Seg 1848 1 

Dataset 2 COVID-19 CT Segmentation dataset 98 1 

Dataset 3 COVID-19 CT Segmentation dataset 468 2 
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reated as uninfected lung region when the probability of pre- 

icted category is less than the threshold. The setting of η is quite 

mportant. η is the threshold for re-evaluating the pseudo infec- 

ion class labels and selecting high confidence values. The higher 

is, the more confident of the pseudo label will be. Based on 

he experience, we try several values and η is set to 0.95 in our 

xperiments. 

. Experiments and results 

.1. COVID-19 pneumonia infection datasets 

At present, many public datasets on COVID-19 are available for 

ree. However, as mentioned above, due to the difficulty of manual 

abeling, most of the data only have image-wise labels for COVID- 

9 detection, and only a few datasets are labeled precisely for 

egmentation. Clinical CT scans collected from currently published 

OVID-19 CT datasets are used for our experiments. 

One of the datasets is the COVID-19-CT-Seg dataset, which has 

een publicly available at here 3 with CC BY-NC-SA license, and 

ontains 20 public COVID-19 CT scans from the Coronacases Ini- 

iative and Radiopaedia. The corresponding annotations ( Jun et al., 

020 ) including left lung, right lung, and infection can be freely 

ownloaded at here 4 . In Ma et al. (2020) , we know that the last

0 cases in this dataset from Radiopaedia have been adjusted to 

ung window [-1250,250], and then normalized to [0,255]. While 

he other, the COVID-19 CT Segmentation dataset and its annota- 

ions are available at here 5 , which includes 100 axial CT images 

rom more than 40 patients with COVID-19 collected by the Italian 

ociety of Medical and Interventional Radiology and 9 axial volu- 

etric CT scans from Radiopaedia 6 . In this dataset, the lung masks 

re contributed by Hofmanninger et al. (2020) , and the images and 

olumes were segmented using three labels: ground-glass, consol- 

dation and pleural effusion. 

We use three datasets ( Dataset 1 , Dataset 2 , Dataset 3 ) for our 

xperiments as shown in Table 2 . Firstly, the COVID-19-CT-Seg 

ataset consists of 1848 slices with lesion, which have been seg- 

ented by experienced radiologists. This dataset is used to demon- 

trate the effectiveness and stability of our proposed segmenta- 

ion network. We consider these 1848 slices as Dataset 1 . Same as 

he experiment in Ma et al. (2020) , we split the twenty cases in

ataset 1 into five groups randomly for 5-folder cross validation. 

econdly, Dataset 2 consists of 98 slices from the COVID-19 CT Seg- 

entation dataset and we divide them into the same training set 

nd validation set in the experiment of Fan et al., 2020 . Finally, 

rom the COVID-19 CT Segmentation dataset, we can obtain 468 

lices with multi-class infection labels in total as Dataset 3 which 

s used to confirm that our multi-class semi-supervised few-shot 
odel is feasible and effective. 

3 https://github.com/ieee8023/covid-chestxray-dataset . 
4 https://zenodo.org/record/3757476 . 
5 https://medicalsegmentation.com/covid19/ . 
6 https://radiopaedia.org/articles/covid- 19- 4?lang=us . 

N

w

M
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.2. Experimental settings 

Data preprocessing: In Dataset 1 , in the light of the sugges- 

ions from instructions of the COVID-19-CT-Seg dataset 7 , we pre- 

rocessed the image data, including adjusting the gray values to 

ung window [-1250,250], and then normalizing it to [0,255] for 

he previous ten groups of volumes. Besides, we cropped the last 

en groups of images from 630 × 630 to 512 × 512, making them 

he same size as the previous ten groups. And we also performed 

he same operations in Dataset 3 as well. The operating procedure 

f cropping is to calculate the center of gravity by using the lung 

abel available in the corresponding dataset, and then calculate the 

utting position by using the center of gravity. 

Evaluation metrics: We used four metrics for quantitative eval- 

ation between segmentation results S and the ground truth G , i.e., 

he Dice similarity coefficient (DSC), the 95-th percentile of Hausd- 

ff Distance (HD), the Mean Absolute Error (MAE) and Normalized 

urface Dice (NSD). The first three measures are widely used in the 

valuation of medical image processing, and the last one can better 

valuate the situation of edge segmentation. For the measurements 

ased on DSC and NSD ( Nikolov et al., 2018 ), the higher the scores

re, the better the segmentation performs. While on the contrary, 

or metrics of HD and the MAE, lower scores are supposed to be 

he better segmentation. 

1) Dice Similarity Coefficient (DSC): This was first proposed in 

illetari et al., 2016 , and then widely used in medical image seg- 

entation. The DSC is a similarity measure function, which is usu- 

lly used to calculate the similarity of two samples. The formula- 

ion is as follows: 

SC = 

2 | G ∩ S | 
| G | + | S | . (10) 

2) Hausdoff Distance (HD): This is also a commonly used mea- 

ure to describe the similarity between segmentation result and 

he ground truth. DSC is sensitive to the inner filling of mask, 

hile HD is sensitive to the boundary. HD is defined as follows: 

D = max { max 
x ∈ G 

min 

y ∈ S 
d(x, y ) , max 

y ∈ S 
min 

x ∈ G 
d(x, y ) } . (11) 

he 95-th percentile of Hausdoff Distance ( HD 95 ) is the final value 

ultiplied by 95% in order to eliminate the effect of a very small 

ubset of outliers. 

3) Mean Absolute Error (MAE): This is the average of absolute 

rrors, which can better reflect the prediction error and it is de- 

ned as: 

AE = 

1 

W × H 

W ∑ 

x =1 

H ∑ 

y =1 

| S(x, y ) − G (x, y ) | . (12) 

4)Normalized Surface Dice (NSD): Unlike the DSC, this measure 

ssesses the overlap of the segmentation and ground truth sur- 

aces with a specified tolerance ( τ ) instead of the overlap of these 

wo volumes. The surface here is represented by the boundary of 

ask. Then the segmentation surface and ground truth surface are 

xpressed by G’ and S’ respectively, where G’ = ∂G and S’ = ∂S. 

nd the border region of these two surfaces at tolerance τ are 

enoted by B (τ ) 
G ′ ⊂ R 3 and B (τ ) 

S ′ ⊂ R 3 , where B (τ ) 
G ′ = { x ∈ R 3 | ∃ σ ∈

 

′ , || x − ξ (σ ) || ≤ τ } , B (τ ) 
S ′ = { x ∈ R 3 | ∃ σ ∈ S ′ , || x − ξ (σ ) || ≤ τ } . The

ormula is: 

SD = 

| G 

′ ∩ B 

(τ ) 
S ′ | − | S ′ ∩ B 

(τ ) 
G ′ | 

| G 

′ | + | S ′ | , (13) 

here τ is set to 3 mm in our experiment, which is the same as 

a et al. mentioned in the Ma et al. (2020) . 
7 https://gitee.com/junma11/COVID- 19- CT- Seg- Benchmark . 

https://github.com/ieee8023/covid-chestxray-dataset
https://zenodo.org/record/3757476
https://medicalsegmentation.com/covid19/
https://radiopaedia.org/articles/covid-19-4?lang=us
https://gitee.com/junma11/COVID-19-CT-Seg-Benchmark
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Table 3 

Ablation studies of our SSA-Net. SA denotes self-attention learning. SC de- 

notes spatial covolution. The best results are highlighted in bold. 

Method 

Dataset1 

DSC HD 95 MAE NSD 

( M 1 )backbone 0.6003 5.6866 0.0102 0.5126 

( M 2 )backbone+SA 0.5498 6.5469 0.0263 0.4736 

( E 1 )backbone+10episodes+SA 0.5529 6.3746 0.0219 0.4843 

( E 2 )backbone+20episodes+SA 0.5878 6.0544 0.0182 0.5076 

( E 3 )backbone+30episodes+SA 0.6069 5.8735 0.0147 0.5141 

( E 4 )backbone+40episodes+SA 0.6144 5.7689 0.0121 0.5253 

( E 5 )backbone+50episodes+SA 0.6100 5.7523 0.0139 0.5197 

( E 6 )backbone+60episodes+SA 0.6032 5.8466 0.0156 0.5130 

( M 3 )backbone+SC 0.6294 5.6036 0.0100 0.5375 

( M 4 )backbone+SC+SA 0.6522 5.5260 0.0096 0.5643 
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Fig. 5. Ablation studies of different modules for segmentation of COVID-19 pneu- 

monia lesions. The model results show more details similar to ground truth after 

introducing spatial convolution, while after introducing self-attention learning, the 

contextual information generated is able to guide the network for better extracting 

more complex and scattered regions. The segmentation results highlighted with or- 

ange boxes show best performance in the model trained with both self-attention 

learning and spatial convolution. 
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.3. Ablation study 

In this subsection, we evaluate different variants of the mod- 

les presented in Section 3 in order to prove the effectiveness of 

ey components of our model, including the self-attention learning 

odule and spatial convolution module in SSA-Net, and the re- 

eighting module and trust module in semi-supervised few-shot 

odel. 

.3.1. Ablation experiments of SSA-Net 

In order to investigate the importance of each component 

n SSA-Net, we combine spatial convolution (SC) and self- 

ttention learning (SA) with backbone to get new models and 

se Dataset 1 to train these models, which are devised as fol- 

ows: backbone ( M 1 ), backbone+SA ( M 2 ), backbone+10episodes+SA 

 E 1 ), backbone+20episodes+SA ( E 2 ), backbone+30episodes+SA ( E 3 ), 

ackbone+40episodes+SA ( E 4 ), backbone+50episodes+SA ( E 5 ), back- 

one+60episodes+SA ( E 6 ), backbone+SC ( M 3 ), backbone+SC+SA 

 M 4 ). 

Effectiveness of self-attention learning: We compare M 3 and 

 4 in Table 3 to evaluate the contribution of self-attention learn- 

ng mechanism. The results clearly show that spatial convolution 

ogether with self-attention learning mechanism are useful to drive 

p performance. However, from model M 1 to model M 2 , by adding 

elf-attention learning directly, we can also notice a drop in accu- 

acy. As mentioned in Hou et al. (2019) , the self-attention learn- 

ng is assumed to be added to a half-trained model and the time 

o add the SA module has an effect on the convergence speed 

f the networks. Here, we also train the backbone by adding the 

ingle SA module at different timepoints (from 10 episodes to 50 

pisodes) and get new models ( E 1 - E 6 ) of M 2 . Table 3 displays

he segmentation results in dataset 1 and all the networks are 

rained up to 150 episodes. The backbone with single SA module 

an achieve the best segmentation results when introducing the 

ingle SA started from the 40 episodes. It proves from one aspect 

hat valuable self-attention contextual information can only be ex- 

racted from a model trained to a reasonable level. This accuracy 

ecline reflects the effectiveness of the spatial convolution module 

s well, which strengthens the network and accelerates the train- 

ng convergence. Fig. 5 displays two segmentation examples from 

ataset 1 . From the visual comparisons of M 2 and M 4 , we can obvi-

usly observe that the segmentation results, which is highlighted 

ith orange boxes, show better performance in the model after in- 

roducing self-attention learning. It proves that the context infor- 

ation generated from self-attention learning is able to guide the 

etwork for better extracting more complex regions. 

Effectiveness of spatial convolution: From Tabel 3 , all the met- 

ics show that the models with spatial convolution make a bet- 

er performance than models without this module. This clearly 

emonstrates that the use of spatial convolution can make the 
9 
odel segment the lesions more accurately. Furthermore, as shown 

n Fig. 5 , we observe that the model shows more details similar to 

round truth after introducing spatial convolution, especially the 

ighlighted part in the orange box. Compared with the results of 

 3 and M 4 , it also demonstrate that the spatial convolution mod- 

le can not only help transfer the information between cows and 

olumns in the backbone network, but also make better use of the 

ontext information to detect scattered and obscure lesions after 

ntroducing self-attention learning. 

.3.2. Ablation experiments of semi-supervised few-shot model 

We further extend our SSA-Net to the segmentation of small 

amples multi-class lesions (GGO and consolidation). We use 98 

lices in Dataset 3 to train the semi-supervised models and the rest 

ata is used for validation. The baselines we devised are as follows: 

SA-Net with iteration ( S 1 ), SSA-Net based on re-weighting with 

teration ( S 2 ), SSA-Net based on trust module with iteration ( S 3 )

nd SSA-Net based on re-weighting module and trust module with 

teration ( S 4 ). 

Effectiveness of re-weighting module: As shown in Table 4 , 

ome evaluation metrics of S 2 reduce slightly compared with S 1 . 

he main reason is pseudo labels generated from the iteration 

odel may contain more inaccurate results, so the re-weighting 

odule can be affected and cannot work effectively in the follow- 

ng iterations. Therefore, we derive S 3 and S 4 based on trust mod- 

le. The DSC of GGO and consolidation increase at the same time 

fter introducing the re-weighting module. Although the HD 95 and 

SD of GGO have a faint decline, the average of most evalua- 

ion metrics have improved. The DSC and NSD raise to 0.5608 and 

.5128 respectively, while the HD95 descends to 0.0071. 

Effectiveness of trust module: From these results of S 1 and S 3 
n Table 4 , it is evidential that trust module boosts the segmen- 

ation performance both in GGO and consolidation. Generally, we 

oost the performance by 3.28% and 1.07% in terms of the average 

SC and average NSD, and reduce the average HD 95 to 4.2751, the 

verage MAE to 0.0072. Furthermore, we can observe from S 2 and 

 4 that trust module is the basis of the re-weighting module. The 

e-weighting module can be effective under the condition of the 

rust module which is able to make pseudo labels more reliable. 

.4. Comparison of different deep learning networks 

We compare our SSA-Net with two state-of-the-art deep learn- 

ng networks, U-Net and nnU-Net, for semantic or medical image 

egmentation performance, and with Inf-Net, a COVID-19 infection 

egmentation network. 

From the quantitative comparison shown in Table 5 , we can ob- 

erve that nnU-Net, as an improved version of U-Net, has a better 
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Table 4 

Quantitative results of Different semi-supervised models trained with Dataset 3 . I denotes the model with iteration. R denotes the model based on re-weighting module. T 

denotes the model based on trust module. The best results are highlighted in bold. 

Method 

Ground-glass opacity (GGO) Consolidation Average 

DSC HD 95 MAE NSD DSC HD 95 MAE NSD DSC HD 95 MAE NSD 

( S 1 )SSA-Net+ I 0.4058 7.3735 0.0237 0.3576 0.6251 3.1018 0.0025 0.5991 0.5155 5.2377 0.0131 0.4784 

( S 2 )SSA-Net+ I + R 0.4225 7.4845 0.0192 0.3605 0.6010 3.2384 0.0028 0.5661 0.5118 5.3615 0.0110 0.4633 

( S 3 )SSA-Net+ I + T 0.4622 5.5402 0.0117 0.4061 0.6343 3.0100 0.0026 0.5720 0.5483 4.2751 0.0072 0.4891 

( S 4 )SSA-Net+ I + T + R 0.4654 5.9266 0.0116 0.4016 0.6562 2.9541 0.0026 0.6239 0.5608 4.4404 0.0071 0.5128 

Table 5 

Quantitative evaluation of different networks for segmentation of single-class COVID-19 pneumonia lesions. The best results are highlighted in bold. The data marked with 

	 are inconsistent with that in Fan et al., 2020 . The DSC and MAE of infnet here are better than the those in Fan et al., 2020 (0.682 and 0.082 respectively). The reason is 

that we are different in pre-processing. In Fan et al., 2020 , they resize all the images to 352 × 352. But here, the size of images is adjusted to 512 × 512. 

Method 

Dataset 1 Dataset 2 

DSC HD 95 MAE NSD DSC HD 95 MAE NSD 

U-Net Ronneberger et al. (2015) 0.5850 6.2653 0.0216 0.5151 0.6723 8.2343 0.1142 0.5489 

nnU-Net Isensee et al. (2019) 0.6447 5.7383 0.0106 0.5347 0.7500 7.1841 0.0275 0.5862 

Inf-Net Fan et al., 2020 0.6408 5.5155 0.0092 0.5633 0.7236 	 7.0808 0.0311 	 0.5464 

SSA-Net(Ours) 0.6522 5.5260 0.0096 0.5643 0.7540 7.0464 0.0305 0.5876 

Fig. 6. Visual comparison of single-class infection segmentation results. The regions highlighted with orange boxes show the better performance of SSA-Net. 

10 
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Table 6 

Quantitative evaluation of different models trained with Dataset 3 for segmentation of multi-class COVID-19 pneumonia lesions. The best results are highlighted in 

bold. 

Method 

ground-glass opacity (GGO) Consolidation Average 

DSC HD 95 MAE NSD DSC HD 95 MAE NSD DSC HD 95 MAE NSD 

U-Net 0.3596 7.3888 0.0320 0.3391 0.5277 3.6676 0.0030 0.4838 0.4437 5.5282 0.0175 0.4115 

nnU-Net 0.4049 7.7792 0.0214 0.3395 0.4239 4.5909 0.0051 0.3697 0.4144 6.1851 0.0133 0.3546 

Inf-Net 0.3021 8.9342 0.0448 0.3084 0.3987 4.8367 0.0054 0.2934 0.3504 6.8855 0.0251 0.3009 

SSA-Net 0.4152 6.7788 0.0186 0.3713 0.4953 3.5529 0.0029 0.4529 0.4553 5.1659 0.0108 0.4121 

SSA-Net(I) 0.4654 5.9266 0.0116 0.4016 0.6562 2.9541 0.0026 0.6239 0.5608 4.4404 0.0071 0.5128 

Fig. 7. Visual comparison of multi-class infection segmentation results, where the red and green labels denote the GGO and consolidation, respectively. The first three 

examples are from Dataset 1 , while the rest two are from Dataset 2 . Besides, the bar charts in the last column are the proportional distributions of different categories, where 

the red, green and gray columns represent the GGO, consolidation and uninfected lung area, respectively. 
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erformance in segmentation tasks. This is mainly because nnU- 

et has a more robust structure to adapt to a variety of datasets. 

urthermore, the proposed SSA-Net is slightly better than nnU-Net 

n terms of DSC, HD 95 and NSD in both Dataset 1 and Dataset 2 . Our

SA-Net improves the average DSC from 0.6447 to 0.6522, the av- 

rage NSD from 0.5347 to 0.5643 and reduces the average HD 95 

rom 5.7383 mm to 5.5260 mm in Dataset 1 . While in Dataset 2 , our

SA-Net improves the average DSC from 0.7500 to 0.7540, the av- 

rage NSD from 0.5862 to 0.5876 and reduces the average HD 95 

rom 7.1841 mm to 7.0464 mm. The improvements demonstrate 

hat spatial convolution has the ability to obtain more informa- 

ion between rows and columns in images, and on this basis, the 

elf-attention learning mechanism can offer more reliable context 

nformation. Compared with Inf-Net, the advantage of SSA-Net in 

ataset 1 is not obvious. In terms of DSC and NSD, our proposed 

SA-Net outperforms by 1.14% and 1% respectively. But in Dataset 2 , 
11 
t is evident that all evaluation metrics of all networks increase sig- 

ificantly. However, our proposed SSA-Net has more advantages in 

his dataset. We observe that most patients represented by the CT 

mages are in moderate or severe conditions, the lesion includes 

ot only the fuzzy GGO in the early stage, but also the consoli- 

ation in the later stage in this small sample Dataset 2 . Although 

he segmentation task in Dataset 2 is more challenging than that 

n Dataset 1 , our proposed SSA-Net can obtain more spatially com- 

lex information in a limited data set. And even if the lesions 

ave a complex structure, it can perform better as well. The DSC, 

D 95 and NSD are better than others, reaching 0.7540, 7.0464 and 

.5876, respectively. 

Fig. 6 shows a visual comparison of the results obtained from 

ifferent networks in two different datasets. It can be observed 

hat most of the current methods have improved the results, but 

hey still perform poorly in the case of fuzzy areas and irregular 
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hapes of COVID-19 lesions. However, our SSA-Net effectively alle- 

iates this problem. Specifically, the segmentation results of SSA- 

et are close to the ground truth, and there are fewer incorrectly 

egmented regions as well, especially for misty and scattered re- 

ions, which is attributed to the strengthened representation abil- 

ty for fuzzy boundaries and irregular shapes of spatial convolu- 

ion. Meanwhile, even in case of limited data in Dataset 2 , SSA-Net 

an perform well, which is due to the role of self-attention learn- 

ng to enable the model learn from itself, thereby further enhanc- 

ng the ability of contextual expression. 

.5. Results of semi-supervised few-shot learning 

From Table 6 , our proposed SSA-Net has shown more compet- 

tive performance than other baseline methods. Besides, our pro- 

osed semi-supervised few-shot model (SSA-Net(I)) outperforms 

ther algorithms in all evaluation metrics. By introducing the re- 

eighting module for class balancing and the trust module for 

enerating more credible pseudo labels, our SSA-Net based semi- 

upervised learning framework enables the limited data to be uti- 

ized as much as possible. Compared with SSA-Net, in terms of 

GO, SSA-Net(I) boost the performance by 5.02% in average DSC, 

.01% in NSD, and decrease the HD 95 and MAE to 5.9266 and 

.0116 respectively. While in terms of consolidation, SSA-Net(I) still 

hows the best performance. The reason is that SSA-Net can obtain 

tronger receptive field and contextual information, which helps to 

etect scattered and complex lesions. In addition, the training of 

SA-Net is a process of continuous reinforcement of spatial infor- 

ation, so SSA-Net can improve the self-learning ability of the net- 

ork in the case of few training samples. 

Fig. 7 shows the multi-class lesion segmentation results. Due 

o the small amount of training dataset, it is more prone to ob- 

ain wrong segmentations. Therefore, the baseline methods gen- 

rate more incorrect results. On the contrary, the results of SSA- 

et(I) are closer to the ground truth, because we set a threshold 

o get high confidence values and drop off the incorrect values. In 

ddition, as can be observed in Fig. 7 , the proportional distribu- 

ion of classes in the last column shows that the data categories 

n dataset are unbalanced. Among them, lesions containing GGO 

nd consolidation only account for a small proportion of the im- 

ge, and the most part of images are uninfected lung regions. For 

mall consolidations are quite difficult to segment correctly, but 

lso easily affect the segmentation of GGO. However, our proposed 

mall samples semi-supervised learning model based on SSA-Net 

an segment lesions more accurately, even if the lesions are small 

r the boundary is blurred. We can also draw the conclusion that 

ur model can get the results more correctly, which is contributed 

o the effect of re-weighting module. 

. Conclusion and future work 

In this paper, we have proposed a novel COVID-19 pneumonia 

esion segmentation learning network called Spatial Self-Attention 

etwork (SSA-Net), which exploits self-attention learning and spa- 

ial convolution to obtain more contextual information and can 

mprove the performance in challenging segmentation task of 

OVID-19 infection areas. Furthermore, we have introduced our 

SA-Net for multi-class lesion segmentation with small samples 

atasets. And we have presented a semi-supervised few-shot learn- 

ng framework, in which a re-weighting module is utilized to re- 

alance the loss of different classes and solve the issue of long- 

ailed distribution of training data, and also a trust module is used 

o select high confidence values. Extensive experiments on pub- 

ic datasets have demonstrated that our proposed SSA-Net outper- 

orms state-of-the-art medical image segmentation networks. At 
12 
he same time, our semi-supervised iterative segmentation model 

lso achieves higher performance by training limited data. 

The proposed deep learning network can identify scattered and 

lurred lesions in complicated backgrounds, and which usually 

appens in medical images. In the future, we will apply it to 

ther related tasks. In addition, due to the urgent nature of the 

OVID-19 global pandemic, it is difficult to systematically collect 

arge datasets and annotations, especially multi-class annotations, 

or deep neural network training. Our few-shot multi-class semi- 

upervised training model only improves the model in process of 

etting more credible labels. In the near future, we plan to de- 

ign a comprehensive system to detect, segment and analyze the 

OVID-19 pneumonia lesions automatically. Besides, we can get 

nitial segmentation results to utilize class activation maps ( Zhou 

t al., 2016; Selvaraju et al., 2017 ) generated from the feature maps 

f the network for data augmentation. 
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