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Comparing sequencing assays and
human-machine analyses in actionable
genomics for glioblastoma

ABSTRACT

Objective: To analyze a glioblastoma tumor specimen with 3 different platforms and compare
potentially actionable calls from each.

Methods: Tumor DNA was analyzed by a commercial targeted panel. In addition, tumor-normal
DNA was analyzed by whole-genome sequencing (WGS) and tumor RNA was analyzed by RNA
sequencing (RNA-seq). The WGS and RNA-seq data were analyzed by a team of bioinformaticians
and cancer oncologists, and separately by IBM Watson Genomic Analytics (WGA), an automated
system for prioritizing somatic variants and identifying drugs.

Results: More variants were identified by WGS/RNA analysis than by targeted panels. WGA com-
pleted a comparable analysis in a fraction of the time required by the human analysts.

Conclusions: The development of an effective human-machine interface in the analysis of deep
cancer genomic datasets may provide potentially clinically actionable calls for individual pa-
tients in a more timely and efficient manner than currently possible.

ClinicalTrials.gov identifier: NCT02725684. Neurol Genet 2017;3:e164; doi: 10.1212/

NXG.0000000000000164

GLOSSARY
CNV 5 copy number variant; EGFR 5 epidermal growth factor receptor; GATK 5 Genome Analysis Toolkit; GBM 5 glioblas-
toma; IRB5 institutional review board;NLP5Natural Language Processing;NYGC5NewYork Genome Center; RNA-seq5
RNA sequencing; SNV 5 single nucleotide variant; SV 5 structural variant; TCGA 5 The Cancer Genome Atlas; TPM 5
transcripts per million; VCF 5 variant call file; VUS 5 variants of uncertain significance; WGA 5 Watson Genomic Analytics;
WGS 5 whole-genome sequencing.

The clinical application of next-generation sequencing technology to cancer diagnosis and treat-
ment is in its early stages.1–3 An initial implementation of this technology has been in targeted
panels, where subsets of cancer-relevant and/or highly actionable genes are scrutinized for
potentially actionable mutations. This approach has been widely adopted, offering high redun-
dancy of sequence coverage for the small number of sites of known clinical utility at relatively
low cost.

However, recent studies have shown that many more potentially clinically actionable muta-
tions exist both in known cancer genes and in other genes not yet identified as cancer drivers.4,5

Improvements in the efficiency of next-generation sequencing make it possible to consider
whole-genome sequencing (WGS) as well as other omic assays such as RNA sequencing
(RNA-seq) as clinical assays, but uncertainties remain about how much additional useful infor-
mation is available from these assays.
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Aside from cost, a challenge of WGS or
whole-transcriptome data is the expertise and
time required to interpret the full spectrum of
somatic mutations. To address this challenge,
Watson for Genomics (Watson Genomic Ana-
lytics [WGA]), a cancer analytic tool, uses stan-
dard variant call files (VCFs), copy number
variant (CNV), and differential gene expression
data to return a list of recommended cancer
drugs. Here, we present the results of a targeted
cancer panel along with WGS and RNA-seq in
a patient with glioblastoma (GBM). We also
compare results of expert interpretation of the
tumor genome by bioinformaticians and oncol-
ogists at New York Genome Center (NYGC)
and at collaborating institutions with those
generated by WGA.

METHODS Standard protocol approvals, registrations,
and patient consents. This study was approved by multiple

institutional review boards (IRBs), including Rockefeller University

IRB and Biomedical Research Alliance of New York IRB. The

study was registered in ClinicalTrials.gov (NCT02725684).

Informed written consent was obtained from the participant.

Participant. This report describes the first participant in a multi-

institutional study. NYGC-GBM-01 was a 76-year-old man with

GBM. DNA and RNA were extracted from snap-frozen tissue.

DNA from blood was obtained for comparison. The samples

were analyzed by WGS and RNA-seq.

Single nucleotide variants and INDELs. Whole-genome

libraries were prepared using the Illumina TruSeq Nano

DNA Sample Prep Kit and were sequenced on Illumina HiSeq

X instruments (Illumina, San Diego, CA). Paired-end 2 3 150 bp

reads were aligned to the GRCh37 human reference (BWA aln

v.0.7.8)6 and processed using a pipeline that includes marking of

duplicate reads using Picard tools and realignment around

INDELs and base recalibration using Genome Analysis Toolkit

(GATK) version 2.7.4.7 muTect v1.1.4,8 LoFreq v2.0.0,9 Strelka

v1.0.13,10 Pindel,11 and Scalpel12 were used to return the union of

variant calls. Variants were filtered out if they were at .1%

frequency in the 1000 Genomes or ExAC data sets, had more

than 2 alleles to remove artifacts, raw frequency in the tumor was

lower than that in the normal, or matched a custom “blacklist” of

known systematic errors generated by comparing normal germ-

line replicates. Remaining single nucleotide variants (SNVs) and

INDELs were annotated via snpEff,13 snpSift,13 and GATK

VariantAnnotator using annotation from ENSEMBL,14 COSMIC,15

Gene Ontology,16 and 1000 Genomes.17

Structural variation. Structural variants (SVs), such as CNVs

and complex genomic rearrangements, were detected by NBIC-

seq,18 Delly,19 CREST,20 and BreakDancer.21 We prioritized

SVs in the intersection of callers and those with additional

split-read evidence via SplazerS.22 SVs with split-read support in

the matched normal or annotated as known germline variants

(1000 Genomes call set, Database of Genomic Variants) were

removed as likely germline variants. The predicted somatic SVs

were annotated with gene overlap (RefSeq, Cancer Gene Census)

including prediction of potential effect on resulting proteins.

Tumor purity and ploidy. Tumor purity was calculated from

WGS data using Titan.23 In addition, purity and ploidy were

calculated from the Illumina OMNI 2.5M Array using ASCAT.24

RNA sequencing. We used the Illumina TruSeq stranded mes-

senger RNA protocol and sequenced 100 million reads. Reads

were aligned using STAR25 and Gencode genes were quantified

using featureCounts.26 Ninety-five percent of reads mapped the

reference genome. We normalized the counts with DESeq2 and

adjusted the quantification to account for GC bias27 and batch

effects28 between The Cancer Genome Atlas (TCGA) GBM

RNA-seq and our sample. The normalized expression data are

used to identify GBM subtypes.29

Therapeutic targets and drug recommendations. The

NYGC uses the custom clinical Tier classification system for SNVs.

Tier 1 variants are clinically important variants in the cancer type

being studied (e.g., epidermal growth factor receptor [EGFR]

T790M is known to be clinically important in lung cancer30).

The same variant observed in a cancer unknown to manifest this

variant is classified as Tier 2 (e.g., the clinical importance of EGFR

T790M is unknown in GBM). Tier 3 variants are in targetable

genes; however, the specific variant is not known to be targetable

(e.g., an unknown mutation in EGFR). Tier 4 variants are in genes

cataloged by COSMIC cancer census and not included in Tiers 1–

3.15 All other variants are in Tier 5 and considered variants of

uncertain significance (VUS). Variants in Tiers 1–4 are considered

potentially targetable. Variants were matched to potential treat-

ments by identifying the most aberrant genes from a combination

of SNV, INDEL, SV, and RNA-seq data and by searching the

NYGC drug-to-gene database. Prioritization of potential treat-

ments was based on further manual assessment including criteria

such as strength of data supporting variants detected, FDA approval

of drug in GBM or in another cancer type, current GBM trial for

a drug, and successful use of the drug to target the variant identified

to treat GBM or other cancer types.

Watson Genomic Analytics. WGA, an IBM research proof-

of-concept environment of Watson for Genomics,31 is a cogni-

tive system built on several different predictive models to analyze

up to whole-genome scale molecular data. VCFs, CNV, and gene

expression data are input to WGA. The VCF file provided to

WGA contains the union from 3 calling algorithms each for

SNVs and INDELs specified in the Methods section. CNV data

are inputted as copy number log2 (T/N) ratio values per gene.

Modified Z-scores of RNA-seq normalized expression data per

gene are used as proxy for differential gene expression. Modified

z-score per gene is calculated by subtracting the median tran-

scripts per million (TPM) value (over the TCGAGBM cohort) to

this sample’s TPM and dividing by the TCGA SD. With this

input, WGA leverages a comprehensive database of structured

(201 sources include DrugBank, NCI, COSMIC, ClinVar, and

1000 Genomes) and unstructured (evidence extracted from lit-

erature using Natural Language Processing [NLP]) biological and

medical data. To date, WGA processed abstracts from PubMed

and where possible, began analyzing full-text articles. In addition,

the NLP engine is being trained to understand the approximate

5,600 clinical trials at ClinicalTrials.gov. It is from the unstruc-

tured sources that WGA maintains a current repository of drug-

disease associations and biomarkers for prognosis and therapeutics,

as well as matching patients to relevant clinical trials based on

molecular criteria. WGA identifies gene alterations most likely to

be important in cancer and then identifies relevant treatments that

directly or indirectly target the variant. WGA also identifies VUS,

resistive or sensitizing markers for the drug of interest, and relevant

clinical trials.
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RESULTS Case report. NYGC-GBM-01 was a 76-
year-old man who presented with headache and dif-
ficulty with ambulation. CT of the brain revealed
a mass in the left parietal region. He underwent initial
resection for which pathology revealed a GBM, neg-
ative for the following: EGFR amplification by in situ
hybridization fluorescence, EGFRvIII RNA expres-
sion, IDH1 R132H by immunostaining, 1p36/
19q13 deletion by fluorescent in situ hybridization
analysis, and MGMT methylation. Postsurgically, he
had right-sided hemineglect and right/left confusion.
He became somnolent and required a re-resection
and ventriculoperitoneal shunt placement. Two
months after initial resection, he completed radiation
therapy with 40 Gy over 3 weeks with concurrent
temozolomide 75 mg/m2 daily. He then completed 3
cycles of adjuvant temozolomide at 5 months after
initial resection, after which progression was seen on
MRI. He considered multiple options, but experi-
enced functional decline, and was no longer trial
eligible. Instead, he started on the first dose of bev-
acizumab and CCNU, 7 months after initial resec-
tion. He further declined and died 1 month later.

A sample from the initial resection was examined
with a FoundationOne test, and a snap-frozen sample
was received for sequencing in this study. DNA and
RNA extraction, sequencing, and analysis required
7 weeks at which time a tumor board meeting was
convened, including the treating oncologist, a neu-
ro-oncologist, and bioinformaticians, to discuss the
results of the analysis completed by the NYGC. A
clinical report of the findings was subsequently issued
to the oncologist. This tumor board meeting occurred
after the completion of the first cycle of adjuvant te-
mozolomide. The oncologist planned on referring the
patient to clinical trials identified by the NYGC, but
at the time of progression, he was no longer trial eli-
gible due to functional decline.

Tumor analysis. The metrics for the WGS are shown
in table 1. The sample had an estimated tumor
purity of 47%–52% and ploidy of 1.99. Table 2
describes the types and number of variants identi-
fied. Specifically, variant-calling pipeline analysis
identified 8,449 total somatic mutations (with
150 falling in exonic, protein-coding regions) and
a complex landscape of amplifications and deletions.
Mutational signatures are an important molecular
characterization of the tumor and assessing appli-
cability of immunotherapy,32 for example, RNA-seq
identified the sample as the mesenchymal subtype of
GBM.28 WGS supported this with evidence of an
NF1 mutation and a CDKN2A loss with a gain of
Chr 7 and a loss of Chr 10.

The NYGC identified 6 actionable SNVs, of
which 2 were Tier 3 variants (MET R755fs and
FGFR3 L49V) and 4 were Tier 4 variants (in
STAG2, PIK3R1, NF1, and ERG, described in table
e-1 at Neurology.org/ng). In addition, 5 CNVs were
identified, of which 2 were in genes that had SNVs
(table 3). CREST and Pindel identified a 299-bp
intragenic deletion at the intron-exon junction of
exon 11 in MET, as well as an amplification of
MET (log2 CNV 3.64-fold tumor vs normal ampli-
fication). RNA-seq confirmed overexpression of
MET (z-score 2.23) and an in-frame exon-skipping
event (METex11), at an allele frequency of approxi-
mately 50% (figure 1). This observation is molecu-
larly analogous to the skipping of exon 14 identified
in lung adenocarcinoma and other cancer types.33

Although METex11 is located in the extracellular
domain, we hypothesized that this mutation could
lead to an overactivation of MET and could be tar-
geted by a tyrosine kinase inhibitor. By analogy with
studies of MET(D7–8),34 both would lead to the lack
of transmembrane localization. We also noted that
mislocalization of MET(D7–8) renders the variant
not targetable using antibodies. However, MET-
specific tyrosine kinase inhibitors could efficiently
deactivate the kinase.

We also identified a codon insertion in PIK3R1
(p.R562_M563insIle/c.1686_1688dupTAT), which
is a regulatory protein that interacts with and inhibits

Table 1 Sample whole-genome sequencing
metrics

Mean coverage

Tumor 75.63

Normal 42.43

Total reads

Tumor 1,920,954,396

Normal 1,019,519,682

Mapped reads

Tumor 1,805,911,478

Normal 959,221,187

303 coverage, %

Tumor 97.8

Normal 86.8

Table 2 Number of somatic variants identified

Type of variant Count

Single nucleotide variants (SNVs) 8,449

Insertions and deletions (INDELs) 431

Exonic SNV 133

Exonic INDEL 16

Copy number gain 2

Copy number loss 5
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the functional catalytic protein, PIK3CA. Activating
mutations of PIK3CA are known cancer drivers, as
are loss-of-function mutations of PIK3R1. Func-
tional studies have shown that PIK3R1 amino acid
D560 is involved in hydrogen binding with
PIK3CA and is an essential amino acid in regulat-
ing the activity of the catalytic subunit. The muta-
tion identified here is in the same helical inhibitory
(iSH2) domain of PIK3R1. The variant binds but
fails to inhibit PIK3CA, leading to enhanced cell
survival, Akt activation, anchorage-independent
cell growth, and oncogenesis.35,36 Furthermore,
analysis of the crystal structure (figure 2) supports
the conclusion that this mutation would inhibit the
functional interaction between the 2 proteins, spe-
cifically through N345 of PIK3CA, resulting in
PIK3CA activation.

A recent cell line study identified a synergistic
effect between MET exon 14–skipping variants and

a PIK3CA E545K oncogenic variant, in which
a combination of an MET inhibitor and a PIK3CA
inhibitor showed better sensitivity than single ther-
apy.37 The PIK3CA E545K variant also activates
PIK3CA. Taken together, these findings led us to
suggest combinatorial INC280 (MET inhibitor) and
BKM120 (PIK3CA inhibitor) therapy for potential
clinical consideration, and this suggestion would have
made the patient eligible for a clinical trial assessing
efficacy of this combination (NCT01870726).

Watson for Genomic analysis. Data for NYGC-GBM-
01 were input into WGA, which produced a report
summarizing actionable variants and a list of associ-
ated drugs, including some based on a pathway target
analysis. WGA identified 6 actionable alterations, 14
associated drugs, 9 VUS (including FGFR3), copy
number losses in Chr 9 (focal), 10 (armscale), and 11
(focal), and gain on Chr 7 (armscale). Both the

Table 3 List of variants identified as actionable by 3 different platforms

Gene Variant

Identified variant Identified associated drugs

NYGC WGA FO NYGC WGA FO

CDKN2A Deletion Yes Yes Yes Palbociclib, LY2835219
LEE001

Palbociclib LY2835219 Clinical trial

CDKN2B Deletion Yes Yes Yes Palbociclib, LY2835219
LEE002

Palbociclib LY2835219 Clinical trial

EGFR Gain (whole arm) Yes — — Cetuximab — —

ERG Missense P114Q Yes Yes — RI-EIP RI-EIP —

FGFR3 Missense L49V Yes VUS — TK-1258 — —

MET Amplification Yes Yes Yes INC280 Crizotinib, cabozantinib Crizotinib, cabozantinib

MET Frame shift R755fs Yes — — INC280 — —

MET Exon skipping Yes — — INC280 — —

NF1 Deletion Yes — — MEK162 — —

NF1 Nonsense R461* Yes Yes Yes MEK162 MEK162, cobimetinib,
trametinib, GDC-0994

Everolimus, temsirolimus,
trametinib

PIK3R1 Insertion
R562_M563insI

Yes Yes — BKM120 BKM120, LY3023414 —

PTEN Loss (whole arm) Yes — — Everolimus, AZD2014 — —

STAG2 Frame shift R1012 fs Yes Yes Yes Veliparib, clinical trial Olaparib —

DNMT3A Splice site 2083-1G.C — — Yes — — —

TERT Promoter-146C.T Yes — Yes — — —

ABL2 Missense D716N Germline NA VUS

mTOR Missense H1687R Germline NA VUS

NPM1 Missense E169D Germline NA VUS

NTRK1 Missense G18E Germline NA VUS

PTCH1 Missense P1250R Germline NA VUS

TSC1 Missense G1035S Germline NA VUS

Abbreviations: FO 5 FoundationOne; NYGC 5 New York Genome Center; RNA-seq 5 RNA sequencing; WGA 5 Watson Genomic Analytics; WGS 5 whole-
genome sequencing.
Genes, variant description, and, where appropriate, candidate clinically relevant drugs are listed. Variants identified by the FO as variants of uncertain
significance (VUS) were identified by the NYGC as germline variants.
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NYGC and WGA identified 5 actionable alterations
(in genes NF1, MET, CDKN2A, CDKN2B, and
PIK3R1; table 3). WGA reported an NF1 SNV and
annotated the variant as inactivating but did not
deem copy number change to be sufficient for calling
this or EGFR and PTEN. A 1-copy gain of EGFR was
below WGA’s threshold for classification as a target-
able variant. Furthermore, this variant was shown to
be negative for amplification by in situ hybridization
fluorescence. However, the NYGC decided to list it
as potentially targetable, given it is a known action-
able variant in GBM. Similarly, a 1-copy PTEN loss is
reported by the NYGC but not by WGA or by the
FoundationOne. The NYGC reported this variant
because of its clinical implications; it is associated
with resistance to EGFR tyrosine kinase inhibition via
AKT/mTOR pathway activation and is linked to
cetuximab resistance, but can be targeted by mTOR
inhibitors.38 For PIK3R1, the NYGC identified
BKM120 as a potential therapeutic option based on
additional RNA-seq evidence of overexpression of
PIK3CA. WGA identified PIK3R1 as a relevant var-
iant via SNV data by WGS and used RNA-seq
information in pathway and drug analysis to also
recommend BKM120. The MET amplification and
associated drugs are reported by both platforms;
however, WGA had 2 drugs for MET amplification,
whereas the NYGC prioritized 1 therapeutic option,
INC280, based on GBM trial data availability. The
NYGC reported 8 clinical trials associated with 5

genes. WGA found 10 clinical trials that may be
relevant across 6 actionable alterations.

Comparison with a panel. Table 3 also compares all
variants and drugs identified by the NYGC and
FoundationOne. NYGC analysis identified 8 unique
variants not found by the FoundationOne, including
an exon-skipping event. The NYGC identified drugs
for 10 targets, while FoundationOne identified drugs
for 4. Furthermore, 6 of the variants reported as of
unknown significance occurring in the tumor by
FoundationOne were germline variants. One variant
(DNMT3A splice site 2083-1G.C) was called by
FoundationOne, but the position and base change
were different from a nearby variant identified by the
NYGC.

DISCUSSION The NYGC is undertaking a WGS
research study in patients with GBM to investigate
the efficiency and feasibility of WGS to inform ther-
apeutic options. Here, the results of NYGC WGS
and RNA-seq were compared with a clinical panel
assay. Also, in collaboration with IBM, the NYGC
examined the therapeutic options identified by WGA
based on WGS and RNA-seq data. Genomic results
from this patient clearly displayed the diversity of
driver events typically seen in GBM. Of interest, we
identified mutations in targetable genes that were not
precise matches to known specific targetable variants,
and which nonetheless suggested potential therapeu-
tic options.

Figure 1 Sashimi plot representing the MET exon–skipping event

Red lines indicate exon coverage and exon junctions. Numbers in red indicate the number of reads supporting these junc-
tions (for instance, 1,181 reads are split between exons 10 and 12). Only junctions with more than 100 reads are repre-
sented here.

Neurology: Genetics 5



Multimodal analysis (WGS and RNA-seq)
increased confidence in the identification of the
MET mutation; analysis of the literature of prior
MET exon–skipping events suggested the plausibil-
ity of considering a tyrosine kinase inhibitor that
could targetMET. Similarly, manual literature search
of the PIK3CA E545K oncogenic variant led to the
conclusion that this was likely an activating mutation.
Moreover, manual database searches resulted in the
suggestion of a combinatorial treatment with an
MET inhibitor and a PIK3CA inhibitor, which made
logical sense and also made the patient eligible for
a clinical trial for this combination (NCT01870726).

None of these observations were evident from the
panel. This suggests that pursuing a more extensive
comparison of panel and deeper sequencing (e.g.,
WGS and RNA-seq) will be of interest. An added
point, previously noted by others,39 is that the

sequencing of both germline and tumor DNA not
only heightened our sensitivity for what variants
might be tumor drivers but was able to rule out
a number of germline variants called by the Founda-
tionOne as not likely to be primary drivers of this
patient’s GBM.

Although we conducted WGS of this sample at
roughly twice the cost of WES, the primary analysis
was performed on the protein-coding region of the
genome. There may be technical advantage to WGS
even for assaying targeted regions. WES relies on
hybridization capture of specific genes which introdu-
ces intrinsic bias for each gene as a function of GC/
AT content, while WGS relies more simply on
mechanical shearing of DNA prior to sequencing.
Previous studies have found that for disorders caused
by constitutional mutations,40,41 WGS is more sensi-
tive than WES for variant detection. To assess
whether WGS could detect variants not identified
by WES to justify the added cost, it would require
a direct comparison of the assays on the same sample.
We are undertaking a study to address this question.

This patient died approximately 8 months from
the time of initial resection falling short of the median
survival time for GBM. The oncologist recommen-
ded enrollment in a clinical trial targeting PIK3 and
MET alterations on recurrence on adjuvant temozo-
lomide. However, the patient’s clinical decline elim-
inated his ability to participate in trials. This
highlights one of the challenges of the clinical appli-
cation of precision medicine technology. The identi-
fication of targets and potentially useful drugs in
a timely manner is only the first step. Drug and drug
trial access is crucial to determine the benefit of this
approach in cancer management.

Another key observation was that the WGA anal-
ysis vastly accelerated the time to discovery of poten-
tially actionable variants from the VCF files. As
previously reported, we found that WGA was able
to provide reports of potentially clinically actionable
insights within 10 minutes, while human analysis of
this patient’s VCF file took an estimated 160 hours
of person-time. This is critical if sequencing is to be
brought out of the research arena and into the scaled,
real-world clinical realm. This study is an important
step forward promoting human-machine interface as
a way to address a key bottleneck in cancer genomics.
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