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Abstract

Inferring the intensity of positive selection in protein-coding genes is important since it is used to shed light on the process
of adaptation. Recently, it has been reported that overlapping genes, which are ubiquitous in all domains of life, seem to
exhibit inordinate degrees of positive selection. Here, we present a new method for the simultaneous estimation of
selection intensities in overlapping genes. We show that the appearance of positive selection is caused by assuming that
selection operates independently on each gene in an overlapping pair, thereby ignoring the unique evolutionary
constraints on overlapping coding regions. Our method uses an exact evolutionary model, thereby voiding the need for
approximation or intensive computation. We test the method by simulating the evolution of overlapping genes of different
types as well as under diverse evolutionary scenarios. Our results indicate that the independent estimation approach leads
to the false appearance of positive selection even though the gene is in reality subject to negative selection. Finally, we use
our method to estimate selection in two influenza A genes for which positive selection was previously inferred. We find no
evidence for positive selection in both cases.
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Introduction

Overlapping genes were first discovered in viruses [1] and later in

all cellular domains of life [2–4]. The percentage of overlapping

genes in a genome varies across species: 5–14% in vertebrates [5],

10–50% in bacteria [6], and up to 100% in viruses (e.g., hepatitis B

virus)[7]. Overlapping genes were suggested to have multiple

functions such as regulation of gene expression [8], translational

coupling [9], and genome imprinting [10]. In addition, overlapping

genes were hypothesized to be a means of genome size reduction

[11], as well as a mechanism for creating new genes [12].

The interdependence between two overlapping coding regions

results in unique evolutionary constraints [13,14], which vary

among overlap types [13]. Several attempts at estimating selection

intensity in overlapping genes have been made [15–26]. In some

studies, one gene was found to exhibit positive selection while the

overlapping gene showed signs of strong purifying selection (e.g.,

[15]). Inferences of positive selection in overlapping genes have

been questioned [19,21,24], mostly because ignoring overlap

constraints might bias selection estimates. Rogozin et al. [27] tried

to overcome this problem by focusing on sites in which all changes

are synonymous in one gene and nonsynonymous in the

overlapping gene.

A model for the nucleotide substitutions in overlapping genes

was introduced by Hein and Stovlbaek [28], who followed

approximate models for non-overlapping genes that classify sites

according to degeneracy classes [29–31]. This model was later

incorporated into a method for annotation of viral genomes [32–

34], and recently used for estimating selection on overlapping

genes [35]. The main weakness of approximate methods is that it

assumes a constant degeneracy class for each site, whereas

degeneracy changes over time as substitutions occur. Pedersen

and Jensen [36] suggested a non-stationary substitution model for

overlapping reading frames that extended the codon-based model

of Goldman and Yang [37]. This model encompasses the

evolutionary process more accurately than the approximate model

[28] by accounting for position dependency of each site in an

overlap region [36]. However, this improvement disallowed the

straightforward estimation of parameters and forced the authors to

apply a computationally-expensive simulation procedure [36].

Surprisingly, these models for nucleotide substitutions in overlap-

ping genes were rarely cited, not to mention used, by the majority

of studies estimating selection in overlapping genes. One reason

that these methods were seldom used might be the lack of an

accessible implementation.

Here, we describe a non-stationary method, similar to that of

Pedersen and Jensen [36]. Our method simplifies selection

estimation and avoids the need for costly simulation procedure.

We test our method by simulating the evolution of overlapping

genes of different types and under various selective regimes.

Further, we describe the nature and magnitude of the error when

selection is estimated as if the genes evolve independently. Finally,

we use our method to estimate selection in two cases for which

independent estimation has previously yielded indications of

positive selection.

Methods

A gene can overlap another on the same strand or on the

opposite strand. Each overlap orientation has 2 or 3 possible
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overlap phases (Figure 1). To understand the consequences of

estimating selection pressures on overlapping genes as if they are

independent genes, let us consider a simplified view of the genetic

code, in which all changes in first and second codon positions are

nonsynonymous and all changes in third codon position are

synonymous. (In reality, the proportions of changes that are

synonymous are ,5%, 0%, and ,70% for the first, second, and

third codon positions, respectively). From Figure 1 we see that in

all overlap types, but one (opposite-strand phase 2), all

synonymous changes in one gene are nonsynonymous in the

overlapping gene, while half of the nonsynonymous changes are

synonymous in the overlapping gene. Since the rate of

synonymous substitutions is usually higher than that of nonsynon-

ymous substitutions, ignoring overlap constraints would result in

the underestimation of the rate of synonymous substitutions. (In

the case of opposite-strand phase-2 overlaps, ignoring the overlap

would result in the underestimation of nonsynonymous substitu-

tions rate.) The bias in the estimation would be correlated with the

strength of purifying selection on the overlapping gene. Thus, a

false inference of positive selection is likely for genes under relaxed

purifying selection when the overlapping gene is under strong

purifying selection.

Goldman and Yang’s [37,38] method for the estimation
of selection intensity in non-overlapping coding
sequences

The most commonly used method for estimating selection

intensity on protein coding genes fits a Markov model of codon

substitution to data of two homologous sequences [37,38]. The

codon-based model of nucleotide substitution is specified by the

substitution-rate matrix, Qcodon = {qij}, where qij is the instantaneous

rate of change from codon i to codon j.

qij~

0, if i and j differ at two or three codon positions,

pj , if i and j differ by a synonymous transversion,

kpj, if i and j differ by a synonymous transition,

vpj , if i and j differ by a nonsynonymous

transversion,

vkpj , if i and j differ by a nonsynonymous transition:

8>>>>>>>><
>>>>>>>>:

ð1Þ

Here, k is the transition/transversion rate, v is the nonsynon-

ymous/synonymous rate ratio (dN/dS), and pj is the equilibrium

frequency of codon j, which can be estimated from the sequence

data by several models [Fequal, F164, F364, and F61, reviewed

in 38]. Parameters pj and k characterize the pattern of mutations,

whereas v characterizes selection on nonsynonymous mutations.

Qcodon is used to calculate the transition-probability matrix

P tð Þ~ pij tð Þ
� �

~eQcodon
t

, ð2Þ

where pij(t) is a probability that a given codon i will become j after

time t. Parameters k, t, and v are estimated by maximization of the

log-likelihood function

‘ tð Þ~
X

i

X
j

nij log pipij tð Þ
� �

, ð3Þ

where nij is the number of sites in the alignment consist of codons i

and j. The estimated parameters are then used to calculate dN and

dS [38].

A new method for the simultaneous estimation of
selection intensities in overlapping genes

We follow the maximum likelihood approach of Goldman and

Yang [37,38] to construct a model that accounts for different

selection pressures on the genes in the overlap. We start with the

simplest case, that of opposite-strand phase-0 overlaps. The reason

this is the simplest case is that each codon overlaps only one codon

in the overlapping gene. The substitution of nucleotides in

opposite-strand phase-0 overlaps is specified by the substitution-

rate matrix, Qcodon = {qij}, where qij is the instantaneous rate of

change from codon i to codon j.

qij~

0, if i and j differ at two or three codon

positions,

pj , if i and j differ by a synonymous

transversion in both genes,

kpj , if i and j differ by a synonymous

transition in both genes,

v1pj , if i and j differ by a nonsynonymous

transversion in gene A and synonymous

in gene B,

v2pj , if i and j differ by a nonsynonymous

transversion in gene B and synonymous

in gene A,

v1kpj , if i and j differ by a nonsynonymous

transition in gene A and synonymous

in gene B,

v2kpj , if i and j differ by a nonsynonymous

transition in gene B and synonymous

in gene A,

v1v2pj , if i and j differ by a nonsynonymous

transversion in both genes,

v1v2kpj , if i and j differ by a nonsynonymous

transition in both genes:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð5Þ

Figure 1. Orientations and phases of gene overlap. Genes can
overlap on the same strand or on the opposite strand. The reference
gene in a pair of overlapping genes is called phase 0. Same-strand
overlaps can be in two phases (1 and 2); opposite-strand overlaps can
be in three phases (0, 1, and 2). First and second codon positions, in
which ,5% and 0% of the changes are synonymous, are marked in red.
Third codon positions, in which ,70% of the changes are synonymous,
are marked in blue.
doi:10.1371/journal.pone.0003996.g001

Selection in Overlapping Genes
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The main difference between this model and the single-gene

model is that here we distinguish between two dN/dS ratios (v1 and

v2 for gene 1 and gene 2, respectively). Another difference is the

estimation of codon-equilibrium frequencies. Since the parameters of

codon frequencies characterize processes that are independent of the

selection on overlapping regions, we estimate these frequencies using

the non-overlapping regions of each gene. The calculation of the

transition-probability matrix and the log-likelihood function is done

in the same way as in the single-gene model (equations 2 and 3).

The above model is a simple expansion of the single-gene model

to account for opposite-strand overlaps in phase 0. However, this

model cannot be used in the other four overlap cases, same-strand

phase-1 and phase-2 overlaps and opposite-strand phase-1 and

phase-2 overlaps, because in all these cases a codon overlaps two

codons of the second gene. Therefore, we set the unit of evolution

to be a codon (the reference codon) and its two overlapping

codons, which together constitute a sextet (Figure 2). The sextet is,

therefore, the smallest unit of evolution in overlapping genes. In

our model, each gene constitutes a set of sextets and within each

sextet, only the reference codon is allowed to evolve. Changes in

this codon affect the two overlapping codons. For example,

consider the red and blue overlapping genes in Figure 2a. A

change from G to A in position five (Figure 2a, bold) is illustrated

in Figure 2b for the red gene as a reference and in Figure 2c for

the blue gene as a reference. Restricting changes to the reference

codon only is essential for the model, since changes outside the

reference codon will require the consideration of other overlap-

ping codons outside of the sextet, and so ad infinitum. In addition,

this restriction allows the model to maintain the assumption that

each reference codon evolves independently. For gene A as the

reference gene, we specify the substitution-rate matrix, QA
sextet =

{qA
uv} where qA

uv is the instantaneous rate from sextet u to sextet v

with the codons of gene A as the reference codons:

qA
uv~

0, if u and v differ at two or three codon

positions or at a position outside the

reference codon,

pv, if u and v differ by a synonymous

transversion in both genes,

kpv, if u and v differ by a synonymous

transition in both genes,

v1pv, if u and v differ by a nonsynonymous

transversion in gene A and synonymous

in gene B,

v2pv, if u and v differ by a nonsynonymous

transversion in gene B and synonymous

in gene A,

v1kpv, if u and v differ by a nonsynonymous

transition in gene A and synonymous

in gene B,

v2kpv, if u and v differ by a nonsynonymous

transition in gene B and synonymous

in gene A,

v1v2pv, if u and v differ by a nonsynonymous

transversion in both genes,

v1v2kpv, if u and v differ by a nonsynonymous

transition in both genes:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð6Þ

Similarly, we specify the substitution-rate matrix, QB
sextet = {qB

uv}
for gene B as the reference gene, where qB

uv is the instantaneous
rate from sextet u to sextet v with gene B codons as the reference
codons. These substitution-rate matrixes, QA

sextet and QB
sextet, can

be used to calculate transition-probability matrixes (equation 2).
However, these transition-probability matrixes cannot be used
directly in the maximization of a log-likelihood function
(equation 3) because they do not allow changes between any
two sextets (as required in a Markov process). For example, the
transition probability between sextets AAAAAA and CAAAAA
(where the reference codons at positions 3-5 are underlined)
would be zero for any given time t, because changes at a
position outside of the reference codon are not allowed. A
similar difficulty led Pedersen and Jensen [36] to use a
complicated, computationally-expensive, simulation procedure
to estimate model parameters. Hence, we use QA

sextet and QB
sextet

to construct codon-based substitution-rate matrixes
QA

codon~ qA
ij

� �
and QB

codon~ qB
ij

� �
by summing the rates over

all sextets that share the same reference codon. Similar

approach was used by Yang et al. [39] to construct an amino

acid substitution-rate matrix from a codon substitution-rate

matrix. Let I and J represent the sets of sextets whose reference

codons are i and j, respectively, than, the substitution rate from

codon i to codon j is

qij~
X

u[I ,v[J

quv: ð7Þ

QA
codon and QB

codon are used to calculate a transition-probability

matrix for each of the genes as in equation 2.

PA tð Þ~ pA
ij tð Þ

� �
~eQA

codon
t and PB tð Þ~ pB

ij tð Þ
� �

~eQB
codon

t: ð8Þ

The new transition-probability matrixes are suitable for a

maximization of a log-likelihood function since they allow

transition between each two codons. PA(t) and PB(t) can be used

separately to estimate model parameters in a log-likelihood

function for each gene (equation 3). However, in order to use all

the information in the data, we combine the two transition-

probability matrixes to create the following log-likelihood

function:

Figure 2. a. An overlapping gene pair (red and blue). b. The codon that
is allowed to evolve is marked in red. The substitution in the second-
codon position affects the overlapping codon in blue. c. The opposite
situation in which only the codon marked in blue is allowed to change.
doi:10.1371/journal.pone.0003996.g002
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‘ tð Þ~
X

i

X
j

nA
ij log pA

ip
A

ij tð Þ
� �

z
X

i

X
j

nB
ij log pB

ip
B

ij tð Þ
� �

ð9Þ

Here, pA
i and pB

i are the equilibrium frequency of codons in

gene A and gene B respectively, estimated from the non-

overlapping regions of the genes. nA
ij and nB

ij are the number of

sites in the alignment consist of codons i and j for gene A and gene

B, respectively.

The method was implemented in Matlab and is available at

http://nsmn1.uh.edu/,dgraur/Software.html. Running time is

,7 seconds for a pair of aligned sequences of length 1000 codons.

Similar to the single-gene model, this method can be extended to

deal with multiple sequences in a phylogenetic context and to test

hypotheses concerning variable selection pressures among lineages

and sites [40–42].

Results

Simulation studies
We tested the performance of our new method for simultaneous

estimation of selection intensities in comparison to the indepen-

dent estimation that does not account for gene overlap (as

described in equation 1). We examined the effects of nonsynon-

ymous/synonymous rate ratio in each gene (v1 and v2),

transition/transversion rate ratio (k), and sequence divergence (t).

In all of the methods, we used the F364 model [38] to estimate

codon equilibrium frequencies. For each set of parameters, we

generated 100 replications of random overlapping gene pairs (each

gene was 2000 codons in length with 1000 codons in the overlap)

by sampling codons from a uniform distribution of sense codons.

To simulate the evolution along a branch of length t, we divided

the sequence of the overlapping gene pair into three regions: non-

overlapping region of gene one, non-overlapping region of gene

two, and overlapping region. For the non-overlapping regions, we

calculated the transition-probability matrixes based on the non-

overlapping model in equation 1. For the overlapping region, we

calculated the transition-probability matrixes (based on the

overlapping models in equations 5 and 6). Using the three

probability matrixes, we simulated nucleotide substitutions at each

codon independently [38].

Different selection pressures
To examine the effect of different selection pressures, we

initially set k = 1 and t = 0.35, which result in a sequence

divergence of ,10%. We set v1~0:2 and varied v2 between

0.2 and 2. In Figure 3, we compare the simultaneous estimation of

v1 and v2 (blue line) and the independent estimation (red line) to

the true simulated value (X axis, dashed green line) in the five

types of overlaps. Each data point is the median of 100

replications. We use the median rather than mean since ratios

are not normally distributed. In all overlap types, the estimation of

our method is in near-perfect match to the simulated value (blue

and green lines, Figure 3) and the bias in the independent

estimation of v2 is greater than that of v1.

As expected, we found a similar pattern of bias in all overlap

types except opposite-strand phase 2. In all of these overlap types

(same-strand phase 1, same-strand phase 2, opposite-strand phase

0, and opposite-strand phase 1), the independent estimation of v1

is overestimated for v2v1 and underestimated for v2w1. The

independent estimation of v2 is overestimated throughout the

range of the simulation resulting in the false inference of positive

selection in gene 2, while in reality this gene is under weak

purifying selection. For example, the independent estimation of v2

in same-strand phase 1 is greater than one (apparent positive

selection) for simulated values of v2 between 0.5 and one.

The bias in opposite-strand phase 2 differs from the other

overlap types because this overlap contains positions that are

synonymous in both genes (Figure 1). Because of this factor, the

independent estimation of v1 is underestimated for v2v1 and

overestimated for v2w1. The independent estimation of v2 is

underestimated throughout the range of the simulation, resulting

Figure 3. Simulation results in same-strand (SS) and opposite-strand (OP) overlaps. Estimations of the ratios of nonsynonymous to
synonymous rates in the two genes (v1 and v2) by simultaneous estimation (blue line) and by independent estimation (red line) are plotted against
the true value (X axis, dashed green line) for five types of overlap. The simulated value of v1 was set to 0.2 and v2 was varied between 0.2 and 2. k
was set to 1 and t was set to 0.35. Each data point is the median of 100 replications. Vertical lines mark the lower and upper quartiles. Top: estimation
of v1 . Bottom: estimation of v2 . Dotted black lines (X = 1 and Y = 1) illustrate the range of parameters that result in false inference of positive
selection by independent estimation, i.e., when simulated v2v1 and estimated v2w1.
doi:10.1371/journal.pone.0003996.g003
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in inability to detect positive selection in gene 2 for simulated

values of v2v2.

To compare the magnitude of error in the independent

estimation of each overlap type, we set k = 1, t = 0.35, v1~0:2,

and v2~1. We calculated the mean square error (MSE) for the

independent estimation of v2 (the parameter whose estimation is

most biased) in each overlap type. We use MSE because it

measures both the bias and the variance. The most biased type is

opposite-strand phase 1 followed by both same-strand phase 1 and

phase 2, opposite-strand phase 0, and opposite-strand phase 2

(Table 1). As expected, the magnitude of error among overlap

types is correlated with the proportion of sites in each overlap type

that are synonymous in one gene and nonsynonymous in the

overlapping genes (Table 1).

Transition/transversion rate ratio and sequence
divergence

We tested the influence of transition/transversion rate ratio (k),

and sequence divergence (t) on the performance of the new

method for simultaneous estimation. Focusing on same-strand

phase 1, we set v1~0:2, v2~1 and vary k between 1 and 20, and

t between 0.1 and 1.1. We calculated the MSE for the estimation

of v2. The results of 100 replications suggest that transition/

transversion rate ratio does not affect the accuracy of the method,

whereas the accuracy of the method is reduced for t#0.3

(sequence divergence of ,8% or less, Figure 4). We note that

although our method performs well in high sequence divergence,

the inference of selection can be biased by the reduced quality in

alignment of distant sequences.

Testing the new estimation method on genes from
influenza H5N1 and H9N2 strains

We used the new method to estimate selection pressures in two

cases of overlapping genes in avian influenza A. We chose PB1-F2

and NS1 genes (which overlap with PB1 and NS2, respectively),

because they were previously reported to exhibit values of dN/dS

indicative of positive selection [19,20,25,26]. For each gene, we

collected all the annotated gene sequences from the two most

sequenced subtypes, H5N1 and H9N2 from the NCBI Influenza

Virus Resource [43]. Within each subtype set, we aligned the

overlapping regions of all gene pairs at the amino acid level using

the Needleman-Wunsch algorithm [44]. We used all pairwise

alignments with sequence divergence greater than 5% (since

estimation is less accurate at low divergence rates) to estimate

selection intensities either simultaneously or independently

(Table 2). Using higher cutoffs for sequence divergence did not

affect the results (data not shown). Pairs in which the independent

estimation of dS was zero (leading to infinity value for dN/dS)

Table 1. The mean square error (MSE) of the independent
estimation of selection intensity is correlated with the
proportion of changes that are synonymous in one gene and
nonsynonymous in the overlapping gene (SN changes).

Orientation Phase
Proportion of
SN changes

MSE
Independent

MSE
Simultaneous

Same-Strand 1 47% 1.83 0.04

2 47% 1.94 0.05

Opposite-Strand 0 43% 0.64 0.03

1 63% 3.23 0.06

2 39% 0.40 0.04

doi:10.1371/journal.pone.0003996.t001

Figure 4. The influence of transition/transversion rate ratio (k), and sequence divergence (t) on the performance of the new
method. The mean square error (MSE) is plotted against t for k = 1, 10, and 20 (blue, red, and green, respectively).
doi:10.1371/journal.pone.0003996.g004
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were excluded. In agreement with previous studies, PB1-F2 and

NS1 genes appear to be under positive selection when gene

overlap is not accounted for. However, by using our new method

for simultaneous estimation, these genes seem to be under weak

purifying selection. As predicted by our simulation, the bias in the

independent estimation is dependent on the degree of purifying

selection acting on the overlapping gene, leading to higher bias in

PB1-F2 compared to NS1.

Discussion

Overlapping genes are widespread in all taxa, but are

particularly common in viruses [45]. The sequence interdepen-

dence imposed by gene overlap adds complexity to almost any

molecular evolutionary analysis. Here, we presented a new

method for the estimation of selection intensities in overlapping

genes. By simulation, we verified the accuracy of the method,

tested its limitations, and compared the possible outcomes of

estimating selection without accounting for gene overlap across

different overlap types. We find that estimating selection as if the

genes are independent of one another results in the false

appearance of positive selection. Our model can be used to

identify true functional genes, which are usually under negative or

positive selection, from among hypothetical overlapping ORFs,

which are mainly spurious.
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