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A B S T R A C T   

Background: Bladder cancer (BLCA) is prone to metastasis and has poor prognosis with unsatis
factory treatment responsiveness. Disulfidptosis is a recently discovered, novel mode of cell death 
that is closely associated with human cancers. However, a comprehensive analysis of the rela
tionship between disulfidptosis and BLCA is lacking. Therefore, this study aimed to explore the 
potential effect of disulfidptosis on BLCA and identify a biomarker for evaluating the prognosis 
and immunotherapy of patients with BLCA. 
Material and methods: We acquired BLCA RNA sequencing data from The Cancer Genome Atlas 
Urothelial Bladder Carcinoma (TCGA-BLCA) cohort (containing 19 normal samples and 409 
tumor samples) and the GES39281 cohort (containing 94 tumor samples) which were used for 
external validation of the signature. Initially, we performed unsupervised consensus clustering to 
explore disulfidptosis-related subgroups. We then conducted functional enrichment analysis on 
these subgroups to gain insights into their biological significance and evaluate their immuno
therapy response and chemotherapy sensitivity. Next, we conducted Least Absolute Shrinkage 
and Selection Operator (LASSO) regression and multivariate Cox regression to construct a 
prognostic signature in the TCGA training set for prognosis-related differentially expressed genes 
(DEGs) in the disulfidptosis-related subgroups. Subsequently, we used a receiver operating 
characteristic (ROC) curve and independent prognostic analysis to validate the predictive per
formance of the signature in the TCGA testing and the GES39281 cohorts. Finally, we explored 
the therapeutic value of this signature in patients with BLCA, in terms of immunotherapy and 
chemotherapy. 
Result: In this study, we obtained two subgroups: DRG-high (238 samples) and DRG-low (160 
samples). The DRG-high group exhibited a poor survival rate compared to the DRG-low group and 
had a significant association with tumor grade, stage, and metastasis. Additionally, several 
pathways related to cancer and the immune system were enriched in the high-DRG group. 
Moreover, the DRG-high group exhibited higher expression of PD1 and CTLA4 and had a better 
response to immunotherapy in patients with both PD1 and CTLA4 positivity. Conversely, the 
DRG-high group was more sensitive to common chemotherapeutic agents. A prognostic signature 
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was created, consisting of COL5A1, DIRAS3, NKG7, and POLR3G and validated as having a robust 
predictive capability. Patients in the low-risk-score group had more immune cells associated with 
tumor suppression and better immunotherapy outcomes. 
Conclusion: This study contributes to our understanding of the characteristics of disulfidptosis- 
related subgroups in BLCA. Disulfidptosis-related signatures can be used to assess the prognosis 
and immunotherapy of patients with BLCA.   

1. Introduction 

Bladder cancer (BLCA) is one of the most common urinary tract tumors, impacting over 4.3 million individuals worldwide annually 
and resulting in nearly 1.7 million fatalities [1]. For patients with non-muscle-invasive bladder cancer (NMIBCa), the primary 
treatment is transurethral resection of the bladder tumor (TURBT). By contrast, patients diagnosed with muscle-invasive BCa (miBCa) 
typically undergo multimodal treatment involving radical cystectomy and neoadjuvant chemotherapy [2–4]. Despite substantial 

Fig. 1. Flow chart for the study analysis.  
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advancements in surgical and chemotherapeutic approaches in recent years, the rates of morbidity, mortality, and cancer recurrence in 
patients with BLCAs have not improved significantly. 

In recent years, the development of cancer genomics and revival of immunotherapy have led to the study of different classifications 
of BLCA subgroups to guide personalized treatment. Zhou et al. identified the molecular subtypes mediated by apoptosis-related genes 
that promote treatment outcomes in patients with BLCA [5]. Zheng et al. (2022) identified CD93-associated molecular subtypes of 
BLCA that are particularly relevant for guiding immunotherapeutic approaches [6]. Although these studies have elucidated the sig
nificant role of BLCA subtypes in personalized therapy, there is a lack of diversity among different molecular subtypes when examined 
from the perspective of disulfidptosis. 

Accidental cell death (ACD) and regulated cell death (RCD) are the two common types of cell death [7]. Most cancer treatment 
strategies are engineered to specifically target malignant cells while sparing their non-malignant counterparts. Distinct lethal sub
routines within the RCD paradigm exert varying effects on tumor progression and therapeutic responsiveness. Unlike ACD, RCD is 
controlled by specific signal transduction pathways that can be modulated by pharmacological or genetic interventions. The most 
extensively studied types of RCD are apoptosis, pyroptosis, necroptosis, and ferroptosis, all of which have distinct molecular mech
anisms [8,9]. Disulphidroptosis is a recently discovered mode of cell death, distinct from other forms of cell death, characterized by the 
accumulation of cysteine and abnormal disulfide bond formation. Disulfidptosis occurs in SLC7A11high cells under low glucose con
ditions Under these circumstances, intracellular cystine accumulates excessively owing to the depletion of NADPH, thereby fostering 
the formation of abnormal disulfide bonds, particularly within cytoskeletal proteins such as actin. Consequential structural damage 
leads to disintegration of the actin cytoskeleton, and ultimately, cell death [10]. Recent studies have underscored the close association 
between disulfidptosis and various human cancers and its pivotal role in tumor suppression, offering promising avenues for targeted 
therapeutic approaches to cancer treatment [11,12]. However, limited research has focused on the molecular profile of disulfidptosis 
in BLCA. Therefore, it is imperative to explore the genetic and molecular characteristics related to disulfidptosis to augment our 
understanding of the disease mechanisms implicated in BLCA and to offer fresh insights into potential therapeutic interventions. 

Using data obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, we categorized 
BLCA into two disulfidptosis-related subgroups and conducted a comprehensive analysis of the subgroups, including overall survival 
(OS), pathological characteristics, immune microenvironment, immunotherapy responsiveness, and sensitivity to immunotherapy and 
chemotherapy. We further established a prognostic signature and assessed the prognosis, immune microenvironment, immuno
therapy, and drug sensitivity in patients with BLCA. 

2. Materials and methods 

2.1. Data Acquisition and organization 

Fig. 1 illustrates the study process. We collected 428 BLCA samples from TCGA (https://portal.gdc.cancer.gov/), consisting of 409 
tumor samples and 19 normal samples. Clinical information, copy number variants (CNV), and somatic cell mutation data were ob
tained from the TCGA. Of the 409 patients with BLCA, 398 with complete survival information were randomly divided into training (N 

Table 1 
Clinical information of the TCGA cohort.  

TCGA cohort Entire cohort (N = 398) Testing cohort (N = 119) Training cohort (N = 279) 

Age 
≤65 158 50 108 
>65 240 69 171 
Gender 
0 102 29 73 
1 296 90 206 
Stage 
I 2 1 1 
II 127 43 84 
III 138 41 97 
IV 131 34 97 
T 
0 1 1 0 
1 3 1 2 
2 126 40 86 
3 207 51 156 
4 61 26 35 
M 
0 368 108 260 
1 30 11 19 
N 
0 258 79 179 
1 50 12 38 
2 83 24 59 
3 7 4 3  
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= 279) and testing (N = 119) cohorts at a ratio of 70:30 (Table 1). In addition, we downloaded the GSE39281 (https://www.ncbi.nlm. 
nih.gov/geo/query/acc.cgi) cohort of 94 patients with BLCA from the GEO as an external validation cohort (Table 2). Disulfidptosis 
related genes (DRGs) were extracted from previous studies. 

2.2. Protein-protein interactions (PPI) and differential analysis 

To investigate the intercommunication of these DRGs, protein-protein interaction (PPI) analysis was performed using the STRING 
website (https://cn.string-db.org/), and the resulting PPI network was visualized using Cytoscape [13]. Prognosis-related DRGs were 
identified by univariate Cox regression analysis. 

2.3. Generation of disulfidptosis-associated subgroups and function enrichment 

Based on prognosis-related DRGs, consensus clustering using the k-means method was used to identify subgroups associated with 
DRGs using the ConsensuClusterPlus package [14]. After that, the reliability of the clustering was verified by the R package “ggplot2” 
using the uniform manifold approximation (UMAP) method [15]. Kaplan-Meier (K-M) curve of OS was plotted to explore the prog
nostic differences between subgroups using “Survival” and “survminer” packages, and then Chisq test was performed to analyze the 
correlation between subgroups and clinicopathological factors. Statistical significance was set at p < 0.05 [16]. 

To explore the underlying biological mechanisms contributing to intergroup differences, Gene Set Variation Analysis (GSVA) was 
conducted using the “GSVA” package in R software to identify enriched pathways within each subgroup [17]. Additionally, a dif
ferential analysis was conducted using the “limma” package, with the filtering criteria set at p < 0.05, FDR <0.01, and |log2FC| ≥ 1, to 
identify differentially expressed genes (DEGs) between subgroups [18]. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis was performed using the “clusterProfiler” package of R software using the same he filtering 
criteria [19,20]. 

2.4. Immune microenvironment analysis and immunotherapy 

Based on the TCGA-BLCA expression profile, the “estimate” R package was applied to calculate the immune score and stromal score 
of each patient with BLCA [21]. We initially estimated the differences in the immune, stromal, and estimated scores between DRG 
subgroups using the Wilcoxon test. Next, single sample gene set enrichment analysis (ssGSEA) analysis was performed using the R 
package “GSVA” to assess and quantify the degree of immune cell infiltration in each sample, with a filtering criterion set at p < 0.05 
[17,22]. Subsequently, the “limma” package was used to analysize the expression levels of PD1 and CTLA4 between subgroups. In 
addition, the immunophenotype scores (IPS) of patients with BLCA from The Cancer Immunome Atlas (TCIA) (https://tcia.at/) were 
used to explore the role of DRG subgroups in immunotherapy responses [23]. Statistical significance was determined when differences 
between subgroups exhibited a p-value of less than 0.05. 

2.5. Drug sensitivity analysis 

Using the RNA expression profile of TCGA-BLCA, we calculated the half-maximal inhibitory concentrations (IC50) of antitumor 
drugs commonly used in the treatment of patients with BLCA using the “pRophetic” package of R software, and assessed the IC50 levels 
between different subgroups using the Wilcoxon test and screening criteria at p < 0.05 [24]. 

2.6. Construction and validation of a prognosis signature for disulfidptosis 

Based on the DEGs of the DRG subgroups, prognosis-related genes were screened using univariate Cox regression in TCGA cohort. 
In TCGA training cohort, least absolute shrinkage and selection operator (LASSO)regression and univariate Cox regression analyses 
were performed to construct a prognosis signature. The signature formula constructed based on multivariate Cox regression analysis is 
as follows: 

Table 2 
Clinical information of the GEO cohort.  

GSE39281 cohort (N = 94) number 

Stage 
0 

10 

1 5 
2 45 
3 28 
4 

Visceral M 
5 

0 59 
1 34  
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Fig. 2. Expression characteristics of DRGs in BLCA. (A) PPI network diagram of DRGs. (B) Somatic mutation waterfall plot of 23 DRGs. (C) CNV of 
23 DRGs in TCGA-BLCA. (D) Localization and alteration of 23 DRGs in the chromosome region. (E) Correlation heat map of 23 DRGs and immune 
cells. (F) Prognosis-related genes in DRGs. 
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Riskscore=
∑1

n
β1 ×Exp(Gene1)+ β2 ×Exp(Gene2)...βn ×Exp(Genen)

The risk score of each patient with BLCA was calculated using the signature formula. Based on the median risk score, patients with 
BLCA were divided into high-risk and low-risk groups. In TCGA training cohort, K-M curve of OS was plotted to explore the prognostic 
value of the signature, and Receiver Operating Characteristic (ROC) curves were constructed to assess the predictive performance of 
the signature. In addition, univariate and multivariate independent prognostic analyses were performed to identify whether the risk 
score was an independent prognostic factor for the survival of patients with BLCA. This signature was also validated in TCGA and 
GSE39281 cohorts. 

2.7. Immune analysis and drug sensitivity analysis of prognosis signature 

Immune cell infiltration was calculated for each individual based on seven currently popular algorithms (XCELL, TIMER, 
QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT− ABS, CIBERSORT) [25,26]. The “limma” package and Wilcox test was then used to 
calculate the correlation between risk scores and the abundance of various immune cell infiltration. The TME characteristics of the 
signature and their potential impact on immunotherapy were also analyzed. The R package “OncoPredict,” with 198 drugs, was used to 
predict the in vivo drug response in patients of two risk groups [27]. 

2.8. Expression validation and localization of risk genes 

Using IHC staining data from the Human Protein Atlas database (HPA, https://www.proteinatlas.org/), bladder tumor and normal 
tissue specimens were used to validate the expression of signature genes [28]. The Tumor Immune Single-Cell Hub (TISCH; http:// 
tisch.comp-genomics.org), a large-scale online single-cell [29], was used to investigate the expression of the signature genes in 
various immune cells. 

2.9. Statistical analyses 

The R software (version 4.2) was used for all data analyses. The Wilcoxon test was used to compare two groups. The chi-square test 
was used to assess the relationship between subgroups and clinicopathological factors. A Pearson’s correlation analysis was also 
performed. The “limma” package was used to screen subgroups of DEGs and the “ConsensuClusterPlus” package was used for unsu
pervised clustering analysis. The “GSVA” package was applied for GSVA and the “clusterProfiler” package for enrichment analysis. The 
“pRophetic” and “OncoPredict” package was carried out for drug sensitivity analysis. “Survival” and “survminer” were used for 
survival analysis. “ggplot2,” “pheatmap,” and “ggpubr” packages were used for plotting. In all statistical results, p < 0.05 and FDR 
<0.01 indicates statistical significance. 

3. Result 

3.1. Protein-protein interaction (PPI) and expression characteristics of DRGs 

As shown in the PPI network diagram (Fig. 2A), the DRGs were closely related. The mutation landscape, as depicted in the waterfall 
plot, revealed that the majority of the 23 DRGs were mutated in BLCA, including MYH9 (7 %), MYH10 (5 %), ACTB (4 %), FLNB (4 %), 
TLN1 (4 %), FLNA (3 %), NCKAP1 (3 %), LRPPRC (3 %), GYS1 (2 %), ACTN4 (2 %), IQGAP1 (2 %), CD2AP (2 %), and INF2 (1 %) 
(Fig. 2B). We further explored the copy number analysis of DRGs and found that most of the 23 DRGs had increased copy numbers, 
except for CAPZB, NCKAP1, NUBPL, SLC7A11, FLNB, MYH10, NDUFA11, NDUFS1, PDLIM1 in BLCA. (Fig. 2C and D). In the immune 
cell infiltration correlation heat map, it was evident that GYS1, NDUFA11, and CD2AP were negatively correlated with immune cell 
infiltration. In contrast, ACTB, FLNA, TLN1, MYL6, and MYH9 positively correlated with immune cell infiltration (Fig. 2E). Univariate 
Cox regression analysis of 23 DRGs revealed 16 prognosis-related genes (Fig. 2F). 

3.2. Generation of disulfidptosis-related subgroups 

To better explore the role of DRGs in BLCA, we performed unsupervised clustering analysis based on 16 prognosis-related DRGs. 
The results showed that TCGA-BLCA cohort could be effectively stratified into two distinct subgroups when k = 2. (Fig. 3A). 
Furthermore, the UAMP assay confirmed a clear separation of the two subgroups (Fig. 3B). Interestingly, the expression of almost all of 
DRGs was significantly higher in cluster 1, whereas it was notably lower in cluster 2. As a result, we designated cluster 1 as the “DRG- 
high group” and cluster 2 as the “DRG-low group” (Fig. 3C). Additionally, the K-M curve of OS demonstrated a poorer prognosis in the 

Fig. 3. Subgroups of BLCA based on DRG expression. (A) Consensus matrix was obtained by applying consensus clustering when k = 2 and 3. When 
k = 2, the slope of the CDF curve is the lowest. (B) UMAP was used to distinguish the two subgroups based on DRG expression levels. (C) DRG 
expression heat maps in two subgroups. (D) K-M curve of OS in the two subgroups. (E)Clinicopathologic features of the two subgroups. (F) Pro
portional bar charts for each stage, grade, and metastasis in the DRG-low and -high groups. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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DRG-high group (Fig. 3D). Furthermore, the DRG-high group exhibited a close correlation with worse tumor grade, stage, and 
metastasis (Fig. 3E–F). These findings strongly suggest that disulfidptosis-related subgroups have a predictive value for the prognosis of 
patients with BLCA. 

3.3. Functional enrichment of disulfidptosis-related subgroups 

To explore the potential mechanisms underlying the disulfidptosis-related subgroups, we first performed a GSVA. As shown in 
Fig. 4A and Supplementary materials 1, the DRG-high group exhibited significant enrichment in pathways related to the cytoskeleton 
and cell migration, including regulation of the actin cytoskeleton, focal adhesions (FA), extracellular matrix (ECM), and Cell Adhesion 
Molecules (CAMs). Furthermore, tumor-related pathways, such as the JAK-STAT signaling pathway, Toll-like receptor signaling 
pathway, and VEGF signaling pathways, were prominently upregulated in this group. Additionally, immune-related pathways, 
including cytokine-cytokine receptor interactions, primary immunodeficiency, natural killer cell-mediated cytotoxicity, chemokine 
signaling pathways, and B cell and T cell receptor signaling pathways, were also significantly enriched. Next, we identified 2352 
differentially expressed genes (DEGs) through differential analysis, with 257 down-regulated and 2095 genes up-regulated (Fig. 4B and 
Supplementary materials 2). Gene Ontology (GO) analysis revealed that the top three biological processes (BPs) were positive regu
lation of cytokine production, positive regulation of cell adhesion, and external encapsulating structure organization. For cellular 
components (CC), the top three categories were the collagen-containing extracellular matrix, external side of the plasma membrane, 

Fig. 4. Differential and enrichment analyses of subgroups. (A) Differences in pathway activity between the two different subgroups based on GSVA 
scores. (D) Volcano map of DEGs in the two subgroups. (C) GO analysis of DEGs in the two subgroups. (D) KEGG analysis of DEGs in the 
two subgroups. 
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and cell-substrate junction. Regarding molecular functions (MF), the top three were receptor-ligand activity, signaling receptor 
activator activity, and cytokine activity (Fig. 4C). KEGG analysis further enriched 54 pathways, with the top five pathways being the 
cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, neuroactive ligand-receptor interaction, calcium signaling 
pathway, and focal adhesion. 

3.4. Immune microenvironment analysis 

Our investigation of the immune microenvironment revealed distinct patterns within the disulfidptosis-related subgroups. First, the 
DRG-high group had significantly higher TME scores, encompassing immune, stromal, and estimated factors than the reference group 
(Fig. 5B). Similarly, ssGSEA analysis highlighted that an increase in various immune cells infiltrated the DRG-high group, in contrast to 
the DRG-low group (Fig. 5A). Furthermore, the DRG-high group displayed higher expression of CTLA4 and PD1, indicating an 
increased potential to evade the immune system of the host organism (Fig. 5C). Notably, our immunotherapy analyses showed that 
patients in the DRG-high group gained a more pronounced benefit relative to patients in the DRG-low group when subjected to 
combined treatment with PD1 and CTLA4 inhibitors (Fig. 5D). These findings collectively emphasize the intricate interplay between 
the immune microenvironment composition, immune cell infiltration, and the expression of key immune checkpoint molecules, 
highlighting potential avenues for targeted therapeutic interventions. 

3.5. Drug sensitivity analysis 

Bladder cells are highly sensitive to chemotherapy. For patients with advanced BLCA in good physical condition, the preferred 
standard chemotherapy is based on cisplatin regimens such as MVAC, HD-MVAC, and GC. Second-generation drugs include gemci
tabine combined with cisplatin and cisplatin combined with paclitaxel. Targeted angiogenesis agents such as bevacizumab and 
sunitinib. EGFR inhibitors. Molecular targeted drugs play a significant role in a small number of individuals [30,31]. Drug sensitivity 
analysis showed that the DRG-high group was more sensitive to common chemotherapeutic agents, including doxorubicin, bleomycin, 
rapamycin, mitomycin C, cisplatin, docetaxel, gemcitabine, pazopanib, camptothecin, and paclitaxel (Fig. 5E). 

3.6. Construction and validation of disulfidptosis related prognosis signature 

142,849Out of the 2352 DEGs initially identified, only 1772 were found in the GSE39281 cohort. We applied Univariate Cox 
regression analysis to the 1772 DEGs in both TCGA and GSE39281 cohorts and then obtained 55 prognosis-related genes shared by 
both cohorts for the construction of a prognostic signature (Supplementary materials 3). In the TCGA training cohort, LASSO 
regression selected nine genes for multivariate Cox regression, and ultimately, four genes (containing COL5A1, DIRAS3, NKG7, 
POLR3G) were chosen to construct a prognostic signature (Fig. 6A–B and Supplementary materials 4). The risk score formula for the 
signature was determined using multivariate Cox regression as follows: 

Riskscore= 0.14 × Exp(COL5A1) + 0.28 × Exp(DIRAS3) − 0.23 × Exp(NKG7) + 0.30 × Exp(POLR3G)

The correlation heat map demonstrated a close association between the signature genes and DRGs (Fig. 6C). In TCGA training 
cohort, risk score curves and point plots depicting patient survival status revealed a significant association between elevated risk scores 
in patients with BLCA and unfavorable prognoses. The K-M curve of OS also demonstrated that patients in the high-risk score group had 
a poorer prognosis than patients in the low-risk score group (p < 0.001), indicating the promising prognostic value of the signature. 
Univariate (risk score <0.001, HR = 1.835 (1.501–1.231)) and multivariate independent prognostic analyses (risk score <0.001, HR =
1.563 (1.249–1.954)) confirmed that the risk score was an independent prognostic factor for BLCA. The 1-, 3-, and 5-year AUC values 
from the ROC curves were 0.705, 0.698, and 0.667, respectively, implying a reasonably robust predictive performance of the signature 
(Fig. 6D–H). The results of the risk score curves and point plots depicting patient survival status in the TCGA testing and GSE39281 
cohorts were consistent with those in the TCGA training cohort (Figs.. 7A and 8A). Additionally, the K-M curve of OS in TCGA testing 
(p = 0.007) and GSE39281 (p = 0.032) cohorts demonstrated the relevance of the high-risk score group and poorer prognosis (Figs.. 7B 
and 8B). Univariate independent prognostic analysis in TCGA testing (risk score = 0.015, HR = 1.184 (1.034–1.357)) and GSE39281 
(risk score = 0.001, HR = 1.652 (1.223–2.231)) cohorts, combined with multivariate independent prognostic analysis in TCGA testing 
(risk score = 0.007, HR = 1.230 (1.060–1.429)) and GSE39281 (risk score = 0.007, HR = 1.559 (1.130–2.151)), verified the risk score 
as an independent predictor of BLCA (Fig. 7D–E and Fig. 8D–E). In agreement with the TCGA training cohort, the 1-, 3-, and 5-year AUC 
values were 0.703, 0.721, and 0.684 in the TCGA testing cohort and 0.679, 0.741, and 0.788 in the GSE39281 cohort, respectively, 
validating the fairly stable predictive capability of the signature (Figs.. 7C and 8C). 

Fig. 5. Immune landscape of the two subgroups (A) Differential analysis of immune cells in ssGSEA. (B) TME scores, including immune, stromal, 
and estimate scores. (C) Comparison of PD1 and CTLA4 expression between subgroups. (D) The treatment effects of four immunotherapy strategies, 
including anti-CTLA4 alone, anti-PD1 alone, no medication, and combined medication was evaluated in the disulfidptosis-associated subgroups. (E) 
Sensitivity analysis of common chemotherapeutic agents (doxorubicin, bleomycin, rapamycin, mitomycin. cisplatin, docetaxel, gemcitabine, 
pazopanib camptothecin, and paclitaxel) in the disulfidptosis-associated subgroups. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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Fig. 6. Construction of prognosis signature in the TCGA training cohort. (A) LASSO regression analysis. (B) Cross-validation in LASSO regression. 
(C) Correlation heat map of risk genes and DRGs. (D) Risk score curves, risk state point maps, and risk gene expression heat maps in the TCGA 
training cohort. (E) K-M curve of OS In TCGA training cohort. (F) 1-, 3-, and 5-year ROC curve of risk score in the TCGA training cohort. (G) 
Univariate and (H) multivariate Cox regression analysis in the TCGA training cohort. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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3.7. Immune landscape and drug sensitivity analysis of prognostic signature 

In the immune infiltration bubble map based on the seven algorithms, the immune cells attacking the tumor, including CD8 + and 
CD4 + T cells, were significantly and negatively correlated with the risk score. However, immune cells associated with tumor pro
gression, including cancer-associated fibroblasts and T2 macrophages, were significantly and positively correlated with the risk score 
(Fig. 9A). This implies that patients with high scores are less resistant to tumors. In addition, in the TME analysis, the high-risk score 
group had a higher score for stromal cells and a lower score for immune cells compared to the corresponding low-risk score group 
(Fig. 9B). Among the four immunotherapy cohorts, patients with low-risk scores had better outcomes (Fig. 9C). Drug sensitivity 
analysis revealed that some common drugs used in patients with BLCA, such as Epirubicin, Gemcitabine, Oxaliplatin, and Palbociclib, 
were more effective in low-risk patients (Fig. 9D). 

3.8. Expression and localization of signature genes 

As shown by the HIC staining data for DIRAS3, POLR3G and COL5A1, the expression of COLA5 and POLR3G was higher in the 

Fig. 7. Validation of the prognosis signature in TCGA testing cohort. (A) Risk score curve, risk state point map, and risk gene expression heat map. 
(B) K-M curve of OS in the TCGA testing cohort. (C) 1-, 3-, and 5-year ROC curves of risk score. (D) Univariate and (E)multivariate Cox regres
sion analyses. 
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tumor tissue specimen than in the normal tissue specimen (Fig. 10 A and C). Conversely, the expression of DIRAS3 was lower in the 
tumor tissue specimen than in the normal tissue specimen (Fig. 10 B). 

We conducted a comparative analysis of the expression of these four genes in immune cells using single-cell RNA-sequencing 
profiles from three datasets: GSE13001 (patients with no therapy), GSE149652 (patients undergoing chemotherapy), and 
GSE145281_aPDL1 (patients receiving immunotherapy). Our findings revealed that DIRAS3 expression was low only in patients who 
underwent chemotherapy. POLR3G and COL5A1 showed low expression in all patient groups except those who received no therapy. 
Notably, NKG7 displayed low expression in patients with no therapy but exhibited high expression in patients who received 
chemotherapy or immunotherapy, suggesting that NKG7 expression is linked to alterations in the immune microenvironment 
(Fig. 11A–C). 

Fig. 8. Validation of the prognosis signature in the GSE39281 cohort. (A) Risk score curve, risk state point map, and risk gene expression heat map. 
(B) K-M curve of OS in the TCGA testing cohort. (C) 1-, 3-, and 5-year ROC curves of risk score. (D) Univariate and (E) multivariate Cox regres
sion analyses. 
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Fig. 9. Immune microenvironment analysis and drug sensitivity assessment. (A) immune cell bubble of risk groups. (B) Comparison of TME scores 
between high-and low-risk groups. (C) Differences in treatment response in the four immunotherapy cohorts in two subgroups. (D) Sensitive drugs in 
the two risk groups. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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Fig. 10. Analysis of signature proteins expression in tumor and normal tissue specimens using IHC staining data from HPA. (A) the expression level 
of COL5A1 in tumor and normal tissue specimens. (B) the expression level of DIRAS3 in tumor and normal tissue specimens. (C) the expression level 
of POLR3G in tumor and normal tissue specimens. 
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Fig. 11. Expression of the four signature genes in three single-cell datasets of BLCA. (A) Expression of the four signature genes in GSE13001 
(patients with no therapy). (B) expression of four signature genes in GSE149652 (patients undergoing chemotherapy). (C) expression of four 
signature genes in and GSE145281_aPDL1 (patients receiving immunotherapy). 
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4. Discussion 

Disulfidptosis is a new form of cell death caused by abnormal disulfide bond formation due to glucose starvation in SLC7A11high 

cells. Rac-WRC-mediated lamellipodia formation, a key target for disulfide bonding among actin cytoskeleton proteins, promotes 
disulfidptosis. Under conditions of glucose starvation, the actin cytoskeleton of the affected cells exhibited an abnormal morphology, 
with contractions around the cell edges and the collapse of lamellipodia. Glycogen synthase (GYS1) and various genes involved in 
mitochondrial oxidative phosphorylation (such as NDUFS1, NDUFA11, NUBPL, and LRPPRC) are disulfidptosis suppressors whose 
inactivation synergizes with glucose starvation to induce cell death. Conversely, SLC7A11, SLC3A2, RPN1, and NCKAP1 are activators 
required for disulfidptosis. These findings may provide a novel therapeutic strategy for suppressing tumor progression by enhancing 
disulfidptosis. However, studies on the potential role of disulfidptosis in bladder lacking. Therefore, our study aimed to explore the 
influence of disulfidptosis-related genes in BLCA, as well as their relationship with the immune microenvironment, to construct a 
prognostic signature for clinical prognosis evaluation and personalized treatment. 

In the present study, patients with BLCA were systematically divided into two subgroups, namely high or low DRG groups, using 
unsupervised cluster analysis based on 16 prognostic DRGs. The K-M curve of OS showed that the prognosis of the DRG-high group was 
worse than that of the DRG-low group (p = 0.002). Simultaneously, the high-DRG group exhibited significant associations with 
advanced tumor grades, stages, and a higher incidence of metastatic spread. Functional enrichment analyses, including GSVA and 
KEGG, revealed that several actin cytoskeletal protein-, tumor-, and immune-related pathways were enriched in DRG-high group. 
Regarding the immune landscape, disulfidptosis-related subgroups exhibited distinctly different immune microenvironments. The 
high-DRG group displayed increased infiltration of various immune cell types and overexpression of immune checkpoint molecules, 
including PD1 and CTLA4, compared to the low-DRG group. When PD1 inhibitors were used in combination with CTAL4 inhibitors, the 
high DRG group showed significantly better immunotherapy efficacy. Subsequently, based on the prognosis-related DEGs of the two 
DRG groups, four genes (containing DIRAS3, POLR3G, COL5A1, NKG7)were selected by LASSO regression and multivariate Cox 
regression to construct a prognostic signature. The K-M curve of OS indicated a worse prognosis in the high-risk group. Independent 
prognostic and ROC curve analyses in both TCGA and GEO cohorts confirmed the strong predictive performance of this signature. 
High-risk scores positively correlated with tumor-associated immune cell infiltration and predicted poorer outcomes with 
immunotherapy. 

In the univariate Cox regression analysis for BLCA, 16 DRGs were associated with prognosis. These included the favorable factor 
NDUFA11 and the risk factors NCKAP1, SLC7A11, SLC3A2, LRPPRC, MYH9, MYH10, ACTN4, RPN1, ACTB, DSTN, FLNA, IQGAP1, 
TLN1, NDUFS1, and NUBPL. NDUFA11 is a subunit of complex I involved in mitochondrial oxidative phosphorylation [32]. As a 
disulfidptosis suppressor, it exhibited higher expression in the DRG-low group. NCKAP1, encoding Nck-associated protein 1 and a 
component of the WAVE regulatory complex (WRC), demonstrated its importance as its knockdown inhibited the migration of rectal 
cancer [33]. SLC3A2 is a transmembrane protein that functions as a heterodimeric chaperone for amino acid transport proteins (such 
as SLC7A5 and SLC7A11) and has been associated with cancer progression [34]. RNP1 encodes ribonucleoprotein 1, a major 
component of the oligosaccharyltransferase (OST) complex that plays a crucial role in N-linked glycosylation. Research has shown that 
the knockdown of RNP1 inhibits the in vitro proliferation and invasion of breast cancer cells and induces apoptosis through the 
activation of endoplasmic reticulum stress [35]. SLC7A11, NCKAP1, SLC3A2, and RPN1, the critical activators of disulfidptosis, were 
highly expressed in the DRG-high group. NDUFS1 and NUBPL are implicated in mitochondrial oxidative phosphorylation, and their 
mutations lead to impaired oxidative phosphorylation, resulting in mitochondrial diseases [36–38]. Although NDUFS1, NUBPL, and 
LRPPRC are suppressors of disulfidptosis, they were highly expressed in DRG-high group. MYH9, MYH10, ACTN4, ACTB, FLNA and 
TLN1, they are actin cytoskeletal proteins that produce abnormal disulfide bonds during disulfidptosis. Collectively, our results 
indicate that the DRG-high group, characterized by elevated expression of key DRGs, exhibited a robust association with disulfidptosis 
and may predispose patients to disulfidptosis. 

Functional analyses were performed to elucidate the underlying mechanisms contributing to the differences between the two 
subgroups. GSVA analysis suggested that numerous pathways related to the cytoskeleton and cell migration were upregulated in the 
DRG-high group, including regulation of the actin cytoskeleton, focal adhesions, ECM, and CAMs. Focal adhesions are complex as
semblies of plasma membrane-associated macromolecules that bind to the surrounding ECM via integrin receptors and are physically 
linked to the actin cytoskeleton through the recruitment of numerous FA-associated proteins [39]. CAMs are a large family of cell 
surface proteins that mediate attraction or repulsion between the ECM, stroma, and other cancer cells [40]. These signalling pathways 
have been shown to be involved in cell migration and cancer metastasis [41,42]. Moreover, focal adhesions and the ECM have been 
reported to be associated with tumor tolerance to chemotherapy and radiotherapy and may serve as ideal therapeutic targets [42]. 
Enrichment of these cytoskeleton-related pathways in the DRG-high group was consistent with the high expression of DRGs in this 
group. In addition, several pathways involved in tumorigenesis and tumor progression were upregulated. It can be speculated that the 
activation of these pathways is a reason for the poor prognosis in the DRG-high group. Interestingly, numerous immune-related 
pathways were also upregulated, prompting further investigation of the differences in the immune microenvironment between 
subgroups. 

Immunotherapy is an innovative therapy that enhances the immune system by modulating the immune microenvironment so that 
immune cells can attack and remove tumor cells at several important nodes [43]. Immunotherapy is one of the most important 
treatments for patients with advanced BLCA; however, only a fraction of patients benefit from immunotherapy [44]. Individual dif
ferences in tumor progression exist due to heterogeneity in the tumor microenvironment [45]. Therefore, it is necessary to develop 
activation strategies that target the immune microenvironment based on the different immune escape mechanisms in the TME [46,47]. 
In our study, we observed distinct immune microenvironment patterns within disulfidptosis related subgroups. The DRG-high group 
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exhibited a significant increase in immune cell infiltration, including CD8+ or cytotoxic T lymphocytes (CTL), NK cells, and Th1cells, 
which mainly play a role in killing and inhibiting tumor development in the TME [48]. Additionally, we noted elevated expression 
levels of PD1 and CTLA4 in the DRG-high group, implying that tumors in this subgroup possess a heightened ability to evade the 
immune system. Analysis of the immunotherapy cohort showed that patients in the DRG-high group treated with PD-1 inhibitors alone 
displayed a higher immunotherapeutic response than those in the DRG-low group; however, this difference was not statistically 
significant. Notably, the combination of PD-1 and CTLA-4 inhibitors demonstrated a significantly enhanced immunotherapeutic 
response in the DRG-high group compared with the DRG-low group. To enhance clinical management, we developed a prognostic 
signature based on the DEGs within the two DRG subgroups. This signature serves as a valuable tool for immunotherapy. Notably, 
patients with high-risk scores demonstrated an elevated presence of tumor-associated immune cell infiltration. Furthermore, we 
observed a significantly enhanced response to immunotherapy in the low-risk group compared to that in the high-risk group. These 
findings underscore the utility of our prognostic signature in facilitating personalized treatment strategies for patients. 

Although our study successfully identified disulfidptosis-associated subgroups with distinct immune microenvironment patterns in 
BLCA, constructed a prognostic signature, and conducted both internal and external validations, it is important to acknowledge its 
limitations. First, the external validation dataset consisted exclusively of progressive BLCA cases, which may have introduced a po
tential bias into the results. Furthermore, our study lacked further validation through in vitro and in vivo experiments, which we intend 
to pursue in future studies. 

5. Conclusions 

We identified two disulfidptosis-related subgroups in BLCA that had different prognoses and immune microenvironments as well as 
different sensitivities to immunotherapeutic and chemotherapeutic agents. In addition, we constructed a disulfidptosis-related 
prognostic signature for predicting prognosis and response to immunotherapy and chemotherapy in patients with BLCA. These 
findings offer valuable insights into prognostic analysis and the potential for personalized treatment strategies in patients with BLCA. 
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Abbreviations 

BLCA bladder cancer 
CNV copy number variants 
TCGA The Cancer Genome Atlas 
GEO Gene Expression Omnibus 
DRGs disulfidptosis-related genes 
PPI protein-protein interaction 
UMAP uniform manifold approximation 
K-M curve Kaplan-Meier curve 
GSVA gene set enrichment analysis 
DEGs differentially expressed genes (DEGs) 
GO Gene Ontology 
KEGG Kyoto Encyclopedia of Genes and Genomes 
ssGSEA single-sample gene set enrichment analysis 
IPS immunophenotype scores 
TCIA The Cancer Immunome Atlas 
IC50 half-maximum inhibitory concentration 
LASSO The Least Absolute Shrinkage and Selection Operator 
OS overall survival 
ROC receiver operating characteristic 
TISCH The Tumor Immune Single-Cell Hub 
IHC immunohistochemistry 
HPA The Human Protein Atlas database 
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