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A B S T R A C T

Non-invasive measures of the response of individual patients to cancer therapeutics is an emerging strategy in precision medicine. Platelets offer a potential dynamic
marker for metabolism and bioenergetic responses in individual patients since they have active glycolysis and mitochondrial oxidative phosphorylation and can be
easily isolated from a small blood sample. We have recently shown how the bioenergetic-metabolite interactome can be defined in platelets isolated from human
subjects by measuring metabolites and bioenergetics in the same sample. In the present study, we used a model system to assess test the hypothesis that this
interactome is modified by xenobiotics using exposure to the anti-cancer drug doxorubicin (Dox) in individual donors. We found that unsupervised analysis of the
metabolome showed clear differentiation between the control and Dox treated group. Dox treatment resulted in a concentration-dependent decrease in bioenergetic
parameters with maximal respiration being most sensitive and this was associated with significant changes in over 166 features. A metabolome-wide association
study of Dox was also conducted, and Dox was found to have associations with metabolites in the glycolytic and TCA cycle pathways. Lastly, network analysis showed
the impact of Dox on the bioenergetic-metabolite interactome and revealed profound changes in the regulation of reserve capacity. Taken together, these data
support the conclusion that platelets are a suitable platform to predict and monitor therapeutic efficacy as well as anticipate susceptibility to toxicity in the context of
precision medicine.

1. Introduction

Doxorubicin (Dox), a non-selective class I anthracycline, also known
as Adriamycin, is a common chemotherapeutic used to treat a broad
range of cancers including leukemia, multiple myeloma and cancers of
the breast [1–3]. Dox was first isolated from Streptomyces peucetius in
the 1960s and approved for medical use in the United States in 1974
[4]. Although several formulations of Dox are in use, the occurrence of
dose limiting side effects remains relatively high [5]. The antineoplastic
properties of Dox are attributed to its ability to intercalate into nucleic
acids [6] leading to DNA/RNA damage and inhibition of macro-
molecule synthesis [7]. Dox crosses the cell membrane by passive dif-
fusion [8–10] and accumulates in the nuclear compartment and the
mitochondria [11]. In addition to passive diffusion the organic cation
transporter SLC22A16, which is expressed in many cancers, also con-
tributes to cellular uptake of Dox.

Pharmacokinetic studies of Dox show a rapid uptake by tissue fol-
lowing a single intravenous injection but a slow tissue elimination with
a half-life of up to 48 h and a maximum serum concentration (Cmax) in
the low micromolar range [7]. Doxorubicin undergoes three metabolic
fates with 50% of the administered dose remaining as the parent

molecule. Dox is primarily metabolized to doxorubicinol (Dox-ol) via a
two-electron reduction mediated by carbonyl reductase [12,13]. A
second metabolic route involves an enzymatically driven one-electron
reduction of the quinone functional group by nitric oxide synthase,
NADPH cytochrome P450 reductase and other oxidoreductases, leading
to the formation of a semiquinone radical. Molecular oxygen (O2) can
then oxidize the Dox semiquinone radical to form superoxide (O2˙-) and
hydrogen peroxide (H2O2) [2,14] contributing to oxidative stress and
macromolecule-damage. The final metabolic route of Dox involves the
deglycosidation of the parent compound by microsomal reductases to
form doxorubicinone (Dox-one), doxorubicinolone (Dox-olone), and 7-
deoxy-doxorubicinolone (7-Dox-olone) [7,15,16]. This route accounts
for a small fraction of Dox metabolism and has been linked to changes
in human erythrocytes energy metabolism as seen by a shift in the
pentose phosphate pathway and inhibition of antioxidant enzymes
[17].

Although Dox is widely used as an anti-tumor agent, its use is as-
sociated with serious side effects ranging from cardiotoxicities to
thrombocytopenia [5,18–20]. Dox mediates tumor cell death via in-
hibition of topoisomerase I and II and activation of apoptosis [6]. This
mechanism also occurs in non-cancer cells, mediated by a p53-
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dependent signaling pathway [10], and leads to cardiomyopathy. Dox-
induced cardiotoxicity has also been ascribed to mitochondrial cyto-
chrome c release and permeability transition pore opening [21]. Longer
exposures have been linked to decreased expression of mitochondrial
proteins, and the redox signaling of the semiquinone exacerbates re-
active oxygen species production further activating the apoptotic cas-
cade [21,22]. Furthermore, Dox can form complexes with cardiolipin, a
mitochondrial inner membrane phospholipid important for allosteric
regulation of mitochondrial enzymes [2,23] and intercalation with
mitochondrial DNA [11].

Dox-induced thrombocytopenia and destruction of mature platelets
[6,18,21] suggests that they may be useful to monitor Dox effects on
mitochondrial function. Platelets are enucleated cells derived from
megakaryocytes and have a lifetime circulation of approximately 10
days in the blood [24,25]. Although platelets do not contain a nucleus,
they do contain RNA transcripts and other RNAs acquired during cir-
culation [26] and contain mitochondria which are essential for platelet
function [27]. Interestingly, it is now becoming clear that platelets can
serve as biomarkers for mitochondrial dysfunction and the metabolome
is predictive of bioenergetic function [28,29]. Indeed, platelet bioe-
nergetics have been shown to be potential biomarkers for the clinical
severity of sickle cell disease, asthma, Alzheimer's and Parkinson's
disease [30–32]. These findings raise the possibility that platelet bioe-
nergetics can also serve to monitor the potential dose limiting toxicity
of therapeutics, such as Dox, which have side effects mediated by their
effects on metabolism.

In a recent study combining the mitochondrial stress test (MST)
with high-resolution metabolomics, we found that subsets of metabo-
lites, including fatty acids and xenobiotics correlated with mitochon-
drial parameters, establishing platelets as a platform to integrate
bioenergetics and metabolism for analysis of mitochondrial function in
precision medicine [29]. In the current study, we reasoned that the
mitochondrial response to stress will be modulated by the activity of
metabolic pathways prior to exposure to a therapeutic agent. If so,
differences in the platelet metabolome between individuals could
contribute to variability in the bioenergetic profiles of the intact pla-
telet and therefore support use of platelet bioenergetic-metabolite in-
teractome to predict and monitor therapeutic effects. This concept was
addressed by measuring mitochondrial bioenergetic parameters among
platelet donors in the presence and absence of Dox and integrating
these data with non-targeted metabolomics. We found that the pre-
treatment basal metabolome was correlated with maximal respiration,
the response to Dox and its metabolism. These data provide the foun-
dation for not only understanding Dox-mediated platelet toxicity but
also contribute to precision medicine-based chemotherapies.

2. Materials and methods

2.1. Chemicals

All reagents were purchased from Sigma-Aldrich (St. Louis, MO,
USA) unless otherwise specified. A mixture of internal standard stable
isotopic chemicals [33,34] was purchased from Cambridge Isotope
Laboratories, Inc. (Andover, Pennsylvania).

2.2. Platelet isolation

Platelet concentrates collected from individual donors were ob-
tained from the University of Alabama at Birmingham blood bank and
used between days 6–8 after collection. Platelet activation during pre-
paration is suppressed by the inclusion of Prostaglandin I2 and any
potential activation was assessed by microscopy [35]. In this study no
platelet samples were excluded due to activation. Collection and use of
these samples was approved by the University of Alabama at Bir-
mingham Institutional Review Board (Protocol #X110718014). Plate-
lets used for these studies were between day 6 and 8 after collection or

freshly isolated as described previously [35,36]. In brief, platelets were
pelleted by centrifuging at 1500 g for 10 min then washed with PBS
containing prostaglandin I2 (1 μg/ml) and platelet number was de-
termined by turbidimetry [37]. Prostaglandin I2 is included in the
washing buffer to prevent activation during platelet preparation. The
platelets for the experiments were isolated from 14 individual donors
and data are reported for all patients for metabolomics and for 13 for
cellular bioenergetics due to the failure of one assay. Platelet ag-
gregation using the 96-well plate reader was measured as previously
described [38].

2.3. Doxorubicin treatment

For both bioenergetics and metabolomics studies, Dox stocks
(20 mM in MilliQ water) were diluted to a 10-fold working solution in
XF DMEM assay media (pH adjusted to 7.3). All assays described below
were performed in parallel with each other. Vehicle controls was XF
assay media alone.

2.4. Platelet bioenergetics and mitochondrial function

The 96-well format Seahorse extracellular flux analyzer (Seahorse
Bioscience, MA, USA) was used to measure bioenergetics [36]. Platelets
were diluted to a concentration of 1 × 107 in 75 μl XF DMEM assay
buffer (DMEM with 1 mM pyruvate, 5.5 mM D-glucose, 4 mM L-gluta-
mine, pH 7.4) and were seeded onto Cell-Tak coated XF96 microplates
and the mitochondrial stress test was performed as described [39]. The
mitochondrial complex assay is performed using Plasma Membrane
Permeabilizer (PMP) with injection of respiratory substrates with or
without ADP [40].

2.5. High-Resolution Metabolomics (HRM)

For metabolic measurements, a protocol similar to the bioenergetic
measurements was used [29], and untargeted metabolomics was per-
formed using previously established HRM methods [41–44]. Washed
platelets were diluted to a concentration of 1 × 108/well in 0.75 ml
DMEM assay buffer (DMEM with 1 mM pyruvate, 5.5 mM glucose,
4 mM glutamine, pH 7.4) and treated and were incubated with vehicle
control or Dox (25 μM) for 3 h at 37 °C in a non-CO2 humidified in-
cubator. Platelets were then washed with cold PBS and the proteins
precipitated using acetonitrile (50 μl) containing a mixture of stable
isotope-labeled internal standard [33,34]. Pooled platelets (3 × 108

platelets from 3 wells) in 150 μl of acetonitrile containing internal
standard were incubated on ice for 10–15 min and precipitated proteins
removed by centrifugation for 10 min at 13,000 rpm. The extraction
protocol and the solvent are chosen to effectively clamp the metabolites
which is verified by our previous study using oligomycin as a positive
control [29]. Samples were randomized to minimize effects of instru-
mental drift during analysis, and 10 μL aliquots were analyzed with
three technical replicates using reverse-phase C18 liquid chromato-
graphy (Targa C18 2.1 mm × 50 mm x 2.6 μm, Higgins Analytical)
combined with a High-Field Q-Exactive mass spectrometer (Thermo
Fisher). Mass spectral detection completed in negative mode electro-
spray ionization (ESI) at 120,000 (FHWM) resolution over a mass-to-
charge ratio (m/z) range of 85–1250. A quality control pooled reference
plasma sample (Q-Std3) was included at the beginning and end of each
batch of 25 samples for quality control and quality assurance [45]. Raw
data files were extracted using apLCMSv6.3.3 [46] with xMSanaly-
zerv2.0.7 [47], followed by batch correction with ComBat [48]. Un-
iquely detected ions consisted of m/z, retention time (RT) and ion
abundance, are referred to as metabolic features.

2.6. Data processing and metabolic feature selection

Prior to data analysis, triplicate injections were averaged and only
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m/z features with at least 80% non-missing values in either of the
groups and more than 40% non-missing values across all samples were
retained. After filtering based on missing values, data were log2
transformed and quantile normalized [49]. Selection of differentially
expressed m/z features was performed based on one-way repeated
measures ANOVA, using the limma package in R [50]. For the meta-
bolome-wide association study of Dox, metabolic features which were
correlated with Dox were selected using linear regression analysis and
transformed as described above. Benjamini-Hochberg false discovery
method was used for multiple hypothesis testing corrections at a
FDR < 0.2 threshold [51]. Visualization of the data, which was based
on similarity in expression, was performed using unsupervised two-way
hierarchical clustering analysis (HCA) utilizing the hclust() function in
R to determine the clustering pattern of selected m/z features and
samples. Principal component analysis (PCA) was performed using the
pca() function implemented in R package pcaMethods.

2.7. Pathway enrichment analysis

To evaluate metabolic alterations at a systems level metabolome-
wide association analysis was performed for discriminatory metabolites
at p < 0.05 and characterized for pathway enrichment using mum-
michog v1.0.10 software [52]. For this analysis, features differing at
p < 0.05 were selected to protect against type 2 error, and permuta-
tion testing (p < 0.05) was used in pathway enrichment analysis to
protect against type 1 error [53]. Pathways including minimum 4
matched metabolites in total size were selected and annotated using the
criteria described below.

2.8. Metabolite annotation

Metabolic features were annotated using xMSannotator [54]; con-
fidence scores for annotation by xMSannotator are derived from a
multistage clustering algorithm. Identities of selected metabolites were
confirmed by co-elution relative to authentic standards and ion dis-
sociation mass spectrometry (Level 1 identification by criteria of
Schymanski et al. [55]. Supplemental annotations were made based on
high or medium confidence (≥4) with M-H adducts detected in the
negative mode. Lower confidence annotations were made using KEGG,
(Kyoto Encyclopedia of Genes and Genomes) [56]; HMDB (Human
Metabolome Database) [57]; T3DB [58], and Lipid Maps [59] databases
at 5 ppm tolerance.

2.9. xMWAS

Bioenergetic and HRM data from the same set of samples were in-
tegrated by using xMWAS based on the sparse partial least-squares
(sPLS) regression method for data integration [60]. sPLS is a regression-
based modeling approach which performs simultaneous variable se-
lection and data integration, and is designed for problems where the
sample size (n) is much smaller than the number of variables (p) and
the variables are highly correlated [61]. In addition, xMWAS performs
community detection using the multilevel community detection algo-
rithm [62] to identify groups of nodes that are heavily connected with
other nodes in the same community, but have sparse connections with
the rest of the network. The input for xMWAS included the cellular
bioenergetics (13 samples × 6 energetic parameters) and the metabo-
lome (13 samples x 3240 metabolic features) for the vehicle control
group and (13 samples × 6 energetic parameters) and the metabolome
(13 samples x 3263 metabolic features) for the Dox treated group,
which had been quantile normalized and log-transformed). Thresholds
for determining significant associations met the correlation threshold
criteria (|r| > 0.6) and p < 0.05 as determined by Student's t-test.

2.10. Bubble plots

Generation of the bubble plot, a visualization tool for metabolic
pathways found to be associated with bioenergetic parameters, was
performed using the R script corrplot() [63]. For these analyses, me-
tabolic features which were previously found to be significant using the
xMWAS correlation criteria, previously described in the xMWAS
methods, were input into mummichog v1.0.10. Pathway analysis was
performed for each bioenergetic parameter independently, and sig-
nificant pathways were selected using the criteria previously described
within the pathway enrichment methods. Both the size as well as the
color of the bubble represent the pathway significance level based on
the -Log10P value.

2.11. Statistical analysis

The data reported in the metabolomics analyses are derived from
platelets isolated from 13 or 14 different donors. Each platelet group
was comprised of 3–5 technical replicates, and the data is presented as
mean ± SEM. Statistical significance was determined using either a T-
TEST or ANOVA with Tukey's post hoc test for data with more than 2
groups, and p < 0.05 was considered significant. The linear correla-
tion between multiple pairs of bioenergetic parameters were de-
termined using the multivariate function of the JMP statistical program
(JMP®, Version 13, SAS Institute Inc., Cary, NC). A correlations (r-va-
lues) table that summarizes the strength of the linear relationships
between each pair of bioenergetic parameters and a table with corre-
sponding p-values were generated to identify significant dependencies
between parameters. Data for |r| ≥0.4 and p ≤ 0.01 were considered
significant.

3. Results

3.1. Effect of Dox treatment on platelets bioenergetics

To assess the impact of Dox on bioenergetics platelets were pre-
treated for 3 h with increasing concentrations of Dox before the mi-
tochondrial stress test (MST) was used to measure the oxygen con-
sumption rate (OCR) and extracellular acidification rate (ECAR) [64]. A
representative trace for a single individual is shown in Fig. 1A. The
control platelets showed the expected response to oligomycin with a
suppression of basal OCR which was reversed on addition of the un-
coupler FCCP [64]. Antimycin inhibited OCR below post-oligomycin
levels and 2-DG, an inhibitor of glycolysis, had no additional effect on
OCR. Also shown in Fig. 1A and B is the concentration dependent effect
of Dox (0–25 μM) on intact platelet bioenergetics. The MST parameters
were calculated to characterize cellular bioenergetics [65] and showed
(Fig. 1B) that the lowest concentrations of Dox suppressed reserve ca-
pacity and maximal respiration and an effect on ATP linked respiration
was apparent at the 25 μM concentration. This concentration is a rea-
sonable approximation for the higher range in human subjects treated
with Dox which have a reported Cmax of 11–19 μM [66]. Platelet ECAR
or platelet aggregation was not significantly changed by Dox treatment
(results not shown).

The same protocol shown in Fig. 1 was used to determine the
average response to Dox in platelets from 13 individual donors and is
shown for the 25 μM Dox concentration in Fig. 1 (Panels C–G). All
bioenergetic parameters were significantly decreased after 25 μM Dox
treatment. We noted that both the pre and post-Dox treatment OCR
values varied significantly between individuals. For example, the extent
of Dox-dependent inhibition ranged from 30 to 70% decrease in basal
OCR, 30–75% decrease in ATP-linked OCR, 50–80% decrease in max-
imal OCR and as little as a 20% decrease to complete loss of reserve
capacity among the 13 individuals tested (Fig. 1H–K). Our previous
studies suggested that the parameters from the mitochondrial stress test
represent an integrated metabolic profile [67] and this can be
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Fig. 1. Doxorubicin inhibits mitochondrial respiration. (A) Platelets from a representative donor are shown with and without incubation with Doxorubicin (Dox)
(0–25 μM) for 3 h after which a mitochondrial stress test was performed by first measuring basal OCR, followed by sequential injection of oligomycin (Oligo) (1 μg/
ml), FCCP (0.6 μM), antimycin A (AntiA) (10 μM) and 2-deoxyglucose (50 mM). (B) The Dox concentration dependent inhibition of Basal, ATP linked, Maximal and
Reserve Capacity. Data is represented as the mean ± SEM for 5–6 technical replicates for this donor. Data from 13 individual donors are shown for (C) basal (basal
OCR – AA OCR), (D) ATP-linked (AL) (basal OCR – oligomycin OCR), (E) maximal (FCCP OCR – AA OCR), (F) reserve capacity (RC) (FCCP OCR – basal OCR) (G)
proton leak (PL) (oligomycin OCR – AA OCR), calculated and are expressed as mean ± SEM with each dot representing the average data from a single donor,
n = 5–6 replicates for each parameter. (H–K) Decrease (% of pre-Dox value) for each donor for basal (H), ATP linked (I) Maximal (J) and Reserve Capacity (K) after
treatment with 25 μM Dox.
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demonstrated using a multi-variate analysis for the parameters from the
MST in the presence or absence of 25 μM Dox (see Table 1 and Fig. 2).

In untreated control platelets significant relationships were evident
between basal vs ATP linked respiration, basal vs. maximal, ATP linked
vs maximal, and maximal vs reserve capacity (Fig. 2, Table 1). Basal vs
reserve capacity OCR were not significantly related. Taken together
these data confirm our previous findings that there is a wide normal
range for platelet bioenergetics in healthy donors with several inter-
esting features [29]. After Dox treatment, these relationships were
largely preserved, but with a lower range of activities, as shown gra-
phically in Fig. 2. Analysis of this data revealed that after Dox treatment
the range of OCR for ATP linked and basal was narrowed (also evident
from Fig. 1) consistent with a lower capacity to generate ATP. Inter-
estingly significant relationships exist between the Dox metabolite and
the % change in the bioenergetic parameters in individual platelet
samples (Table 2). Dox and the Dox metabolite, Doxorubicinone) cor-
relate positively with Basal and ATP-linked OCR whereas Reserve Ca-
pacity is negatively correlated with Dox levels. These data are con-
sistent with a mechanism in which the Reserve Capacity is being used in
response to the redox cycling of Dox. In addition, these data confirm
our previous findings in other cell types that in response to oxidative
stress, basal OCR increases with a corresponding decrease in Reserve
Capacity [67,68]. Dox levels in the individual platelet samples ranged
from 3.54 × 108 ± 2.06 × 108 to 1.43 × 109 ± 1.1 × 108 and its
aglycone metabolite doxorubicinone from 2.71 × 107 ± 9.15 × 105 to
1.73 × 108 ± 3.83 × 107 which suggest that a significant variability
exist between individuals in the ability to metabolize doxorubicin and is
related to the susceptibility to mitochondrial damage.

3.2. The effect of Dox treatment on the platelet metabolome

Samples of platelets were prepared for untargeted metabolomics
with and without exposure to 25 μM Dox for 3 h under the same con-
ditions used for the bioenergetic measurements. 2831 features (distinct
m/z values) were identified in both the control and Dox treated sam-
ples. Using the KEGG metabolic pathway mapping program a total of 48
pathway matches were found which included metabolites associated
with platelet activation as well as fatty acid and arachidonic acid me-
tabolism which are strongly associated with platelet function after Dox
treatment (Supplementary Table 1).

Next, we examined metabolic responses of the platelets to Dox
treatment. ANOVA on the 2831 features revealed 166 features were
changed after Dox treatment (p < 0.05 at FDR of 0.2) and are pre-
sented by hierarchical clustering analysis-heat map (Fig. 3A) and PCA
plots (Fig. 3B). Manhattan plots, based upon RT, m/z and abundance of

metabolites show that of the 166 metabolites, 68 metabolites were
higher and 98 metabolites were lower in Dox-treated platelets com-
pared to the control group (Fig. 3C,D). Supplementary Table 2 shows
detailed information on 68 annotated metabolites. To examine the
metabolic pathways altered by Dox treatment, pathway enrichment
analysis was performed using mummichog. The results showed that
metabolites from the prostaglandin formation from both arachidonate,
as well as CoA, TCA cycle, fatty acid, purine, cholesterol, and urea cycle
pathways were enriched by Dox treatment (Fig. 3E). The detailed in-
formation on metabolites associated with these pathways is provided in
Supplementary Table 3. These data are consistent with inhibition of
bioenergetic function by Dox in intact platelets. Selected metabolites
from these pathways are shown in Fig. 4. For prostaglandin formation
we observed that PGC1 (4A) was decreased, and similar observations
were made for purine metabolite hypoxanthine (4B) which was also
decreased. The CoA catabolism metabolite pantothenate (4C) was
found to be increased after Dox treatment, which was also observed for
acetoacetate (4D), and the TCA cycle metabolites, oxalosuccinate (4E)
and cis-aconitate (4F). We also observed Dox (4G) and its metabolite
doxorubicinone in the Dox treated group, showing that platelets me-
tabolize Dox. We also found a number of metabolic features which were
highly enriched in the Dox samples; however, many did not have
known matches to public available databases, and are reported in
Table 3.

3.3. Baseline metabolic pathways associated with subsequent response to
Dox

Based on previous evidence for sub-clustering of metabolic profiles
in untreated platelets [29], we hypothesized that the metabolic re-
sponse of platelets to Dox could be influenced by the baseline metabolic
status. In the vehicle control heat map in Fig 3A the dendrogram reveals
2 main sub-clusters (S-SC1 and S-SC2) which we hypothesized would
respond differently to Dox. To test this, we used these subject sub-
clusters in the vehicle group and used it to segregate the Dox total
metabolome data between the 2 groups. An ANOVA analysis was then
used to identify metabolites which were significantly different between
SC. ANOVA of the respective metabolic data following Dox treatment
showed that 567 features differed between S-SC1 and S-SC2 groups as
shown in the HCA-heat map (Fig. 5A). PCA for these metabolites
showed complete separation of the sub-clusters, with 66% of variation
associated with PC1 and PC2 (Fig. 5B). Manhattan plots showed that of
the 567 metabolites, 342 metabolites were lower and 225 metabolites
were higher in Dox-treated platelets of S-SC1 compared to the Dox
treated platelets of S-SC2 (Fig. 5C; D). Annotation and details of these

Table 1
Platelet bioenergetic parameters with and without Dox treatment.

Basal AL PL Maximal RC NM

Basal
AL 0.9505*
PL 0.4892 0.1945
Maximal 0.7315* 0.7994* 0.0748
RC 0.2584 0.3927 −0.2737 0.8477*
NM 0.5060 0.4800 0.2532 0.1407 −0.1967 1.0000

Correlation between the platelet bioenergetic parameters following Dox (25 μM) treatment
Basal AL PL Maximal RC NM

Basal
AL 0.9465*
PL 0.5790* 0.2852
Maximal 0.8108* 0.7877* 0.4258
RC 0.0719 0.1005 −0.0281 0.642*
NM 0.3779 0.3204 0.3031 0.0649 −0.3818

Table 1 provides the Pearson correlation coefficients (r values) calculated using the multivariate platform of JMP statistical program and shows the strength of the
linear relationships between each pair of variables. * indicates p ≤ 0.05.
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features are provided in Supplementary Table 4. Further examination of
the magnitude of effect of Dox on MST bioenergetic parameters in sub-
clusters 1 and 2 showed that platelets from sub-cluster 2 showed sig-
nificantly less effect of Dox on basal, ATP and maximal OCR (Fig. 5 E-
F). The results also showed differences in abundance between the
groups for Dox and doxorubicinone, with characteristics suggesting that
sub-cluster 2 had considerably greater Dox elimination rate (or lower
uptake rate) than sub-cluster 1and lower toxicity (Fig. 5H; I).

3.4. Data-driven integrative network analysis of MST and metabolic
responses using xMWAS

To gain an understanding of the differences in respiration-linked
metabolic changes that occur in response to Dox, we used data-driven
analysis with xMWAS. The associations between bioenergetics and the
metabolome for vehicle-treated platelets (Fig. 6A) and Dox-treated
platelets (Fig. 6B) revealed profound differences in metabolic organi-
zation. In this representation, the vehicle analysis revealed 4

Fig. 2. Relationships between bioenergetic parameters from the mitochondrial stress test (MST) with and without doxorubicin. Using the data shown in
Fig. 1 a correlation analysis was performed using the JMP statistical program to assess the linear relationships between the bioenergetic parameters derived from the
MST with and without 25 μM Dox. The bivariate plots of basal OCR and ATP-linked OCR (A), reserve capacity and maximal OCR (B), basal OCR and maximal OCR
(C), ATP-linked OCR and maximal OCR (D) and basal OCR and reserve capacity (E) are shown. The r values, the measure of strength of linear relationships and results
of the significance tests for these data are reported in Table 1.
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communities, which had closely related interactions and were desig-
nated by different colors. Community 1 (orange) had 117 metabolic
features associated with reserve capacity, while community 2 (blue)
had 143 metabolic features associated with maximal respiration.
Community 3 (yellow) had 112 feature associations with both basal and
ATP-linked respiration. Community 4 (green) had 7 features which
were associated with non-mitochondrial respiration as well as proton
leak (Fig. 6A). In comparison, the Dox network had only 3 commu-
nities; communities 1 (green) and 3 (orange) had the highest number of
associations. Basal and ATP-linked OCR had 239 metabolic associations
and maximal respiration had 138 metabolic features. Community 2
(blue) associated with both non-mitochondrial and reserve capacity,
had an increased number of 27 metabolic features compared to control
(Fig. 6B). A complete listing of the positive and significant relationships
between metabolites and bioenergetic parameters for both conditions is
provided in Supplementary Table 5 a; b.

For both vehicle and Dox-treated platelets, clusters associated with
basal and maximal respiration were most central in the network
structures (see Fig. 6A, C3 and C2; Fig. 6B, C1 and C3, respectively).

Table 2
Relationships between bioenergetic parameters in the individual platelet sam-
ples prior to Dox treatment and the Dox metabolites.

Correlations

Basal AL PL Max Res Cap NonMito

Dox 0.6504 0.698 −0.0738 0.0518 −0.6783 0.2246
Doxorubicinone 0.5413 0.5686 −0.3219 0.3002 −0.2234 0.2219

Correlation Probability
Basal AL PL Max Res Cap NonMito

Dox 0.022 0.0116 0.8197 0.873 0.0153 0.4828
Doxorubicinone 0.0692 0.0537 0.3076 0.3431 0.4851 0.4881

Table 2 demonstrates the relationship between bioenergetic parameters and the
unchanged Dox parent compound or Dox metabolites, such as doxorubicinone.
The Pearson correlation coefficients were calculated using the JMP statistical
program. * indicates p ≤ 0.05.

Fig. 3. Metabolic separation of features
after treatment to Dox in human plate-
lets. (A) Unsupervised hierarchal clustering
heatmap indicate that intensity of 166 fea-
tures which drive the separation between
vehicle control and Dox treated groups.
Subject sub clusters 1 and 2 are indicated in
the vehicle group. (B) PCA plot showing
separation of the vehicle control group
(shown in green) and BaP exposed group
(shown in red), through the 1st and 2nd
principal components. (C) Type I
Manhattan plot of m/z features plotted
against the –Log10P value. Shown in gray
are the 2831 features identified after fil-
tering and normalization. 166 features were
found to be different between the two
groups using the criteria (p < 0.05,
FDR < 0.2) as indicated by the blue dotted
line. Shown in red were features identified
to be increased after Dox exposure (68/166)
and in blue features which were decreased
(98/166). (D) Type II Manhattan plot using
time plotted against –Log10P value. (E)
Pathway enrichment analysis of stored
human platelets after Dox exposure com-
pared to vehicle control. A total of (7/119)
enriched pathways were determined (Filled
gray bars indicate significance and the
cutoff (p < 0.05) is indicated by the dotted
line). (For interpretation of the references to
color in this figure legend, the reader is re-
ferred to the Web version of this article.)
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Among the most obvious differences between vehicle control and Dox-
treated network structures was the loss of the large cluster of metabo-
lites associated with reserve capacity following treatment with Dox
(Compare Cluster 1 in Fig. 6A with Cluster 2 in Fig. 6B). In the vehicle
treated group (Fig. 6A), the metabolites that are correlating with non-
mitochondrial (C4) do not correlate with Reserve Capacity whereas the
Dox treatment generates stronger relationships (both positive and ne-
gative) between non-mitochondrial and Reserve Capacity (Fig. 6B). The
strength of the interactions, the closeness and commonality of the
metabolites in influencing non-mitochondrial and Reserve Capacity
places them under one community which suggests a mechanistic asso-
ciation between the two bioenergetic parameters during stress. Al-
though no direct correlation exist between non-mitochondrial and ATP
linked in the vehicle treated group (Fig. 6A), the Dox treatments in-
duces a realignment of the interactome map where common metabo-
lites correlating with non-mitochondrial and ATP linked (Fig. 6B) exist.
Another difference was that Dox treatment induced a greater number of

metabolic associations with basal and maximal respiration. Proton-leak
and non-mitochondria-linked respiration had few metabolic associa-
tions following either vehicle or Dox-treatment.

Because of the differences in the community network structure be-
fore and after Dox treatment, we sought to determine what metabolic
pathways were associated with the mitochondrial bioenergetic para-
meters. Using pathway enrichment analysis for each bioenergetic
parameter independently, we determined that a total of twenty-seven
metabolic pathways were significantly associated with the bioenergetic
parameters for both vehicle control and Dox treated networks. We then
utilized bubble plots to visualize the results for the respective treatment
conditions (Fig. 7). Both the size and color of each bubble represents
pathway significance, based on the -Log10P values, between the meta-
bolic pathways (left vertical-axis) and the respective bioenergetic
parameter (horizontal-axis).

We determined that 11 of the 27 metabolic pathways identified
were in the vehicle treated bioenergetics, and 7 of those pathways were

Fig. 4. Comparison of selected metabo-
lites between the vehicle and doxor-
ubicin groups. Representative metabolites
were selected from mummichog pathway
enrichment analysis. Data shown are mean
and standard deviation for spectral in-
tensities of Dox and vehicle groups. A.
Prostaglandin C1 (PGC1; m/z 395.2468,
195s), B. Hypoxanthine (m/z 136.0166,
40s), C. Pantothenate (m/z 218.1032, 26s),
D., Acetoacetate (m/z 101.0244, 45s), E.
Oxalosuccinate (m/z 189.0038, 33s), and F.
cis-Aconitate (m/z 174.0126, 36s).
Metabolites of Dox metabolism were also
annotated, which data shown as mean and
standard deviation for spectral intensities of
Dox and vehicle groups. G. Dox (m/z
542.1663, 58s), and Doxorubicinone
(Doxone, m/z 395.0773, 57s).
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associated with Reserve Capacity. These pathways included fatty acid,
linoleate, glycerophospholipid, arachidonic acid, retinal, and sex-
steroid metabolic pathways. We also found that ATP-linked respiration
was linked with methionine and cysteine metabolism, while basal re-
spiration was associated with cytochrome P450 and hexose metabo-
lism. Maximal respiration was also associated with fatty acid, and li-
noleate metabolism as well as xenobiotic metabolism. These results
show that fatty acid metabolism is highly associated with bioenergetics,
which is supported by previous findings by our group in other studies
using human platelets [69].

Treatment with Dox caused metabolic perturbation as many of the
metabolic associations found in the vehicle treatment were lost. We
identified that 20 of the 27 total metabolic pathways were associated
with Dox treated bioenergetic conditions, and that 16 of these 20 were
associated with basal respiration. These pathways included amino
acids, selenoamino acids, sugars, xenobiotics, pyrimidine, pentose and
glucoronate, glycerophospholipid, folate, propanoate, cholesterol and
squalene, linoleate, N-glycans, and lastly glycolysis. Selenoamino acid,
folate, and propanoate were also found to be associated with ATP-
linked respiration. Xenobiotic, folate and propanoate metabolism were
also found to be associated with maximal respiration; however, unique
metabolic pathways for maximal included glutamate and glycine amino
acids, nicotinate, and vitamin E metabolism.

4. Discussion

Metabolomics is emerging as an important tool for defining how
individuals in human populations differ between each other and as a
basis to predict outcomes for pathological processes or the response to
treatments. For example, studies of the plasma metabolome in sepsis
patients have identified lactate, alanine and lipid metabolites as mar-
kers related to clinical outcome [70,71]. Plasma metabolites can ori-
ginate from different cells and organs, however, and this limits ability
to relate metabolites in plasma to defined changes in bioenergetics or
metabolism. In this respect, platelets offer an interesting platform be-
cause they provide a metabolically active cell fragment subject to the
systemic stressors associated with pathology or environmental exposure
in which both bioenergetics and metabolomics can be measured
[28,29,64,72,73]. Furthermore, since platelets are without a nucleus,

they have a limited capacity for repair and accumulate damage. Con-
sequently, platelets can serve as a real-time sensor of metabolic stress.

The potential of platelets to act as a biomarker for disease or an
indicator of the susceptibility to disease has been well recognized
[30,73,74]. Indeed, recent data showed that in non-human primates
brain glucose metabolism correlates with platelet energetics in the same
individuals [74]. These findings are critically important in identifying
biomarkers for the progression of Alzheimer's and other age-related
diseases. Another important idea is that metabolic status sampled at
any given time is determined by the interactions with our genetic
profile and environment/diet. The pre-programmed metabolic plasti-
city can then impact the susceptibility to developing diseases afflicting
the developing world such as diabetes [75]. Interestingly, the variation
in basal bioenergetic parameters and the metabolome is a representa-
tion of an individual's variation in metabolic health and is defined by
the bioenergetic-metabolite-interactome [29]. These concepts raises the
important question of whether the healthy metabolome prior to ex-
posure to a pathological or environmental stressor can be used to pre-
dict the severity of the response.

In the present study we addressed this question using a model
system in platelets from healthy donors exposed to the widely used anti-
cancer drug Dox. The baseline bioenergetic parameters from the MST
showed the expected variation among individual donors (Figs. 1 and 2).
Interestingly, several of the parameters from the MST are well corre-
lated among a population of healthy donors. This is important and
supports our previous proposal that the MST represents an integrated
metabolic program designed to meet both the resting and increased
demands on the cell during normal physiology [29,67]. For example,
we have shown that reserve capacity is essential in combatting the ef-
fects of oxidative stress [65,68,76]. The limits of the plasticity may then
be an important factor in the capacity of an individual to combat stress
and contribute to the variable outcomes in a population exposed to a
pathogen, pathological processes or environmental stressors. It then
follows that if we can assess this, we may be able to use metabolomics
and bioenergetics as translational biomarkers for predicting the onset
and progression of pathologies such as Alzheimer's disease or the dose
limiting therapeutic levels for individual patients for drugs such as Dox.
In this study we applied a widely used cancer chemotherapeutic to
assess the impact on the bioenergetic-metabolite interactome in

Table 3
Unidentified Metabolic Features which are highly enriched with Dox Treatment.

No m/z RT (s) Chemical_ID Annotation Score Formula Name Adduct P value Fold Change

1 542.1663 58 C01661 4 C27H29NO11 Doxorubicin M-H 4.16E-11 ∞
2 544.1723 58 C01661 4 C27H29NO11 Doxorubicin M-H [+2] 1.37E-19 ∞
3 377.067 59 5 C21H14O7 Doxorubicin Impurity 14 M-H 2.21E-18 ∞
4 395.0773 57 5 C21H18O9 Doxorubicinone M-H2O–H 3.52E-16 ∞
5 335.0547 183 Unknown Unknown Unknown Unknown Unknown 5.67E-12 ∞
6 336.0594 179 Unknown Unknown Unknown Unknown Unknown 7.16E-14 ∞
7 396.0808 59 Unknown Unknown Unknown Unknown Unknown 2.56E-17 ∞
8 397.0829 56 Unknown Unknown Unknown Unknown Unknown 5.36E-16 ∞
9 407.3167 207 Unknown Unknown Unknown Unknown Unknown 2.68E-11 ∞
10 415.013 58 Unknown Unknown Unknown Unknown Unknown 1.13E-13 ∞
11 416.0165 62 Unknown Unknown Unknown Unknown Unknown 2.03E-16 ∞
12 543.1697 59 Unknown Unknown Unknown Unknown Unknown 2.01E-11 ∞
13 578.1447 54 Unknown Unknown Unknown Unknown Unknown 1.12E-17 ∞
14 579.1476 54 Unknown Unknown Unknown Unknown Unknown 2.03E-17 ∞
15 580.1391 50 Unknown Unknown Unknown Unknown Unknown 1.18E-17 ∞
16 600.128 56 Unknown Unknown Unknown Unknown Unknown 5.53E-16 ∞
17 601.1287 54 Unknown Unknown Unknown Unknown Unknown 2.66E-16 ∞
18 602.1213 53 Unknown Unknown Unknown Unknown Unknown 2.97E-16 ∞
19 603.1251 54 Unknown Unknown Unknown Unknown Unknown 3.45E-15 ∞
20 610.1559 62 Unknown Unknown Unknown Unknown Unknown 1.14E-08 ∞
21 616.1 54 Unknown Unknown Unknown Unknown Unknown 4.14E-17 ∞
22 618.096 56 Unknown Unknown Unknown Unknown Unknown 2.26E-19 ∞
23 674.0603 52 Unknown Unknown Unknown Unknown Unknown 9.92E-13 ∞

Table 3 demonstrates differentially expressed metabolic features which were found to be highly enriched in the Dox treated group, but were not present in the
Vehicle Control. ∞ indicates metabolites detected in Dox treated group but not in the baseline group (control).
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platelets and determine if individual responses could be predicted by
basal metabolism.

The first series of experiments (Figs. 1 and 2) show that Dox sup-
presses bioenergetics in platelets and this varies between individuals.
The bioenergetic program in platelets can be revealed by a multi-
variate statistical analysis as shown in Fig. 2. This analysis reveals that
the capacity to generate ATP is retained however the dynamic range is

suppressed by Dox and this is associated with a loss of Reserve Capa-
city. Overall these data show that platelets from different individuals
respond differently to Dox exposure albeit through similar mechanisms
which decrease the metabolic plasticity of the platelet. Next we tested
the hypothesis that this individual variation will be related to the basal
metabolome. This concept is based on our recent finding that the basal
metabolome is a robust predictor of the platelet's response to metabolic
stress [29].

The untargeted metabolomics of platelets included approximately
3000 mass spectral features which populated 48 major metabolic
pathways expected to be present in platelets (Supplementary Table 1).
Treatment of the platelets with Dox resulted in a profound inhibition of
bioenergetic parameters (Figs. 1 and 2) and enrichment of pathways
related to metabolism (Fig. 3). Many of the pathways affected by Dox
relate to platelet function (Fig. 3E). Not surprisingly, among the dif-
ferentially expressed features some of Dox the metabolites were iden-
tified (Fig. 4 G-I). These data show that Dox is taken up and metabo-
lized by platelets and that intra-platelet levels are strongly related to the
suppression of bioenergetic function which in turn is related to the
metabolism in the Dox pre-treated individual donors. We also found a
number of metabolic features which were highly correlated with Dox-
metabolites which could not be identified, highlighting the possibility
that novel Dox-related metabolites, are being generated (see Table 3).
This would need to be defined in a separate series of experiments using
labeled Dox. These results also show that individuals metabolized Dox
differently (Fig. 5 H, I), which could suggest differential activity of the
enzymes, such as carbonyl reductase and glycosidase, which are re-
sponsible for detoxification of Dox [77,78]. Further studies analyzing
the levels and activities of these enzymes in predicting drug-response to
Dox may also be a useful approach in the future. Importantly, a lower
level of Dox and Doxorubicinone was associated with an improved
bioenergetic response.

Using the multi-omic approach by integrating mitochondrial func-
tion with the metabolome allows for broad determination of off-ther-
apeutic effects of drugs. Using this approach allows us to determine
which metabolic pathways contribute to mitochondrial function, and
how those pathways are perturbed as a result of therapeutic interven-
tion. In this instance of Dox treatment, changes in metabolic pathways
linked to detoxification, such as the pentose and glucoronate, methio-
nine and cysteine as well as xenobiotic metabolism were found to be
associated with basal respiration, but either were not found to be as-
sociated at all, or were associated with other parameters under control
conditions. Glycerophospholipids, which is involved in intermediary
metabolism, was found to be associated with reserve capacity under
vehicle treatment but changed to basal after treatment with Dox.
Adaptive energetic changes to maintain platelet survival could explain
the observation that the association of glycolysis with basal respiration
were observed only after Dox treatment and not within the control.

The data from Figs. 1 and 2 show that the basal metabolome and
bioenergetics vary between individuals reflecting the metabolic pro-
grams. This is important in predicting the response to stress since it
suggests that in utilizing metabolic plasticity to meet physiological
demand the capacity of a protective pathway maybe different between
one individual compared to another. For example, if mitochondrial
function is inhibited by Dox then the extent to which fuel switching can

Fig. 5. Metabolic separation of individuals in Subject Sub-clusters 1 and 2. A. Unsupervised hierarchal clustering heatmap indicate that intensity of 567 features
drive the separation between subject sub-clusters 1 and 2 (S-SC1 and S-SC2). B. PCA plot showing separation of S-SC1 (shown in gray), and S-SC2 (shown in yellow)
through the 1st (54% variation) and 2nd (12% variation) principal components. C. Type I Manhattan plot of m/z features plotted against the –Log10P value. Shown in
gray are the 3247 features identified after filtering and normalization. 567 features were found to be different between the two groups using the criteria (p < 0.05,
FDR < 0.2) as indicated by the blue dotted line. Shown in red were features identified to be increased in S-SC2 (225/567) while features which were lower are
shown in blue (342/567). D. Type II Manhattan plot using time plotted against –Log10P value. The more polar features elute earlier than the more non-polar
metabolites which elute at a later time due to the methods and column described above in the methods. n = 9 for S-SC1 and n = 5 for S-SC2. Comparison of the
bioenergetic parameters (basal (E), ATP-Linked (F) and maximal OCR (G)) between the sub clusters S-SC1 and S-SC2. H. Dox detected in the platelet samples using
metabolomics analysis. I. Doxrubicinone, a major metabolite present in the platelet samples following Dox treatment as measured by mass specrometry. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Association of the baseline mitochondrial bioenergetics with
Vehicle Control and Dox treated metabolome. A. xMWAS network of the
vehicle treated platelets revealed 4 metabolic communities. Community 1
(orange) has features predominantly associated with reserve capacity, while
community 2 (blue) has metabolic features associated with maximal respira-
tion. Community 3 (yellow) has features associated with both basal and ATP-
linked respiration. Community 4 (green) has features are associated with non-
mitochondrial respiration as well as proton leak B. xMWAS network of the Dox
treated platelet metabolome and bioenergetics revealed 3 metabolic commu-
nities. Community 1 (yellow) associated with basal and ATP linked OCR.
Community 2 (gray) associated with both non-mitochondrial and reserve ca-
pacity. Community 3 (blue) associated with maximal respiration. (|r| > 0.6 at
p < 0.05). Molecular features are depicted as circles and bioenergetic para-
meters as squares. Red lines indicate positive associations, and blue lines in-
dicate negative associations. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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occur will determine the overall toxicity of the same dose of compound.
If one individual has a lower level of the enzymes needed to utilize fatty
acids as a fuel than another then the impact of a toxic dose of Dox will
be more severe. This can be revealed by the bioenergetic-metabolite-
interactome maps shown in Fig. 6. From this data it is clear that the
bioenergetic-metabolite interactome is profoundly altered by Dox,
which is compounded by donor variation. Fig. 7 is a different re-
presentation of the data shown in Fig. 6 highlighting the importance of
different metabolic pathways in the platelet basal state and in the
presence of Dox. For example, fatty acid activation is much less pro-
minent in the Dox-treated group resulting in glycolysis emerging as a
new feature. This type of analysis is agnostic and reveals connections
which are not easily placed within existing mechanistic paradigms and
reveals new avenues for research. For example, why folate and cho-
lesterol metabolism become more prominent after Dox treatment is not
immediately obvious and will require further study. Importantly, many
of the energetic pathways which have been found to be critical for
maintaining Reserve Capacity are being redirected towards basal re-
spiration, ultimately leading to platelet survival. Future studies per-
forming time course analysis can determine the flux of these pathways
after treatment with Dox to determine adaptive versus causal metabolic
paradigm shifts.

Taken together, these data builds upon the concept of how the
metabolome in the platelets is integrated with bioenergetics and how
platelets are viable as metabolic sensors in the context of environmental
exposure and determination of severity of the toxic response among

individuals. This study also has significant implications for precision
medicine, in particular related to pathological conditions such as cancer
and the utility of integrated approaches as exemplified by the bioe-
nergetic-metabolite interactome [79].
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