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Acute myeloid leukemia (AML) is a heterogeneous disease with variable responses to
therapy. Cytogenetic and genomic features are used to classify AML patients into
prognostic and treatment groups. However, these molecular characteristics harbor
significant patient-to-patient variability and do not fully account for AML heterogeneity.
RNA-based classifications have also been applied in AML as an alternative approach, but
transcriptomic grouping is strongly associated with AMLmorphologic lineages. We used a
training cohort of newly diagnosed AML patients and conducted unsupervised RNA-
based classification after excluding lineage-associated genes. We identified three AML
patient groups that have distinct biological pathways associated with outcomes.
Enrichment of inflammatory pathways and downregulation of HOX pathways were
associated with improved outcomes, and this was validated in 2 independent cohorts.
We also identified a group of AML patients who harbored high metabolic and mTOR
pathway activity, and this was associated with worse clinical outcomes. Using a
comprehensive reverse phase protein array, we identified higher mTOR protein
expression in the highly metabolic group. We also identified a positive correlation
between degree of resistance to venetoclax and mTOR activation in myeloid and
lymphoid cell lines. Our approach of integrating RNA, protein, and genomic data
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uncovered lineage-independent AML patient groups that share biologic mechanisms and can
inform outcomes independent of commonly used clinical and demographic variables; these
groups could be used to guide therapeutic strategies.
Keywords: acute myeloid leukemia, lineage, metabolism, inflammation, multiplatform analysis
INTRODUCTION

Acute myeloid leukemia (AML) is a clinical ly and
morphologically heterogeneous disease with significant
variability in treatment responses and outcomes (1–3).
Although almost 60-70% of AML patients achieve remission
with standard anthracycline (idarubicin or daunorubicin) and
cytarabine-based induction chemotherapy, almost 50% of these
patients eventually experience relapse within 1 year of diagnosis
(2–4). Revealing the underlying biologic processes that
contribute to AML heterogeneity and drive outcomes may
guide therapeutic strategies.

The French American British (FAB) classification was
traditionally used to categorize AML into 8 different
morphologic subtypes (M0 to M7) that reflected lineage
commitment (2, 5–7). With the advent of cytogenetic and
genomic assessments, the European Leukemia Network (ELN)
recommendations were widely adopted as it proposed a risk
stratification for patients that based on cytogenetics and
genomics (2, 8, 9). However, cytogenetic and molecular
alterations do not fully account for the heterogeneity of AML
because not all patients harbor ELN–pre-defined aberrations (2,
10, 11). Also, there is considerable patient-to-patient variability
in response to treatment and clinical outcomes within genomic
and ELN subgroups (11). Therefore, there is a need to uncover
underlying biologic pathways that are underrepresented in
genomic and cytogenetic profiling of AML and may
inform outcomes.

To fill this gap, researchers have identified several
transcriptomic signatures associated with AML clinical
outcomes (10, 12–17). However, RNA-based profiling revealed
that this method of grouping AML patients was highly associated
with FAB classifications, i.e., related to AML morphology and
lineages (15, 16, 18). Yet, the FAB-associated clustering was not
accounted for in previous transcriptome-based studies,
suggesting that the morphology and lineage of AML were
driving patient grouping. Furthermore, although mutations
were associated with some transcriptomic-based clustering,
there was significant overlap for these mutations in multiple
clusters (15, 16). We hypothesized that by decoupling the
lineage-related genes from the transcriptomic profiles of AML,
we could unmask biologically relevant pathways that are
inherent to AML independent of cell of origin and that could
inform clinical outcomes. Furthermore, such an approach could
identify biologic pathways associated with cluster-
specific mutations.

In the current study, we decoupled FAB-associated genes to
decipher lineage-independent biologic pathways in 81 newly
diagnosed and previously untreated AML patients. We
in.org 2
identified distinct biologic AML patient groups and assessed
the outcome of patients according to their group membership.
To provide further molecular orthogonal characterization of
defined groups, we applied a reverse phase protein array
(RPPA) in all patient samples and extended panel DNA
sequencing in 73 of 81 patients (90%). Using this approach, we
identified inflammatory and metabolic pathways associated with
outcomes and validated our findings in 2 independent AML
cohorts. The findings from this work demonstrate that RNA-
based classification could reveal important potentially targetable
biologic pathways.
METHODS

Patient Population
A total of 81 newly diagnosed AML patients evaluated at The
University of Texas MD Anderson Cancer Center were included
in the current study. All patients had bone marrow samples
collected and analyzed prior to treatment initiation. Patients
provided written informed consent that was approved by the MD
Anderson Institutional Review Board. The study was conducted
in accordance with the Declaration of Helsinki.

RNA Sequencing and Processing
RNA was isolated and purified from bone marrow mononuclear
cells using Qiagen’s RNAEasy preparation kits. The purified
RNA was used to create cDNA libraries that were assayed
using TruSeq (Illumina) RNAAccess. For each sample, 40M
50-bp paired-end reads were sequenced using the Illumina
HiSeq sequencer. RNA sequencing (RNA-seq) FASTQ files
were processed through FastQC (v0.11.5) and RNA-SeQC
(v1.1.8) (1) to generate a series of RNA-seq–related quality
control metrics. STAR 2-pass alignment (v2.5.3) (2) was
performed with default parameters to generate RNA-seq BAM
files. Normalized counts were generated using DESEq2, then
log2-transformed.

Differential Expression and
Pathway Analysis
In our cohort and TCGA cohort, gene-level read counts were
used to perform differential expression analysis using DESeq2
(3). The T-statistic from the differential expression analysis was
used to perform gene set enrichment analysis (GSEA) using the
Bioconductor package gage (4), and significantly dysregulated
pathways were identified at q < 0.1. For the Valk et al. validation
cohort, we used single-sample GSEA (ssGSEA) (5, 6) implemented
in the Bioconductor packageGSVA (7) to convert microarray gene
expression into pathway activity scores. Pathway activity scores
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were compared between groups using the Wilcox Rank Sum test,
and p-values were corrected for multiple hypothesis testing using
false discovery rate (FDR). Significantly dysregulated pathways
were identified at q < 0.05. The Hallmark pathways (8) were used
in GSEA and ssGSEA.

Unsupervised Clustering Prior to
Excluding FAB-Associated Genes
The R package pheatmap was used to generate heatmaps and
dendrograms for samples from a matrix of variably expressed
genes. Euclidian distance and complete clustering were used to
perform hierarchical clustering of the data. We used a dynamic
tree cutting algorithm implemented in the cutreeDynamic()
function from the WGCNA package (9) to identify optimal
clustering of patients. The strength of association between
cluster membership and FAB status (M1/M2 and M4/M5) was
tested using Fisher’s test. Clustering analysis in our dataset was
performed using an increasing number of top variably expressed
genes (1000, 1500, 2000, 2500, and 3000 genes). Clustering
analysis in TCGA cohort was performed as above using the
top 1000 variably expressed genes, including only samples with
corresponding FAB status (M1/M2 and M4/M5).

Unsupervised Clustering to Identify Patient
Clusters Independent of FAB Status
To identify genes with expression associated with FAB status, we
excluded genes associated with FAB and lineage commitment.
Specifically, for each gene, a p-value was obtained for each of the
FAB groups M2, M4, and M5 relative to M1 from the regression
analysis. p-values for each of the groups (M2, M4, and M5) were
corrected for multiple testing using FDR. A gene’s expression
was considered associated with FAB status if expression of the
gene was significantly different in at least one of the FAB groups
M2, M4, and M5 relative to M1 (q < 0.05). A total of 4743 genes
were found to have expression associated with FAB status.
Enrichment of these genes in cell type-specific signatures was
quantified using Enricher (10, 11). FAB-associated genes were
excluded, and the top variably expressed genes (variance > 5, 735
genes) were used to identify clusters (as described above). Three
distinct expression clusters were identified using this approach,
Group_1, Group_2 and Group_3 (Figure 1A)

Survival Analysis
Survival analysis of patient clusters identified from our
expression data (Figures 1D–F) was performed using
multivariant Cox regression implemented in the R package
survival. First, clinical variables important for survival were
identified using univariate Cox regression. The multivariate
survival model was built using all variables that were
significantly associated with survival in the univariate analysis
(p < 0.05). Survival analysis reported in Figures 3A–C and
Supplementary Figure 4 was performed using the survminer R
package. p-values for the KM-plots were computed using log-
rank test implemented in the function surv_pvalue(). All KM-
plots in the study were plotted using the function ggsurplot().
Frontiers in Oncology | www.frontiersin.org 3
HOX Gene Survival Analysis
Activity of HOXA and HOXB gene clusters were scored in all
datasets using ssGSEA (5, 6) implemented in GSVA (7). In each
cohort, for each HOX gene cluster, the samples were split into 2
groups (the top and bottom 50th percentile) based on the activity
scores obtained from ssGSEA. Survival differences between the
groups were quantified as described above.

Estimation and Comparison of Metabolic
Activity Between Patient Groups
Pathway activity scores were calculated using 91 gene sets,
including 85 KEGG (12) metabolic pathways and 5 literature-
curated gene sets: glucose deprivation, glycolysis, hypoxia,
mTOR, and oxidative phosphorylation. The pathway activity
score was calculated using ssGSEA using GSVA (7). Differential
activity of pathways among clusters was identified using the
Wilcoxon rank-sum test based on each cell’s pathway activity
scores. p-values were adjusted using the Benjamini-Hochberg
method, and the threshold of significance was set to q < 0.05.

Foundation Medicine Assay
Samples were submitted to a Clinical Laboratory Improvement
Amendments–certified, New York State-accredited, and College
of American Pathologists–accredited laboratory (Foundation
Medicine, Cambridge, MA) for next-generation sequencing–
based genomic profiling. Samples were processed in the
protocol defined by hematologic cancers as previously
described (13). Briefly, after DNA and RNA extraction from
bone marrow aspirate, adaptor-ligated DNA underwent hybrid
capture for all coding exons of 465 cancer-related genes. cDNA
libraries prepared from RNA underwent hybrid capture for 265
genes known to be rearranged in cancer. Captured libraries were
sequenced to a median exon coverage depth of >500× (DNA)
or ~3M unique reads (RNA) using Illumina sequencing, and
resultant sequences were analyzed for base substitutions, small
insertions and deletions (indels), copy number alterations (focal
amplifications and homozygous deletions), and gene fusions/
rearrangements, as previously described (13, 14). Frequent
germline variants from the 1000 Genomes Project (dbSNP142)
were removed. To maximize mutation-detection accuracy
(sensitivity and specificity) in impure clinical specimens, the
test was previously optimized and validated to detect base
substitutions at ≥5% mutant allele frequency, indels at ≥10%
mutant allele frequency with ≥99% accuracy, and fusions
occurring within baited introns/exons with >99% sensitivity
(14). Known confirmed somatic alterations deposited in the
Catalog of Somatic Mutations in Cancer (COSMIC v62) were
called at allele frequencies ≥1% (15). Patients did not provide
consent for raw data release. Therefore, associated raw sequence
data is not shared. However, variants from a subset of the
samples used in this analysis (>18,000) have been deposited in
the Genomic Data Commons (accession #phs001179).

Mutational Analysis
Mutation data were binarized to indicate the presence or absence
of a mutation. Genes mutated in less than 10% of the samples
August 2021 | Volume 11 | Article 705627
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were excluded from the analysis. Fisher’s test was used to
quantify the association between the presence of a gene
mutation and cluster membership. p-values were corrected
using FDR and mutations significantly associated with a cluster
were identified at q < 0.1. Oncoplot was generated using R
package maftools (16). Gene Mutations that showed significant
association with FLT3 mutation were identified using Fisher’s
test, p-values were corrected for multiple testing using FDR and
significant associations were identified at q < 0.1. An odds ratio
(OR) > 1 indicates co-occurrence and OR < 1 indicates
mutual exclusivity.
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Validation Cohorts
Data for the 2 validation datasets TCGA (n= 173) and Valk et al.
(n= 293) (17, 18) were downloaded from GEO database
(GSE1159) and UCSC Xena (https://xenabrowser.net/
datapages/). Clinical data were also available on GEO for the
Valk et al. cohort, and from Firehose (https://gdac.
broadinstitute.org/) for The Cancer Genome Atlas (TCGA)
cohort. To validate survival and pathway patterns observed in
Group 2 we performed differential expression analysis between
group 2 and groups 1 and 3 combined. Upregulated and
downregulated genes were identified as fold-change >2 and
A B

D E F

C

FIGURE 1 | Identifying acute myeloid leukemia patient groups independent of French American British (FAB) classification: (A) Clustered gene expression heatmap of top
variably expressed genes (variance > 5,735 genes) whose expression was not associated with FAB classification (Fisher p = 0.251). ELN = European Leukemia Network;
CR = complete remission. (B) Oncoplot of frequently mutated genes in the cohort. (C) (left) Barplot of –log10 Fisher test q values testing the association of mutations with
sample groups. ASXL1, GATA2, and FLT3 mutations were associated with groups 1, 2, and 3, respectively (q < 0.1). (right) Heatmap showing mutation status of ASXL1,
GATA2, and FLT3 among patients. WT = wild type; MUT = mutated. (D) Overall survival, (E) event-free survival, and (F) remission duration of patients in groups 1, 2, and
3. p values for (D–F) were calculated using a multivariable Cox regression model relative to cluster 1.
August 2021 | Volume 11 | Article 705627

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Abbas et al. RNA-Based Predictive Signatures in AML
<-2, respectively, at q < 0.05. The activity of these gene sets was
scored in each of the validation cohorts using ssGSEA, and each
sample was then assigned a score indicating the difference
between the activity of the upregulated and downregulated
gene sets. In each of the validation cohorts, samples were
stratified into 2 groups indicating more Group 2 like (top 50th

percentile) and less Group 2 like (bottom 50th percentile). These
2 groups were then used to perform survival analysis as described
above. Differential expression between the groups was
determined and pathway analysis performed as described above.

Differential Expression of Proteins
RPPA data used in the study were previously published and
generated by our group for the cohort of 81 patients (19). To
identify differentially expressed proteins between 2 groups, we
computed the difference in mean expression of each protein with
a p-value using the Wilcoxon rank-sum test. p-values were
corrected using FDR. Upregulated and downregulated proteins
were identified as difference in mean >75th percentile and <25th
percentile, respectively, at q < 0.1.

Cell Line Molecular and Drug
Response Data
Cancer cell line drug response data were obtained from Rees et al.
(20). The response of each cell to a drug was quantified as the
area under the drug response curve (AUC). High AUC indicated
poor response and low AUC indicated better response. Protein
expression from RPPA for these cell lines was obtained from
Cancer Cell Line Encyclopedia (21) using the DepMap portal
(https://depmap.org/portal/download/). Correlations between
expression data and drug response were computed using
Spearman correlation.
RESULTS

Clinical and Demographic Characteristics
A total of 81 newly diagnosed AML patients (58% male and 42%
female) with a median age of 67.0 years (range 17.4-85.2 years)
were included in the study. All patients had whole transcriptome
sequencing and RPPA profiling at the time of diagnosis, and 73
of 81 patients had targeted sequencing of 465 genes using
Foundation Medicine’s FoundationOne Heme assay. Patient
clinical and demographic characteristics are summarized in
Table 1 . Briefly, 46 patients (57%) had intermediate
cytogenetic risk per ELN risk assessment (22), 30 (37%) had
unfavorable risk, and 5 (6%) had favorable risk. A total of 36
patients (44%) were classified as M1/M2 and 45 patients (56%)
were classified as M4/M5 by FAB classification. Thirty-three
patients (41%) had antecedent hematologic disorder. Eleven
patients were alive at the time of this analysis, with a median
follow-up period of 388.1 weeks (range 0-559.5 weeks). Eighty
percent of patients (56/70 for whom data were available) were
treated with cytarabine-based regimens, 13% were treated with
hypomethylating agents (9/70), and 7% with investigational
treatments (5/70). Eleven patients had no treatment records at
Frontiers in Oncology | www.frontiersin.org 5
MD Anderson. Of those evaluable for response, 35/63 (56%) had
complete remission or a partial response (complete remission:
33/35, 94%; partial response: 2/35, 6%), and 28/63 (44%) had
primary refractory disease. Among the patients who had
complete remission or a partial response, 20/35 patients (57%)
eventually had a relapse. The median overall survival, event free
survival, and remission duration for all evaluable patients were
25.4 weeks (range 0-559.6 weeks), 22.4 weeks (range 0-393
weeks), and 42.4 weeks (range 3.3-538.7 weeks), respectively
(Supplementary Figures 1A–C).

Unsupervised Clustering to Identify
Prognostic Clusters Independent of
FAB and ELN Classification
Unsupervised clustering of the 81 newly diagnosed AML patients
based on the top 1000 variably expressed genes initially revealed
two distinct patient clusters. The clustering was highly associated
with FAB morphologic classification (Fisher p = 9.2e-5,
Supplementary Figure 2A). The FAB-associated clustering of
patients persisted even when more genes were added to the
unsupervised clustering, suggesting a significant impact of
lineage and morphology on transcriptomic-based clustering
(Supplementary Figure 2B). To assess whether this
observation was also relevant in other AML cohorts, we
conducted unsupervised clustering of expression profiles in
M1/M2 and M4/M5 patients from TCGA AML cohort (18).
Indeed, unsupervised clustering of TCGA AML cohort revealed
similar high dependency on FAB classification (Fisher p = 2.24e-10,
Supplementary Figure 2C). These findings suggested that the genes
associated with lineage morphology in AML were contributing to
AML transcriptomic-based clustering, and hence could be masking
AML subgroups that share similar underlying biology but
different lineages.

To address this concern, we used linear regression models and
identified genes whose expression profiles were associated with
FAB classification (q < 0.05; see Methods). Using enrichment
analysis in cell lineage and morphology signatures (10, 11), we
found that these genes were highly enriched for myeloid and
monocytic lineage differentiation (Supplementary Figure 3A).
To decouple lineage-associated genes from AML patient
clustering and to identify biologically similar AML patients
independent of lineage, we excluded the lineage-associated
genes and re-clustered AML patients based on the expression
of top variable genes (735 genes, variance > 5). This approach led
us to identify 3 distinct patient clusters (hereafter referred to as
group 1, group 2, and group 3) that clustered independently of
FAB classification (Fisher p = 0.251; Figure 1A and
Supplementary Figure 2B). The clinical and demographic
characteristics of these 3 clusters are summarized in Table 1.
Briefly, after correction for multiple hypothesis testing, there
were no significant differences in distribution for FAB
classification, ELN classification, sex, antecedent hematologic
disease, or treatment group. Group 1 patients were the oldest
(mean age 68.9 ± 9.9 years), followed by group 2 patients (64.4 ±
15.1 years) and group 3 patients (57.3 ± 15.6 years; p = 0.030, q =
0.073). These findings suggested that the patient grouping was
August 2021 | Volume 11 | Article 705627
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inherently driven by the transcriptomic signatures independent
of lineage or clinical characteristics.

Targeted DNA sequencing of 465 genes using the
FoundationOne Heme assay in 73 patients (90%) revealed
FLT3 (37%), TET2 (30%), ASXL1 (25%), NPM1 (22%), and
NRAS (22%) as the most commonly mutated genes in the
cohort (Figure 1B). ASXL1 (q = 0.006), GATA2 (q = 0.029),
and FLT3 (q = 0.006) mutations were significantly enriched in
groups 1, 2, and 3, respectively (Figure 1C), but these mutations
were not associated with FAB classification (q > 0.4 for all). FLT3
expression was highest in Group 3, but it was significantly different
only when compared to Group 2 (q= 0.018) (Supplementary
Figure 3B). We found significant association between mutations
in FLT3 and mutations in NPM1 (q = 0.094, OR: 3.82) and
ASXL1 (q = 0.094, OR: 0.3) mutations (Supplementary
Figure 3C). Of note, while a significant fraction of NPM1
mutations co-occur with FLT3, mutations in AXSL1 were
largely mutually exclusive. We included this data as
Supplementary Figure 3B. These findings suggested that
mutation profiles were associated with transcriptomic
signatures, but not with lineage.

Outcomes of AML Patient Groups
We next evaluated whether the 3 AML groups had distinct
clinical outcomes. Univariate Cox survival analysis indicated
that sample clustering was associated with differential overall
survival, event-free survival, and remission duration (p < 0.05).
To control for other confounding clinical factors, we first used
univariate survival analysis to identify clinical variables
associated with survival (p < 0.05; Supplementary Table 1)
and then built a multivariable Cox survival model with these
variables. Survival trends observed in the clusters in univariate
analysis were re-captured after controlling for other confounding
variables associated with survival (see Methods). Group 2 was
characterized by improved overall survival (median 55.86 weeks;
p = 0.037), event-free survival (median 55.85 weeks; p = 0.006),
and remission duration (median 111.71 weeks; p = 0.03 relative
to group 1, whereas no significant difference was observed
between group 1 and group 3 (Figures 1D–F).

Inflammatory and Immune Pathways
Enriched in Group 2 Patients
To explore transcriptomic signatures that were associated with
improved outcomes in group 2, we conducted differential gene
expression profiling comparing group 2 with groups 1 and 3,
revealing 70 upregulated genes and 322 downregulated genes (q <
0.05, absolute log2 fold change > 2; Figure 2A and
Supplementary Table 1). GSEA of hallmarks pathways
demonstrated significant activation of immune signaling in
group 2 compared with groups 1 and 3 (Figure 2B). To
determine whether the signal was confounded by a single
group, we next compared group 2 with group 1 and 3 each
separately. Indeed, we saw that patients in group 2 consistently
had activation of immune and inflammatory pathways, including
interferon-alpha and interferon-gamma, compared with each of
the other groups, suggesting that intrinsic immune activation in
Frontiers in Oncology | www.frontiersin.org 6
group 2 was associated with improved outcomes (Figures 2C, D).
HOXA and HOXB gene clusters were significantly downregulated
in group 2 compared with groups 1 and 3 (Supplementary
Table 1). Furthermore, lower expression of HOXA and HOXB
gene clusters was associated with better outcomes across all
patients in our cohort (Supplementary Figure 4A).

Validation of Immune Signatures in
Independent Cohorts
To validate the finding that immune signatures were associated
with improved outcomes in AML, we used 2 independent AML
cohorts (17, 18) with available transcriptomic and clinical data
(Supplementary Table 1; see Methods). We then compared
outcomes based on median scores derived from ssGSEA (7)
from genes differentially expressed in group 2 relative to groups 1
and 3 (see Methods). Higher-scoring patients (i.e., more similar
to group 2) had improved survival in both validation cohorts
(Figures 3A–C). Differential pathway activity analysis between
these groups revealed activation of immune-associated pathways,
consistent with observations in group 2 in our cohort and further
validating our finding that immune activity was the main
differential factor in outcomes (Figures 3D, E). Similarly,
patients with lower HOXA and HOXB gene scores had
improved outcomes (Supplementary Figures 4B, C). These
data indicate that activation of immune-associated pathways
and suppression of HOX genes in AML are associated with
improved outcomes in patients.

Pairwise GSEA Comparisons Revealing
Metabolic Signatures in Group 3
To further characterize the biologic pathways that distinguished
patient groups, we conducted pairwise GSEA between individual
groups of patients. Group 3 patients had significant activation of
metabolic activity compared with group 1 and with group 2
patients (Figures 4A, B). Although patients in group 3 and group
1 had similarly worse outcomes, activity of metabolic pathways
was significantly higher in group 3 patients, especially for
oxidative phosphorylation and fatty acid metabolism
(Figure 4B), suggesting that metabolism was a distinguishing
feature between these groups. Furthermore, activity in the
mTOR pathway, a major regulator of cancer metabolism (23),
was significantly higher in group 3 than in group 1.

To further characterize metabolic activity in group 3, we
compared the metabolic pathway activity scores between group 3
and groups 2 and 1. Relative to group 2, group 3 showed
significant activation of energy metabolism pathways such as
glycolysis, TCA cycle, biosynthesis of unsaturated fatty acids, and
gluconeogenesis. Relative to group 1, group 3 was characterized
by activation of oxidative phosphorylation, lipid metabolism
(ether lipid metabolism, steroid hormone biosynthesis), and
pyrimidine metabolism. Group 3 also showed activation of
galactose metabolism and linoleic acid metabolism relative
to both group 1 and group 2. These findings indicate that
patients in group 3 may be characterized by augmented
activation of pathways involved in energy production and
metabolism (Figure 4C).
August 2021 | Volume 11 | Article 705627
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Proteomic Assessment to Distinguish
Group 3 and Group 1
All 81 AML patients had previously reported RPPA profiling
(19) at the same time point of RNA and genomic sequencing. We
therefore used this orthogonal molecular platform to delineate
protein-based molecular pathways that could differentiate these 3
AML patient groups (Supplementary Figure 5). Group 2 had
downregulation (q = 0.057 and difference in mean = -0.832) of
only CTNNB1 when compared with group 1 (Supplementary
Figure 5A) and downregulation of MTOR and MTOR.pS2448
compared with group 3 (Supplementary Figure 5B). These
findings suggested that unlike RNA, RPPA was not able to
delineate many proteomic differences between group 2 and
groups 1 and 3, most likely owing to the smaller number of
genes assayed.
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We next evaluated differences in RPPA signatures between
group 1 and group 3 patients who had similar outcomes,
compared with group 2 patients. We identified 28 upregulated
proteins and 19 downregulated proteins (q < 0.1, seeMethods) in
group 3 relative to group 1 (Figure 5A). MTOR.pS2448, which
signals for activation of both mTOR and PI3K pathways (23–25),
was over-expressed in group 3. This was consistent with the
mTOR upregulation in the group 3 transcriptomic signature and
suggested an active PI3K-AKT-mTOR signaling axis in group 3
patients. In addition, we found over-expression of proteins in the
MAPK signaling cascade (MAP2K1_2pS217_211, MAPK9),
apoptosis (BAX, CASP8, MCL1, BAK1, BAD.pS155), and
BRAF in group 3 compared with group 1 (Figure 5A).
Overexpression of MCL1, accumulation of total (un-cleaved)
CASP8, and lower expression of cleaved caspase-3
A B

DC

FIGURE 2 | Characterizing transcriptomic features of acute myeloid leukemia patients in group 2: (A) Volcano plot corresponding to differential expression analysis
comparing the transcriptome of group 2 with that of group 1 and 3 combined (significance based on log2 fold change > 2 and q < 0.05, in red). (B) Pathways
identified via gene set enrichment analysis (GSEA) of significantly differentially expressed genes from (A). Negative mean T-statistic (blue) indicates downregulation
and positive mean T-statistic (red) indicates upregulation of the pathway. (C) GSEA mean T-statistic heatmap based on pairwise differential expression comparing
group 2 with group 1 and with group 3. Pathways significantly dysregulated (q < 0.1) in at least one comparison are included in the heatmap. Red and blue indicate
upregulation and downregulation, respectively. Numbers in the heatmap correspond to q values. (D) Barcode plots illustrating upregulation of interferon-alpha and
interferon-gamma signaling in group 2 relative to group 1.
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(CASP3.cI175) suggested inhibition of apoptosis in group 3
patients (Figure 5A), consistent with the higher absolute blast
count observed in group 3 (Table 1).

MCL1 overexpression is associated with venetoclax resistance
and can be seen in FLT3-mutated AML (26).We therefore checked
for a correlation between mTOR and MCL1 expression. Indeed,
MTOR.pS2448 expression was positively correlated with MCL1
expression in RPPA across all patients (Figure 5B and
Supplementary Figure 5B). This is significant because resistance
to venetoclax can be mediated via MCL1 (26). We therefore
evaluated whether resistance to venetoclax in myeloid and
lymphoid cell lines is also associated with mTOR overexpression.
Phosphorylated S6 p235-236 and p240-244, which are surrogate
markers for mTOR activation, were positively correlated with
venetoclax AUC (r = 0.36, p = 0.001 and r = 0.32, p = 0.003,
respectively), suggesting thatmTOR activation was associated with
resistance to venetoclax (Figures 5C, D).
DISCUSSION

Clinical outcomes of AML patients are largely determined by
patient characteristics such as age, performance status, and the
underlying cause of the AML (27). ELN classification categorizes
AML patients on the basis of cytogenetic and mutational profiles
(22, 28). However, almost one-third of AML patients lack
Frontiers in Oncology | www.frontiersin.org 8
prognostic genomic features (29). Also, one-third of AML
patients have survival outcomes that deviate more than 20%
from their ELN risk category (29). Therefore, identifying
orthogonal molecular approaches contributing to AML
heterogeneity independent of clinical and genomic features
may reveal biologic processes impacting outcomes and identify
novel therapeutic strategies.

Inprevious studies usingRNAprofiling to classifyAMLpatients
(17, 30), gene expression clustering was strongly correlated with
mutational and cytogenetic profiles, as well as lineage and
morphologic groups as classified by FAB. Similarly, we identified
cluster correlation with FAB classification in TCGA and in our
cohort.We therefore hypothesized that by excluding the expression
profiles of genes associated with lineage and morphologic
characteristics in AML, we can potentially uncover AML patient
groups that share biologic pathways independent of morphology
and lineage. In the current study, we undertook a comprehensive
and unique approach to decouple lineage-related genes, combined
with RPPA and targeted mutation analysis, and we identified
immune and metabolic signatures that contributed to AML
heterogeneity and impacted outcomes.

Our analysis identified a group of AML patients (group 2) who
had significantly improved overall survival, event-free survival, and
remission duration. This patient group was characterized by
increased frequency of GATA2 mutations and an inflammatory
and immune phenotype indicated by enrichment for interferon-
A B

D E

C

FIGURE 3 | Validating survival and pathway trends observed in group 2 in independent cohorts: Samples in The Cancer Genome Atlas (TCGA) and Valk et al.
cohorts were stratified on the basis of their similarity to group 2 (see Methods). (A) Overall survival and (B) event-free survival in TCGA cohort. (C) Overall survival in
the Valk et al. cohort. (D, E) Gene set enrichment analysis barplots of TCGA (D) and Valk et al. (E) validation cohorts.
August 2021 | Volume 11 | Article 705627

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Abbas et al. RNA-Based Predictive Signatures in AML
alpha and interferon-gamma, tumor necrosis factor-alpha, and
interleukin-6/JAK/STAT3 signaling pathways. Interestingly,
germline deficiencies in GATA2 leads to myeloid malignancies
with an immunodeficient phenotype (31). However, the exact
mechanism by which GATA2 mutations could confer a
remodeled immunologic phenotype in AML remains unclear and
warrants further investigation. Supported by previous studies
demonstrating distinct immune cell activity among AML patients
with different outcomes (32). Our findings suggested that the
intrinsic inflammatory and immune microenvironment in AML
was associated with better outcomes and responses to therapy.
Recent work demonstrated the complex immunologic landscape of
hematologic malignancies with a subset of AML patients having a
distinctively high NK/T cell cytotoxic activity {Dufva:2020bg}.
Further, recent work demonstrated that an immune-infiltrated
signal was associated with improved outcomes in AML patients
but not associated with ELN (33). However, in our results, which
were validated in 2 independent cohorts, patients could be grouped
by shared biologic characteristics independent of ELN classification
or clinical variables such as age.
Frontiers in Oncology | www.frontiersin.org 9
AML patients in group 2 also had significant downregulation of
HOX genes, which corresponded with improved outcomes,
consistent with previous studies (30, 34, 35). Inflammation and
cytokine production in a canine model was associated with reduced
HOXA gene expression (36), and restoring HOX gene expression
may oppose inflammation (37) or hamper innate immunity by
inhibiting granulopoiesis (38). These studies, although not
conducted in a leukemia or cancer model, suggested that
inflammation and HOX genes may be co-regulated, but the exact
mechanism linking these two pathways is still unclear.

Our analysis also revealed 2 distinct patient groups (groups 1
and 3) that had similarly worse outcomes compared with group 2
butdistinctunderlyingbiology.OurorthogonalRPPAandgenomic
analysis coupled with transcriptomic profiling revealed that these 2
groups can be distinguished by increased metabolic activity and
overexpression ofmTOR andMCL1 proteins in group 3. However,
only group 3 had FLT3 enrichment, contrary to previous
transcriptomic studies (17), demonstrating that multiple
transcriptional clusters may harbor FLT3 mutations. Therefore,
our approach of decoupling the lineage-associated genes generated
TABLE 1 | Clinical and demographic characteristics of patients.

Characteristic No. (%)

Overall, n = 81 Group 1, n = 31 Group 2, n = 29 Group 3, n = 21 p1 q2

Mean ± SD age, years 64.3±14.1 68.9±9.9 64.4±15.1 57.3±15.6 0.030 0.073
Sex 0.250 0.370
Female 34/81 (42) 12/31 (39) 10/29 (34) 12/21 (57)
Male 47/81 (58) 19/31 (61) 19/29 (66) 9/21 (43)

FAB 0.230 0.370
M1/M2 36/81 (44) 16/31 (52) 14/29 (48) 6/21 (29)
M4/M5 45/81 (56) 15/31 (48) 15/29 (52) 15/21 (71)

ELN genetic group 0.019 0.073
Favorable 5/81 (6) 0/31 (0) 5/29 (17) 0/21 (0)
Intermediate 46/81 (57) 15/31 (48) 17/29 (59) 14/21 (67)
Unfavorable 30/81 (37) 16/31 (52) 7/29 (24) 7/21 (33)

Recent AHD 0.180 0.360
No 48/81 (59) 16/31 (52) 16/29 (55) 16/21 (76)
Yes 33/81 (41) 15/31 (48) 13/29 (45) 5/21 (24)

Treatment 0.280 0.370
AraC-based 56/70 (80) 17/24 (71) 21/25 (84) 18/21 (86)
HMA-based 9/70 (13) 4/24 (17) 4/25 (16) 1/21 (5)
Investigational 5/70 (7) 3/24 (13) 0/25 (0) 2/21 (10)
(Missing) 11 7 4 0

Response >0.99 >0.99
CR 33/70 (47) 10/24 (42) 12/25 (48) 11/21 (52)
Not Evaluable 7/70 (10) 3/24 (13) 2/25 (8) 2/21 (10)
Partial remission 2/70 (3) 1/24 (4) 1/25 (4) 0/21 (0)
Resistant 28/70 (40) 10/24 (42) 10/25 (40) 8/21 (38)
(Missing) 11 7 4 0

Relapse 20/35 (57) 8/11 (73) 6/13 (46) 6/11 (55) 0.480 0.530
(Missing) 46 20 16 10

Vital status 0.028 0.073
Alive 11/81 (14) 2/31 (6) 8/29 (28) 1/21 (5)
Dead 70/81 (86) 29/31 (94) 21/29 (72) 20/21 (95)

AlloSCT 7/81 (9) 1/31 (3) 4/29 (14) 2/21 (10) 0.370 0.440
Mean ± SD bone marrow blast percentage 60.0±23.1 55.2±22.9 51.9±22.2 79.1±12.2 <0.001 <0.001
(Missing) 1 0 0 1
August 2021 | Volume
 11 | Article
1Statistical tests performed: Kruskal-Wallis test; chi-square test of independence; Fisher exact test.
2False discovery rate correction for multiple testing.
FAB, French-American-British classification; ELN, European Leukemia Network; AHD, antecedent hematologic disorder; AraC, ara-cytarabine; HMA, hypomethylating agents; CR,
complete remission; alloSCT, allogeneic stem cell transplantation.
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a better representation of the transcriptomic profile associated with
FLT3 mutations. This is also consistent with the proliferative
phenotype conferred by FLT3 mutations in AML (39). FLT3
activates downstream mTOR signaling (40, 41), and this signaling
is involved inmetabolic reprogramming (42). InhibitingmTORcan
also lead to inhibition of MCL1, but the exact mechanism is not
clear, although it is thought to involve AKT-dependent regulation
of MCL1 (43, 44). mTOR inhibition also has antitumor activity in
AML (45–47), and our data suggest that mTOR activation is
associated with venetoclax resistance. The finding is of high
importance because it suggests an alternative therapeutic target to
overcome venetoclax resistance (26). Furthermore, mTOR
inhibition could be a surrogate for inhibiting MCL1, especially
given that directMCL1 inhibitors have cardiac and gastrointestinal
toxicities that have hampered their recent clinical development.
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Our dataset comprised 81 samples from patients mostly treated
with intensive chemotherapeutic regimens (80% with cytarabine-
based regimens). Given the relatively small sample size, it is likely
that we missed subtle transcriptomic and proteomic perturbations
that might be biologically important. Furthermore, we used
targeted sequencing of AML-associated genes to study DNA
lesions in the cohort. Although this approach allowed us to
study important AML-associated mutations in these patients, it
precluded analysis of the full spectrum of mutations in these
patients or the associated mutational processes, although most if
not all of the myeloid mutations can be captured by this assay.
Outcomes in patients with FLT3 mutations (primarily group 3)
would have been improved had FLT3 inhibitors been used.
However, at the time of sample collection and AML diagnosis,
none of the FLT3 inhibitors were approved or under investigation
A B

C

FIGURE 4 | Characterizing the transcriptome of patients in group 3 and group 1: (A) Gene set enrichment analysis heatmap, similar to Figure 2. Pathways
significantly dysregulated (q < 0.1) in at least one of the comparisons were included in the heatmap. (B) Barcode plots illustrating upregulation of fatty acid
metabolism and oxidative phosphorylation in group 3 relative to group 1 patients. (C) Metabolic pathways differentially activated (q ≤ 0.05) in each of the 3
comparisons. Upregulated pathways are shown in red and downregulated pathways in blue (relative to the second group in each comparison).
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in a trial. Nevertheless, our study, which combined RPPA,
genomic profiling, and transcriptomic profiling with extensive
and long clinical follow-up data, provided a unique clinical dataset
for further interrogation.

Our approach to decouple morphology from lineage-
associated genes in AML revealed distinct groups of AML
patients that share biologic pathways independent of ELN
classification, antecedent hematologic disorders, or other
clinical and molecular variables that are known to impact
outcomes. We also used orthogonal RPPA analysis to
differentiate patients with similarly worse outcomes in groups
1 and 3, revealing an mTOR-associated metabolic profile that
can be potentially targeted. Our findings demonstrate that
employing alternative classifications for AML patients can
provide insight into AML heterogeneity.
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Supplementary Table 1 | List of French American British (FAB)-associated
genes and differentially expressed genes across all comparisons, in univariate and
multivariable analysis, and between groups.

Supplementary Figure 1 | Kaplan-Meier curves for (A) overall survival, (B) event-
free survival, and (C) remission duration for all 81 patients in the cohort.
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DC

FIGURE 5 | Proteomic analysis: (A) Differential protein expression analysis comparing group 3 with group 1. Upregulated proteins (q < 0.1 and difference in mean
> 0.32) are shown in red and downregulated proteins (q < 0.1 and difference in mean > -0.188) in blue. (B) Scatterplot illustrating the correlation between expression
of mTOR.pS2448 (activating phosphorylation) and MCL1 (spearman correlation = 0.322, p = 0.003). (C, D) Scatterplot illustrating the expression of phosphorylated
S6 (marker of mTOR activation) with venetoclax (higher area under the curve [AUC] indicates more resistance to treatment). Statistics computed using Spearman
correlation.
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Supplementary Figure 2 | (A) Clustered heatmap of top 1000 variably
expressed genes in our cohort. Two patient groups were identified that showed
strong association with French American British (FAB) status (Fisher p = 9.2e-5).
(B) Clustering of samples performed as in Supplementary Figure 1A for various
numbers of top variably expressed genes and their association with FAB status,
inferred using the Fisher test. The analysis was also performed for clusters
corresponding to Figure 1A (corrected_clusters). The barplot is the –log10 p values
obtained from the Fisher test. (C) Transcriptome clustering analysis in The Cancer
Genome Atlas (TCGA) acute myeloid leukemia cohort using the top 1000 variably
expressed genes. Consistent with observations in our data (A, B), identified clusters
showed a strong association with FAB status (Fisher p = 2.24e-10).

Supplementary Figure 3 | (A) Enrichment of cell type markers in genes
associated with French American British classification. Strong enrichment was
observed for genes associated with myeloid and monocytic lineage. (B) boxplot of
expression of FLT3 between groups (ANOVA p = 0.025), Tuckey post-hoc test is
used to compute q-values for pairwise comparisons. (C) Heatmap of mutations that
Frontiers in Oncology | www.frontiersin.org 12
are associated with FLT3 mutations (q < 0.1), identified using Fisher’s test followed
by correction of p-value by FDR.

Supplementary Figure 4 | Samples stratified on the basis of activity of HOXA or
HOXB clusters and divided into high (above the fiftieth percentile) and low (below the
fiftieth percentile) groups. Survival between these groups was compared in (A) the
MD Anderson cohort (top: overall survival; bottom: event-free survival), (B) the Valk
et al. cohort (top: overall survival; bottom: event-free survival), and (C) The Cancer
Genome Atlas (TCGA) cohort (overall survival).

Supplementary Figure 5 | (A) Proteins differentially expressed in group 2 relative to
group 1. Upregulated proteins are shown in red (q < 0.1 and difference in mean > 0.149)
anddownregulated pathways in blue (q < 0.1 anddifference inmean< -0.117). (B)Proteins
differentially expressed in group 2 relative to group 3. Upregulated proteins are shown in red
(q < 0.1 and difference in mean > 0.22) and downregulated pathways in blue (q < 0.1 and
difference in mean < -0.24).
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