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Abstract
The allergen provocation test is an established model of allergic airway diseases, including asthma and
allergic rhinitis, allowing the study of allergen-induced changes in respiratory physiology and
inflammatory mechanisms in sensitised individuals as well as their associations. In the upper airways,
allergen challenge is focused on the clinical and pathophysiological sequelae of the early allergic response,
and is applied both as a diagnostic tool and in research settings. In contrast, bronchial allergen challenge
has almost exclusively served as a research tool in specialised research settings with a focus on the late
asthmatic response and the underlying type 2 inflammation. The allergen-induced late asthmatic response
is also characterised by prolonged airway narrowing, increased nonspecific airway hyperresponsiveness and
features of airway remodelling including the small airways, and hence allows the study of several key
mechanisms and features of asthma. In line with these characteristics, allergen challenge has served as a
valued tool to study the cross-talk of the upper and lower airways and in proof-of-mechanism studies of
drug development. In recent years, several new insights into respiratory phenotypes and endotypes
including the involvement of the upper and small airways, innovative biomarker sampling methods and
detection techniques, refined lung function testing as well as targeted treatment options further shaped the
applicability of the allergen provocation test in precision medicine. These topics, along with descriptions of
subject populations and safety, in line with the updated Global Initiative for Asthma 2021 document, will
be addressed in this review.

Introduction
For over five decades, the allergen provocation test has served as a gold standard model of allergic
mechanisms underlying asthma and allergic rhinitis, and more recently has been used to understand the
interactions between both airway compartments [1–4]. As an indirect stimulus, allergen challenge allows
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investigation of subsequent changes in respiratory physiology and inflammatory pathways in sensitised
individuals and the effect of interventions [5–8].

In the upper airways, nasal allergen challenge (NAC) is presently used both as a diagnostic tool and for
research purposes with a focus on the early allergic response, symptom scores and the release of acute
pro-inflammatory mediators [5, 6]. In contrast, in the lower airways, while occupational agents are well
established as diagnostic and research tools for occupational asthma, challenge with allergen extracts has
almost exclusively been used in specialised research settings, focusing on the sequelae associated with the
late asthmatic response (LAR), i.e. the underlying type 2 (T2) inflammation, prolonged airway narrowing and
increased nonallergic airway hyperresponsiveness (AHR): all pathognomonic features of asthma [7, 9–11].

As an extension of the European Respiratory Society/American Thoracic Society Task Force position
document on indirect challenges [12] and our previous expert review [7], this review discusses additional
frequently used, standardised allergen challenge methods of the airways, and updates existing
methodologies according to recent insights about the development of T2 biologics for precision medicine
of asthma and allergy, as well as study populations and safety aspects, in line with the Global Initiative for
Asthma (GINA) 2021 document [13].

Bronchoprovocation and drug development
Provoked models of bronchoconstriction and airway inflammation have significantly contributed to our
understanding of asthma pathophysiology and the development of targeted drugs [14]. T2 asthma has
recently been recognised as a relevant asthma endotype [15]. Through characterisation and standardisation
of clinical trial end-points such as the early asthmatic response (EAR), LAR, allergen provocative
concentration/dose causing 20% fall (PC20/PD20) in forced expiratory volume in 1 s (FEV1), shift in
allergen-induced PC20/PD20 methacholine/histamine, and sputum eosinophils and derived biomarkers,
allergen bronchoprovocation has been used to assess the potential utility and clinical efficacy of T2
biologics with an overall good predictive value [16–22]. Indeed, a wide variety of therapeutics within
many different inflammatory pathways have been tested, including those with broad anti-inflammatory
properties, those targeting T2 pathways, bronchodilators and other more specific targets (supplementary
material). Through comprehensive testing, efficacy data applicable to other disease indications can be
generated (figure 1) [23, 24].

Allergen bronchoprovocation and asthma mechanisms
More recent investigations have further characterised the inflammatory response following inhaled allergen
and included whole-blood RNA biomarker panels that are predictive of the LAR [25]. Identification of
different inflammatory phenotypes in sputum during the LAR [26–28] and examination of the kinetics of
T2 inflammatory cytokines and chemokines in sputum [11] together with the observed increase in effector
cells such as dendritic cells in bone marrow and trafficking of these cells into the airway [29] should help

Model to study

pathophysiology

Predict treatment

success in asthma

Tools to 

identify key 

allergic 

pathways

Application 

to other 

allergic 

diseases

A
ll

e
rg

e
n

re
sp

o
n

se
s

C
li

n
ic

a
l t

ri
a

l
o

u
tc

o
m

e
s

Biomarkers of
disease

Allergen
inhalation
challenge

Investigational
medications

FIGURE 1 Applications of allergen bronchoprovocation.
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to further elucidate the cellular and molecular mechanisms underlying allergen-induced airway responses
and promote the development of targeted treatments for asthma.

T2 biomarker assessments and allergen bronchoprovocation
During bronchoprovocation, biomarkers can be used to readout various mechanisms involved in the
allergic airway response. The allergen-induced airway inflammation can be explored either locally via
upper airway samplings or lower airway samplings including exhaled air, induced sputum or
bronchoscopy, or systemically in peripheral blood [10, 30, 31]. Examination of the lipid metabolism
pathway demonstrates enrichment of significant genes and metabolites post-challenge [32], with
leukotrienes and prostaglandin D2 increased [33, 34]. In the case of these lipid mediators, urine sampling
has been particularly useful [35–37]. Primarily, T2 inflammatory biomarkers have been shown to be
involved in the allergic response, with a main focus on eosinophils and eosinophil-related biomarkers and
cytokines, e.g. exhaled nitric oxide fraction (FENO), alarmins (interleukin (IL)-25, IL-33, thymic stromal
lymphopoietin), IL-4, IL-5 and IL-13 [38–41] as well as eosinophil activation markers [42, 43].
Furthermore, neutrophils [43], basophils and mast cells [44] are altered in response to allergen challenges.
More recently, the proportions of other cell types in sputum have been shown to alter following allergen
challenge, highlighting the dynamic nature of inflammatory subtypes in asthma [26, 28, 29, 45–48]. In
addition, changes in RNA profiles of T2 inflammation have been defined in sputum cells [27, 45, 49]. One
should be aware that many of the aforementioned biomarkers are responsive to corticosteroid treatment,
which lowers their respective levels [7, 50].

Non-T2 pathways and allergen bronchoprovocation
The airway response to inhaled allergen is mainly described as a T2 response but non-T2 inflammation is
also described. Non-T2 asthma may have different underlying mechanisms and presently there is no
consensus on signature biomarkers, but a main hallmark is neutrophilic rather than eosinophilic
inflammation [51–53], with increased airway neutrophil numbers and their pro-inflammatory products
neutrophil elastase and myeloperoxidase observed after allergen bronchoprovocation [54]. Several other
cell types and cytokines, including T-helper (Th)1, Th17, T-regulatory (Treg) cells, and IL-1β, IL-6, IL-8,
IL-17, interferon-γ, tumour necrosis factor-α and neutrophil extracellular traps, are believed to contribute to
mechanisms of non-T2 pathobiology [53]. Allergen bronchoprovocation has documented the activation of
a subset of circulating mature neutrophils [55], an increase in Th17 cells and IL-17A in blood [56], an
increase in blood Th17/Treg cell ratio specifically in dual responders [57], and a parallel diminished
percentage of sputum Treg cells [58] and an increase in IL-6 [59] following allergen bronchoprovocation.
Targeted treatment using a single dose of tocilizumab (an IL-6 receptor blocker), however, was not able to
prevent allergen-induced bronchoconstriction [60]. Markers of remodelling have also been detected
post-allergen challenge, including increased myofibroblasts in endobronchial biopsies [61] and
metalloproteinase-9 in sputum [62].

The innate immune system may play an important role in the development of allergen-induced airway
inflammation with a number of potential signalling pathways. The epithelial cell-derived alarmins are
upregulated after allergen challenge [63, 64], and are widely recognised as important upstream
orchestrators of both T1 and T2 inflammation. Epithelial cell triggers can also drive inflammation through
innate receptors such as protease-activated receptors (PAR2) and Toll-like receptors including TLR4 and
TLR7; intranasal administration of a TLR7 antagonist significantly reduced allergen-induced LAR,
demonstrating the potential of these pathways to support the development of asthmatic responses [65, 66].
Bronchial vasculature may be activated after an allergen challenge via increased lung homing of
endothelial progenitor cells [67]. Apart from the inflammatory pathways, it has also been suggested that
airway obstruction could be driven by structural changes within the airways, such as airway smooth muscle
hypertrophy [68].

Microbiome
The human microbiome is an exciting new area of study. Defined as a characteristic microbial community
living in a normally well-defined environment with distinct physio-chemical properties, the microbiome
interacts with the host immune system and may drive future development of inflammatory and allergic
disorders [69, 70]. The pulmonary microbiome consists of microorganisms such as viruses, bacteria and
fungi. Although we have some insight about which bacteria are present in health and disease, we are only
beginning to learn how the microbiota and disbalance interact with the local and systemic immune system
and responses to allergen [71, 72]. Inhaled corticosteroids (ICSs) are known to suppress the
microorganisms of the lungs [73], potentially leading to an exponential growth of other organisms
resulting in pathology on a macroscopic scale. Allergic diseases show a dramatic increase in prevalence in
recent decades, with influencing factors before and in the first years of life, such as breastfeeding, (air)
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pollution and exposure to (domestic) animals considered to be major contributors. These factors in turn
might influence epigenetic mechanisms and thereby increase or decrease the chance of (pulmonary)
allergy and altered immune response. Studying interactions of the microbiome with controlled allergen
challenges might help in finding medications to stabilise and create a microbial homeostasis of the
respiratory system.

Methodology of allergen bronchoprovocation
Presently, there are three standardised protocols with inhaled allergen [7]. Two protocols use (relatively)
high-dose allergen, applying the incremental or titrated step-up method or the single-bolus method. Despite
a different approach to achieve EAR, both methods yield comparable allergen-induced airway responses
[74–76]. The third protocol is a repeat low-dose allergen bronchoprovocation. All methods are extensively
described in our previous expert review [7].

High-dose allergen bronchoprovocation
Procedure
Titrated, relatively high-dose, allergen inhalation tests date back to the 1950s [1, 2, 77, 78] when exact
methodological details were frequently lacking. Current standardised methods are based on those originally
described by Hargreave and coworkers in 1974 [79], extensively outlined in our previous expert review [7].
Allergen bronchoprovocation is conducted for research purposes and can occasionally lead to severe airflow
obstruction and/or systemic allergic response [79], therefore qualified staff experienced in allergen challenge
and a safe starting concentration are required. In the titrated protocol, the starting concentration should be at
least three doubling concentrations below the allergen predicted PC20 calculated using the skin test (with the
same allergen) end-point and PC20/PD20 methacholine/histamine [80] or based on the PC20/PD20

methacholine/histamine only (modified formula) [81, 82]. Incremental allergen concentrations are inhaled at
12–15 min intervals until the EAR has been reached [79]. For within-subject repeatability, any reliable jet [7]
or vibrating mesh [83] nebuliser and reproducible inhalation method is acceptable.

In the single-bolus protocol, a titrated allergen challenge is initially performed to identify the cumulative
dose required to produce an EAR [74]. Repeat challenges are conducted using this single (cumulative)
high dose of allergen by counted deep breath inhalations from a dosimeter. Although shortening the
procedure by ∼30 min, inhalation of a single high dose of allergen has been reported to produce a greater
EAR than the same (cumulative) dose of allergen administered incrementally over 20 to ⩾30 min [74].
Another study did not find such a difference with respect to drop in lung function but showed increased
release of cysteinyl leukotrienes in cumulative as opposed to single-dose challenge [84].

Airway response measurements
Airway response is measured by FEV1 every 10–15 min for the first hour post-allergen challenge and every
30 min for the second hour to capture the EAR, then hourly (and in case of a steep decline in FEV1, more
frequently) up to ⩾7 h to capture the LAR. The EAR can be defined as the maximum percentage fall in FEV1

during the first hour or the area under the curve (AUC) from 0 to 2 h (or 0 to 3 h) and the LAR as the
maximum percentage fall over 3–7 h (or >7 h) or the 3–7 h (or >7 h) AUC. Changes in nonallergic AHR are
assessed by measuring the shift in PC20/PD20 methacholine/histamine 24 h after allergen challenge. Isolated
EAR investigations can also be assessed and quantitated using the allergen PC20/PD20 dose shift [81, 83, 85].
More sensitive lung function measurements, including impulse oscillometry (IOS), body plethysmography and
carbon monoxide diffusion capacity, show more extensive involvement of small airways in dual responders
(EAR+LAR) compared with isolated EAR responders (EAR-only) [86, 87]. IOS measurements may help to
further differentiate responders based on baseline physiology and to detect initial airway response to allergen
(or other stimuli) prior to changes in spirometry, thus supporting safety during the procedure.

Repeat testing
The EAR and LAR are reproducible outcomes when the test is properly standardised [9, 88, 89]. For
studies addressing the LAR and sequelae, repeat tests should be performed after a washout of at least
2 weeks and strive to use the same dose of allergen administered in the same manner whenever possible.
Occasionally an earlier-reached EAR can hinder this approach. To ensure safety and data integrity, subjects
should meet asthma stability criteria (symptoms, lung function and PC20/PD20 methacholine/histamine)
pre-challenge [7]. For studies addressing only the EAR PC20/PD20, the appropriate allergen dose should be
administered [81] to quantitate the treatment effect. In such studies, an LAR can be prevented by
administration of a single moderate-to-high dose of ICS after the EAR [90]. While the EAR method has
several logistical advantages such as less time, fewer eligibility criteria and a greater ability to discriminate
large changes, it fails to capture the clinically more relevant LAR and sequelae.
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Safety
Incremental allergen inhalations inducing a gradual decline in FEV1 during the EAR are preferred.
Irrespective of the inhalation method, allergen should only be administered in asthmatic subjects where
pre-challenge clinical stability is confirmed [7]. Although linear in theory due to geometrical dose
increments, the allergen dose–response curve steepens as a 15–20% fall in FEV1 is approached. The
possibility of excessive airway narrowing (i.e. a decrease in FEV1 ⩾50%) underscores the requirement for
an experienced clinician and medications to treat severe bronchoconstriction or anaphylaxis
(bronchodilators, corticosteroids, antihistamines, epinephrine, oxygen and cardiopulmonary resuscitation
equipment) to be immediately available. To minimise exposure of laboratory personnel to aerosolised
allergen, good ventilation, exhaust hoods and other protective measures are required [7].

Selection of subjects
Inhaled allergen bronchoprovocation tests have mainly been conducted in subjects with mild, clinically
stable asthma in specialised research settings [7] for the purpose of studying mechanisms of allergic airway
disease [10] and in the context of clinical trials to support understanding of precision medicine [38].
Current research allergen bronchoprovocation methodologies are not recommended as clinical tests in
asthmatic patients, except in rare cases where guidelines of some countries permit these for diagnostic
purposes in occupational settings. Neither a safe starting allergen dose [91] nor the safety of
allergen-induced bronchoconstriction have been established in patients with more severe asthma,
considering such patients would require withholding of their medications with the risk of losing asthma
control or have effects of these medications confound interpretation of the test.

Inhalation of a provocative allergen in subjects with mild allergic asthma, while generally safe and well
tolerated, can lead to significant acute bronchoconstriction, prolonged airway responses (i.e. a clinically
relevant exacerbation) and, in rare cases, anaphylaxis [92]. Careful tracking of spirometry and follow-up
with availability of medical assistance after the test needs to be applied in all settings. Safety begins with
subject selection: individuals with (very) mild well-controlled asthma requiring infrequent use of rescue
medication and with no or relatively little resting airflow limitation, i.e. baseline FEV1 ⩾70% predicted.
Since asthma medications interfere with allergen challenge end-points (table 1), a key inclusion criterion is
the requirement for mild allergic asthma with infrequent use of a short-acting bronchodilator (short-acting
β-agonist (SABA)) only. However, as per the revised GINA 2021 document, individuals who experience
infrequent asthma symptoms are now recommended “as-needed” low-dose ICS associated with rescue
medication (i.e. bronchodilators) [13]. Subjects should, however, be able to maintain good asthma control
and optimal lung function despite fulfilling washout requirements indicated in table 1 [7, 13]. Washout
periods are consistent with at least five half-lives of the drug plus an estimate of the duration of drug
effect. It is unethical and unsafe to discontinue maintenance medications in more severe asthma to meet
these washout requirements for allergen bronchoprovocation.

Medication washout, withhold and rescue
Clinical trials utilising allergen bronchoprovocation tests are often complex, long lasting and require
multiple challenges with adequate washout periods (table 1). The timeframe between two subsequent
allergen challenges is 2–3 weeks minimum, and studies typically span the cold and flu season to avoid the
pollen seasons in pollen-allergic participants. Lengthy study durations and potential viral exposure could
increase the risk of exacerbation, and ICS may be required for subject safety and wellbeing. Situations
where an exacerbation with or without the use of ICS occurring within the required washout period should
be dealt with on a case-by-case basis with the goal of postponing a scheduled visit until the appropriate
washout can be achieved. Subjects requiring oral corticosteroid (OCS) rescue during a bronchoprovocation
study should be withdrawn with the focus on regaining asthma control.

After allergen bronchoprovocation, a SABA is usually administered to reverse existing bronchoconstriction
such that the FEV1 returns to within 10% of the pre-challenge value. In the case of a partial reversal, a
short-acting muscarinic antagonist (SAMA) and/or low-dose ICS may be added (e.g. budesonide 200 µg,
1–2 times during the next 2–3 days post-challenge). Prior to leaving the unit, subjects should be provided
with appropriate rescue (e.g. SABA±SAMA) and controller (e.g. ICS) medications with instructions to use
if required, and a 24 h emergency contact, keeping in mind use of these medications could require
subsequent tests to be aborted if withhold periods (i.e. continuation criteria) cannot be met.

Low-dose repeated allergen bronchoprovocation
Procedure
Repeated low-dose allergen bronchoprovocation has been introduced as a standardised method to mimic
natural allergen exposure [93, 94]. Small doses of allergen titrated to cause minimal bronchoconstriction
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TABLE 1 Recommended washout periods for medications and other general measures before and during allergen inhalation challenge testing in
clinical research settings

Recommended washout or avoidance
period before start of study

Recommended washout or avoidance
period during the study

Medication
Immunosuppressants (e.g. methotrexate,
dactinomycin, mercaptopurine)

4 weeks washout Prohibited during study

Systemic corticosteroids (intravenous/
intramuscular/oral)

12 weeks washout; up to one burst of OCS in
the previous 5 years

Prohibited during study

Inhaled corticosteroids 4–6 weeks washout from regular daily dosing Permitted if used acutely to rescue after
allergen challenge or to stabilise asthma

during the study if needed, provided dosing
is acute (3–5 days maximum) and 1 week

washout is applied before subsequent study
visits

Nasal corticosteroids 4 weeks washout from seasonal dosing Permitted if used at a constant dose
throughout the study and subject meets all

eligibility criteria while dosing
Dermal corticosteroids 4 weeks washout from maintenance therapy

on large body surfaces (larger than ∼10 cm2)
Permitted if infrequent use on small body

surface
Allergen immunotherapy for challenging allergen Full exclusion Prohibited during study
Allergen immunotherapy for nonchallenging
allergen

12–16 weeks washout Permitted if ongoing throughout the study
and at least 12–16 weeks on stable oral or

subcutaneous dose
SABA (e.g. salbutamol, albuterol, terbutaline) No washout required Permitted with ⩾6 h washout before allergen

challenge
SAMA (e.g. ipratropium bromide, oxitropium
bromide)

No washout required Permitted with ⩾12 h washout before
allergen challenge

LABA (e.g. salmeterol, formoterol) 2 weeks washout Prohibited during study
Ultra-LABA (e.g. abediterol, indacaterol,
olodaterol, vilanterol)

2 weeks washout Prohibited during study

LAMA (e.g. aclidinium bromide, tiotropium
bromide, glycopyrronium bromide,
umeclidinium bromide)

2–3 weeks washout Prohibited during study

Leukotriene modulators including LTRAs (e.g.
montelukast, zafirlukast, pranlukast, zileuton)

2 weeks washout Prohibited during study

PDE inhibitors (e.g. Daxas, ensifentrine) 2 weeks washout Prohibited during study
Xanthines (e.g. caffeine, theobromine) No washout required Permitted with 4–12 h washout before

allergen challenge
Cromoglycate/nedocromil 2–4 weeks washout Prohibited during study
Theophylline 4 weeks washout Prohibited during study
Oral anti-inflammatories: salicylates (e.g.
acetylsalicylic acid), acetaminophen, other
NSAIDs (e.g. ibuprofen, naproxen, diclofenac)

No washout required Permitted with 7 days washout before
allergen challenge

Short-acting antihistamines No washout required Permitted with 3 days washout before
allergen challenge

Intermediate-acting antihistamines No washout required Permitted with 4 days washout before
allergen challenge

Biologics (registered or experimental) 3–6 months washout or five half-lives Prohibited during study
Living vaccines 3 months washout Prohibited during study
Other vaccines (e.g. vector, mRNA/DNA vaccines) 4 weeks washout Prohibited during study
Chemotherapy Full exclusion Prohibited during study
Investigational medications 3–6 months washout or five half-lives Prohibited during study

Interfering factor
Major surgery 3–6 months washout Subjects with planned major surgery should

not be enrolled on the study
Lower respiratory tract viral infection;
upper respiratory tract common cold

6 weeks; 3 weeks washout Allergen challenge should not be conducted
within 6 weeks of a lower respiratory tract

infection
Strenuous exercise 72 h delay No strenuous exercise (e.g. marathon) during

the study or 1–2 weeks after an allergen
challenge test, depending on recovery

Continued
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are inhaled once daily over 1–2 weeks [95–101]. The allergen dose is selected from an initial incremental
dose challenge (usually as the provocative dose causing an early drop in FEV1 of 5% (PD5)) [95, 98, 100,
101]. Methacholine or histamine challenge to measure airway responsiveness and induced sputum
collection are performed before and after the low-dose challenge period. Spirometry recordings as well as
FENO measurements are performed daily, and subjects record home monitoring of lung function, asthma
symptom scores and short-acting β2-agonist usage. A 2-week washout is recommended between
subsequent challenge periods [95, 102]. The procedure generates a distinct and consistent increase in
nonspecific AHR [93, 96, 97, 99, 102, 103], as well as increases in airway eosinophils [95, 96, 99, 100,
102, 103] and FENO [99–102] that are more pronounced than after a single high-dose allergen
bronchoprovocation inducing a dual asthmatic response [95, 100–103]. Notably, the increase in AHR
occurs in the relative absence of asthma symptoms.

Implementation
Because this bronchoprovocation model induces robust readouts such as increased AHR and many signs of
T2 inflammation with minimal bronchoconstriction and symptoms, it has received interest as a valuable
tool to investigate early events of importance for the development of symptomatic and possibly persistent
asthma. In addition, this model has been useful in evaluating drug effects in mild asthma, particularly for
ICS [99, 102, 103]. However, it is not as widely used as high-dose bronchoprovocation, most likely
because of the greater number of visits required for the subjects. In the current search to understand how
different biological treatments affect asthmatic airway inflammation and related sequelae, it might be of
value to use repeated low-dose allergen bronchoprovocation again. The emergence of sensitive omics
technologies may offer new opportunities to define mechanisms by measurements in blood, sputum,
exhaled breath and urine during the development of the response [104].

Segmental allergen bronchoprovocation
Procedure
Segmental allergen challenge (SAC) is an invasive, bronchoscopic research procedure which allows direct
investigation of the inflammatory response following local allergen instillation [105]. Compared with
inhaled bronchoprovocation, SAC allows a more precise dosing with one or more agents, and the
procedure has been shown to be safe and easy to control [106]. In both mild and moderate asthma, SAC
allows reproducible readouts as well as simultaneous control lavage within individual subjects [107].
A drawback is the requirement of two bronchoscopic procedures: one for allergen instillation and one
∼24 h post-challenge for the evaluation of the inflammatory response.

Implementation
SAC allows study of direct effects of allergen on the inflammatory airway response within lower lung
segments. In addition to biopsy, lavage, wash or brushings for cellular and molecular components, SAC
allows visualisation of the airway response with imaging techniques which may substitute the second
bronchoscopy [108, 109]. In contrast to inhaled bronchoprovocation, the overall physiological response in
the airways may be suppressed as a result of procedural medications and, given the localised administration
of allergen, may not evoke a full airway response, which precludes studying the relationship between the
allergen-driven inflammation and airway physiology.

TABLE 1 Continued

Recommended washout or avoidance
period before start of study

Recommended washout or avoidance
period during the study

Alcohol-containing beverages 48–72 h washout Prohibited during study
Party drugs 72 h washout Prohibited during study
Hard drugs (e.g. heroin, cocaine,
amphetamine, LSD, ecstasy)

Full exclusion for current or history of use Prohibited during study

Increased allergen exposure (e.g. contact
with animals, pollen season, moving houses)

3–4 weeks washout Prohibited during study

Increased environmental triggers (e.g. cigarette
smoke, pollution)

72 h washout Prohibited during study

OCS: oral corticosteroid; SABA: short-acting β-agonist; SAMA: short-acting muscarinic antagonist; LABA: long-acting β-agonist; LAMA: long-acting
muscarinic antagonist; LTRA: leukotriene receptor antagonist; PDE: phosphodiesterase; NSAID: non-steroidal anti-inflammatory drug; LSD: lysergic
acid diethylamide.
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Occupational bronchoprovocation
Specific inhalation challenges (SICs) with occupational agents are well established as useful diagnostic and
research tools for occupational asthma [110] and hypersensitivity pneumonitis [111]. The main purpose for
which occupational challenges are being used is to establish an aetiological diagnosis in occupational asthma
and hypersensitivity pneumonitis, as well as to investigate the pathogenic mechanisms underlying these diseases.

Originally, SIC was an empirical approach in which a patient was asked to reproduce his/her working
environment [112]. Currently, SIC is a standardised test, in which the respiratory effects of an agent present in
the workplace are assessed ideally under controlled conditions, including the generation of a low and stable
concentration of the agent [113]. SIC is considered the reference standard test to confirm occupational asthma
and it is essential to include the assessment of airway inflammation in the procedure [113, 114]. Exposure to
occupational agents can be produced in various ways, depending on the physical state of the agent suspected of
causing occupational asthma [113], and the method of bronchoprovocation is quite different for high-molecular
versus low-molecular agents, particularly for safety reasons as the latter can induce an isolated late response. A
2014 European Respiratory Society Task Force consensus statement on SIC in the diagnosis of occupational
asthma provides practical recommendations and reviews the interpretation and limitations of these tests [115].

Nasal allergen challenge
Standardisation of NAC
NAC is a simple and safe method used both as a research tool to study allergen-induced pathophysiology and
drug interventions in allergic individuals [5, 30], and as a diagnostic tool in clinical practice [116, 117].
Topical application of increasing doses of an allergen extract or compound in solution to the nasal mucosa of
sensitised individuals induces an IgE-mediated immune response, which rapidly evokes key symptoms of
allergic rhinitis including itching, sneezing, nasal congestion and/or rhinorrhoea. The occurrence and severity
of symptoms and underlying mechanisms can be captured by standardised composite symptom scores and
nasal patency assessments (table 2).

Ocular symptoms (irritation, itching and tearing) are common during the acute phase [129], while a more
generalised response (e.g. exanthema) is rare. Pharyngeal symptoms (itching and swelling) can usually be
avoided by applying allergen to the nose after the subject has breathed in. In line with the bidirectional
cross-talk between both airway compartments, one report suggests NAC may induce both an EAR and/or
LAR in subjects with pre-existing AHR [130]. Hence, in these individuals, lung function measurements
and therapeutic measures should be considered for safety reasons. Asthma medication can usually be
continued, especially if NAC is used for upper airway diagnostic purposes.

While most of the acute-phase symptoms subside within ∼15–30 min, nasal congestion may persist for
several hours post-NAC. Prolonged congestion serves as a clinical marker of the local late-phase response,
and is associated with both upper and lower airway inflammation and AHR. Analytes from the upper
airways can be collected using exhalates, nasal lavages, mucosal brushings or curettage, absorbent strips and
sponges. For RNA-based analysis, apart from biopsies, minimally invasive scrapings can be used (table 3).

Drugs which could interfere with challenge outcomes (topical and systemic corticosteroids, antihistamines,
decongestants, antileukotrienes and topical cromones) need to be stopped. Specific drug washout periods
are in line with those for bronchial challenges (table 1), with a special notice that intranasal corticosteroids
and antihistamines must be stopped. Topical and systemic decongestants should be avoided 3 days
pre-challenge. Standardisation of allergen concentration and major allergen content (including batch
reproducibility) remains difficult, largely due to the use of numerous concentration units across different
manufacturers, rather than µg·µL−1 major allergen.

Bilateral NAC
A European Academy of Allergy and Clinical Immunology Task Force convened and reached consensus
on the best practice of NAC for clinical use being carried out as bilateral challenge with a volume of
0.1 mL per nostril applied via nasal spray (ideally as two 50 µL actuations) [6]. Single-dose rather than
dose-titration challenges were generally recommended. Both subjective (symptom scores or visual
analogue scale scores) and objective (peak nasal inspiratory flow, acoustic rhinometry and
rhinomanometry) outcomes should be recorded, with defined “strong” thresholds for a positive challenge
in either outcome or a combination of both at more modest levels. Clinical indications for NAC are broad,
including cases of discordant history and sensitisation results, allergen selection for immunotherapy, and
suspected occupational causes [117]. A 4-week post-exposure window was agreed on for testing to
seasonal allergens, but difficulty remains concerning acceptable levels of background exposure to perennial
allergens when these are being tested.
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Exposure rooms
Environmental exposure chambers (EECs) are clinical facilities allowing for controlled exposure of subjects
to inhaled substances in an enclosed environment, mimicking natural exposure under tightly regulated
conditions [155]. Several different agents have been tested in these chambers, including allergens, chemicals,
endotoxins and airborne pollutants. EECs allow several subjects to be studied at the same time, and have
been utilised for investigation of the pathophysiology of respiratory allergic diseases and to assess the
efficacy of new therapies for allergy and asthma, including allergen-specific immunotherapy [155–158].
There are few EECs available worldwide due to the need for costly and sophisticated equipment, qualified
personnel, and validated procedures. However, there is growing interest including from regulatory authorities.
Future goals include harmonisation of protocols among centres, standardisation of dosage and reactivity of
allergens used, and reduction in costs of these facilities [155, 159].

Readouts and biomarkers of NAC
Although the NAC and EEC should not be used interchangeably [145], both challenge techniques can be
complemented with various clinical readouts and biomarker samplings. Readouts include subjective
composite symptoms and visual analogue scale scores, typically covering itching, sneezing, nasal
congestion and rhinorrhoea [119]. Objective measures include peak nasal inspiratory flow, acoustic
rhinometry and rhinomanometry (table 2).

The upper airways allow several (semi-)invasive samplings for biomarkers to study the kinetics of the
immunological mechanisms underlying the acute- and late-phase upper airway response to allergen (table 3).
Upper airway biomarkers include volatile products such as nasal nitric oxide [131], although reliability
may be an issue [160]. Samples for cytology are collected by nasal lavage, biopsy or brushings/scrapings
and soluble mediators from nasal lining fluid, following nasal lavage or direct absorption of nasal fluid
with filter strips or sponges. Analytes include early-phase mediators such as histamine, tryptase, chymase,
prostaglandin D2 and leukotrienes [134–136, 161], and T2 chemokines and cytokines, with IL-5, IL-4 and
IL-13 elevated during the late phase [119]. Additionally, activation markers, neuropeptides, markers of vascular
leakage and local antibodies have also been successfully quantified from upper airway samplings (table 3).

TABLE 2 Clinical assessments of nasal allergen challenge (NAC) testing

Method Notes References

Symptom scores Lebel composite symptom score/TNSS±ocular symptoms; typically, four domains, each scored 0–3: itch,
sneezing, running/secretions, blockage; total 0–12

[118, 119]

Visual analogue scale, 0–10 cm Likert scale, individual symptoms (blockage, itch, running/secretions, sneezing)
or overall score

Scored by the participant/patient; simple to use, but subjective (except for sneezes if these are counted by
the assessor)

Sneezing is primarily a feature of the early-phase response, so this tends to skew the score upwards during
the 5–15 min immediately post-challenge

Relatively blunt tool for capturing late-phase responses where blockage alone is often the predominant
symptom

PNIF (L·min−1) In-Check nasal inspiratory flow meter; scale 30–370 L·min−1 (Clement Clarke, Harlow, UK) in combination with
a well-fitting anaesthetic face mask

[120–126]

Standardised normal range
Good intraindividual reproducibility and response to NAC and to decongestants

Cheap, quick and easy measurement, but user dependent
Acoustic rhinometry Sound waves are passed into the nostril through a closed tube; they reflect off the nasal passage walls and

are then sampled by a microphone and mathematically converted into a graph of the cross-sectional area of
the nasal passage against the distance into the nose from the nares

[127]

Good for demonstrating cross-sectional area (a surrogate for obstruction) of the anterior portion of the nose
Responsive to NAC and decongestant use

Technical and expensive compared with PNIF with a limitation to the anterior portion of the nose, but user
independent

Rhinomanometry Anterior (or posterior) recording of pressure–flow relationship using one or both nostrils during active
breathing cycle (or breath holding if passive rather than active)

[127, 128]

Response to nasal challenge and to decongestant use
Technically demanding method requiring expensive equipment compared with PNIF, difficult to standardise,

but user independent

TNSS: total nasal symptom score; PNIF: peak nasal inspiratory flow.
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Nasal brushings/scrapings provide material for PCR and transcriptomics [145–147], and biopsy followed
by immunohistochemical staining and/or in situ hybridisation has previously demonstrated influx of
T2-associated cells and cytokines [162, 163]. Finally, systemic markers including cytokines, antibodies and
allergen-specific T-cells have been measured in blood [145].

Due to upregulation of inflammatory mechanisms, in a crossover clinical study, a washout period of at
least 2 weeks is required between repeat NAC [145, 164].

United airways
Bidirectional communication between the upper and lower airways
Asthma and rhinitis are common disorders that often coexist, representing respiratory manifestations of the
same (systemic) inflammatory process [165], referred to as “one airway disease” within the context of the
“united airways concept” [166]. Apart from shared pathophysiology, there is ample evidence of cross-talk
between both airway compartments, i.e. challenging one compartment induces inflammatory responses
both locally and also within the other compartment [167, 168]. NAC induces upregulation of inflammatory
mechanisms and eosinophilia in both the upper and lower airways in nonasthmatic subjects with seasonal
allergic rhinitis [3, 169]. Conversely, allergen instillation into a lung segment of nonasthmatic subjects
with allergic rhinitis induces both an inflammatory response locally, systemically (in blood) and in the
upper airway mucosa [4]. Consequently, international guidelines advocate proactive diagnosis and

TABLE 3 Changes in upper airway and systemic biomarkers after nasal allergen challenge (NAC)

Sample source Biomarker Notes Reference

Exhaled air nNO nNO measured by a chemiluminescence analyser (CLD88sp; Ecomedics,
Duernten, Switzerland) at baseline and 7 and 24 h post-NAC; large intersubject
variability, although good intrasubject performance, showing significant increase

at 24 h post-NAC

[131]

Nasal lavage
with saline

Cytology Manual or automated counting of eosinophil influx post-NAC; shown to increase
post-allergen challenge and differentiate between allergic rhinitic subjects and

controls

[5, 132]

Nasal lining fluid Mediators Direct sampling with absorbent strips or sponges produces concentrated sample
of lower volume

[119, 133]

Tryptase ng·mL−1 Highly stable, measured by ImmunoCAP (Thermo Fisher Scientific, Waltham, MA,
USA); peaks 5–10 min after nasal challenge

[119, 134]

Histamine ng·mL−1 Less stable than tryptase; elevated during early-phase response; may be second
peak during late-phase response

[135]

Cysteinyl leukotrienes pg·mL−1 Elevated during early-phase response; level correlated with clinical symptom
scores after NAC

[136]

T2 cytokines pg·mL−1 Measurable by commercial multiplex immunoassay; IL-4, IL-5, IL-13 elevated
from 6 h post-grass pollen NAC; inhibited by allergen immunotherapy

[119, 133]

T2 chemokines pg·mL−1 Eotaxin, RANTES elevated from 4–6 h post-NAC [128, 137]
Eosinophil activation markers

ng·mL−1
ECP (measurable by ImmunoCAP), MBP, EDN; elevated at 6–8 h post-NAC; also

reported at 24 h post-NAC
[138, 139]

Neuropeptides pg·mL−1 Substance P, CGRP, VIP increased during the early-phase reaction [140]
Markers of plasma leakage/

transudate µg·mL−1
α2-macroglobulin, albumin elevated in early- and late-phase response to NAC [141, 142]

Markers of glandular secretion
µg·mL−1

Lactoferrin, lysozyme [143]

Fluid metabolomics Differences in metabolic pathways and metabolite levels seen in patients with
N-ERD versus controls; yet to be studied in allergic subjects post-NAC

[144]

Nasal cytology
brushing

Nasal mucosal gene
expression

Nasal scrapes 8 h post-NAC and EEC show similar patterns of altered expression
of mucosal biology and transcriptional regulation genes; nasal ACE2 receptor

expression reduced after NAC

[145–147]

Nasal curettage Cytology Nasal curettage 24 h post-NAC show increases in mucosal ILC2 cells [148]
Nasal biopsy Cytology Compartmental assessment of NAC-induced inflammatory cells [149–153]
Peripheral blood Mediators Serum cytokines (IL-5, IL-13) increased at 8 h post-NAC and EEC [145]

Allergen-specific T-cells Assayed by flow cytometry; levels increased after both EEC and NAC exposures [145]
Basophils IgE-dependent basophil activation in vitro increased following cat NAC [154]

nNO: nasal nitric oxide; T2: type 2; IL: interleukin; ECP: eosinophil cationic protein; MBP: major basic protein; EDN: eosinophil-derived neurotoxin;
CGRP: calcitonin gene-related peptide; VIP: vasoactive intestinal peptide; N-ERD: nonsteroidal anti-inflammatory drug-exacerbated respiratory
disease; EEC: environmental exposure chamber; ACE2: angiotensin-converting enzyme 2; ILC2: innate lymphoid cell type 2.
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treatment of both airway compartments to achieve optimal disease control [13, 170]. Despite similarities
between both airway compartments and in airway responses, data derived from NAC cannot substitute for
data acquired from a bronchoprovocation test.

Allergen extracts
General information
Allergen extracts are marketed for clinical testing of IgE-mediated allergic disease and in many countries
package monographs do not include the inhaled route into the lower airways. Hence, studies incorporating
allergen bronchoprovocation may require regulatory approval and the associated oversight, including
reporting of serious adverse reactions. For regulatory purposes, a serious adverse reaction to allergen
bronchoprovocation can be defined as a fall in FEV1 of >50% from baseline, requiring treatment with ICS
or OCS and relievers, or anaphylaxis or hospitalisation.

Manufacturing of allergen extracts is regulated by organisations including the Center for Biologics
Evaluation and Research and the Committee for Medicinal Products for Human Use. Some extracts are
standardised by comparing the potency (concentration) to a reference, while nonstandardised extracts are
simply based on protein nitrogen content or weight per volume without establishing a relationship between
concentration and biological activity. Both standardised and nonstandardised extracts have become
increasingly difficult to source.

Selection of extracts
Allergen extracts should be sourced from a reliable supplier prepared according to Good Manufacturing
Practice [171]. The magnitude and characteristics of allergic asthmatic responses may vary according to the
type of allergen, and the same allergen extract, batch and dose should be used for an individual subject
throughout a clinical trial. Natural exposure to indoors allergens such as house dust mite is thought to prime
a more marked airway eosinophilia than seasonal allergens in atopic subjects with or without asthma [98].
High-dose allergen bronchoprovocation was shown to induce a stronger LAR with house dust mite compared
with grass pollen [172, 173], yet in a different study, similar inflammatory patterns have been shown [26].
Proteolytic activity in some extracts such as house dust mite may influence airway responses [174].

Conclusions and take-home messages
Allergen exposure to the airways is a common environmental trigger of asthma and allergic rhinitis.
Allergen bronchoprovocation is an effective model of asthma for evaluation of the efficacy of various
treatment options along the T2 pathway with the ability to link noninvasive biomarkers to measures of
physiology. The test is primarily a research tool and the methods described here are not appropriate for
common clinical practice. In contrast, bronchoprovocation with occupational agents is a useful diagnostic
test that can be conducted for clinical purposes. NAC can be also used as a diagnostic test for allergy and
occupational substances, as well as a research tool.

Challenging the upper or lower airway compartment may affect the other compartment, thus NACs may
have implications for safety in subjects with inadequately controlled asthma. Despite this united airway
response, upper and lower airway tests cannot be substituted for each other. When used in a controlled
setting, allergen provocation of the airways identifies novel inflammatory pathways, and guides our
understanding about the efficacy of new therapies and precision medicine.
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