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Abstract 
Native mass spectrometry is a potent technique to study and characterize biomacromolecules in their native state. Here, we 
have applied this method to explore the solution chemistry of human carbonic anhydrase I (hCA I) and its interactions with 
four different inhibitors, namely three sulfonamide inhibitors (AAZ, MZA, SLC-0111) and the dithiocarbamate derivative 
of morpholine (DTC). Through high-resolution ESI-Q-TOF measurements, the native state of hCA I and the binding of the 
above inhibitors were characterized in the molecular detail. Native mass spectrometry was also exploited to assess the direct 
competition in solution among the various inhibitors in relation to their affinity constants. Additional studies were conducted 
on the interaction of hCA I with the metallodrug auranofin, under various solution and instrumental conditions. Auranofin 
is a selective reagent for solvent-accessible free cysteine residues, and its reactivity was analyzed also in the presence of CA 
inhibitors. Overall, our investigation reveals that native mass spectrometry represents an excellent tool to characterize the 
solution behavior of carbonic anhydrase.
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Introduction

Carbonic anhydrase (CA, EC 4.2.1.1) is a zinc metallo-
enzyme that catalyzes the reversible hydration of carbon 
dioxide to bicarbonate according to the following equa-
tion: CO2 + H2O ⇆ HCO3

− + H+ [1, 2]. The HCO3
−/CO2 

equilibrium is critical for human health, and its inhibition 
has been a goal of therapeutic intervention for several dec-
ades [3–6]. The majority of known CA inhibitors contain a 
primary sulfonamide group [7, 8]. The sulfonamide anion, 
RSO2NH−, coordinates to the active-site zinc and may 
form hydrogen bonds with active-site amino acid residues 
located in the immediate vicinity further stabilizing the 
enzyme/inhibitor complex [9].

Owing to the importance and variety of therapeutic 
applications, the search for inhibitors of carbonic anhy-
drase is still very intensely pursued. This search is greatly 
assisted by a precise knowledge of the binding mode of the 
inhibitors to the enzyme at the atomic level. To this end, 
a large number of biophysical methods including NMR, 
X-ray crystallography, surface plasmon resonance (SPR), 
etc. have been exploited during the last few decades. A 
detailed description of these methods and of the informa-
tion that can be derived may be found in a few reviews 
[10–12].

Among the various biophysical techniques, mass spec-
trometry turned out to be a potent method to describe 
drug–target interactions [13–16]. Specifically, native mass 
spectrometry is a powerful technique to study and char-
acterize biomolecules in their native state, as the gentle 
ionization method preserves in the gas phase the supramo-
lecular interactions, the conformational features, and the 
non-covalent association with ligands that are present in 
solution. In native MS, a strict control of pH, temperature, 
presence of non-denaturing co-solvents, and of the instru-
mental parameters is required to guarantee not only the 
retention of the tertiary structure of the biomolecule, but 
also the biological function, in the case of an enzyme the 
catalytic activity [17, 18]. Native MS started in the 90s’ 
with the pioneering works of Ganem and Katta, who first 
independently demonstrated that non-covalent interactions 
between biomolecules can be preserved and transferred 
from solution to the gas phase, allowing their detection via 
ESI–MS. Ganem et al. successfully detected via ESI–MS 
the complex between the receptor FKBP and its ligand, 
the macrolide FK506 [19]. Katta et al. reported that the 
non-covalent heme–globin complex of myoglobin is pre-
served in the gas phase generated via electrospray [20]. 
Since then, ESI–MS has been recognized as an election 
tool to investigate and characterize many ligand–biomol-
ecule interactions: protein–cofactors, protein–DNA, pro-
tein–metal–drug, enzyme–substrate, enzyme–inhibitors, 

and antigen–antibody, and a plethora of papers and reviews 
has been published about this issue [16, 21, 22].

Native-MS has many analytical advantages. The iden-
tification of the fragment bound to the biomolecule and 
the binding stoichiometry can be directly inferred simply 
from the inspection of the mass spectrum. In fact, once 
detected the target biomolecule signal, any shift toward 
greater mass values is a sign of the binding with a ligand 
whose mass is equal to the mass shift detected. Moreover, 
the high sensitivity of mass spectrometry requires just a 
very small sample quantity for analysis, a few micrograms 
compared to the larger quantities required by other meth-
ods, such as NMR and crystallography. These significant 
features make native-MS a compelling screening method 
for the fragment-based drug discovery (FBDD) allowing 
the identification of chemotypes that bind to a protein, 
even through weak interactions [13]. In a recent work of 
Woods et al., native MS has been successfully applied in 
a fragment screening analysis toward CA II, to disclose 
new potential inhibitors of the enzyme [23]. Native MS 
has been successfully proven to be a valid alternative to 
the traditional screening methods, such as SPR and X-ray 
crystallography, offering unique advantages over them, as 
no sample manipulation and a very small sample concen-
tration are required.

Another significant biological application of native-MS 
concerns the structural investigation of proteins. Certainly, 
since the pioneering work of Chowdhury et al. in 1990, 
where the conformational changes of Cytochrome c have 
been monitored for the first time by ESI–MS, the ability of 
the native-MS to probe and characterize the conformational 
state of proteins is well known [24].

Indeed, during the soft ionization process occurring in the 
ESI source, the protein can take multiple charges in accord-
ance with how many protonable (or deprotonable) residues 
it exposes to the source, giving rise to multicharged species’ 
signals in the mass/charge spectrum. This signals ensemble 
represents the charge state distribution (CSD) of the protein. 
The average charge state that a protein takes on depends 
on its tertiary structure and its solvent-accessible surface 
area: the more the residues are buried in the structure, fewer 
charges the protein can take [25, 26]. Among the many 
factors that influence the CDS (i.e., solvent, parameters of 
the instrument, etc.), the protein conformation is the most 
important [27, 28]. Indeed, it is widely documented that the 
unfolding of a protein in denaturing conditions causes the 
shift of its CDS toward higher charges (low m/z values) due 
to a greater accessibility of basic or acidic residues that can 
accommodate charges [28, 29]. In a study of Nabuchi et al., 
the unfolding and refolding processes of CA triggered via 
pH modulation were monitored by ESI mass spectrometry. 
These authors followed the conformational changes through 
the monitoring of the mass shift associated with zinc release 
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in the unfolded state, and through the variation of the charge-
state distribution of the protein signal [30].

In this manuscript, we exploit native mass spectrometry 
to characterize the solution chemistry of hCA I and investi-
gate its interactions with a few selected inhibitors. Specifi-
cally, four distinct inhibitors were chosen (Scheme 1) of 
which three are sulfonamide inhibitors, namely acetazola-
mide (AAZ), methazolamide (MZA), and SLC-0111, and 
the fourth one is a dithiocarbamate (potassium morpho-
line-4-carbodithioate, DTC). All these four inhibitors are 
known to produce their effect through direct binding to the 
Zn(II) ion, as the X-ray crystal structures of their adducts 
with various CAs have been reported [31–34]. AAZ and 
MZA are the first-generation CAIs used as systemic drugs 
for the management of glaucoma and as standard CAIs 
in many pharmacological investigations [5]. SLC-0111 is 
the first-in-class selective CA IX/XII inhibitor progress-
ing to clinical trials [32]. It successfully completed and 
passed Phase I, and entered in Phase Ib/II clinical trials 
in 2017 for the treatment of advanced, metastatic solid 
tumors [35]. DTC is a main representative of dithiocar-
bamates, a class of potent zinc-binder CAIs, second only 
to sulfonamide-like derivatives [31]. In Table 1, the hCA 
I inhibition constants of the four inhibitors are reported. 
In addition, further studies are conducted concerning 
the reaction of hCA and its inhibitor complexes with the 

gold(I) drug auranofin that is known to bind selectively the 
free cysteine residue (Cys212). Overall, a quite detailed 
and satisfactory description of the occurring processes is 
achieved. 

Materials and methods

Materials

Lyophilized human carbonic anhydrase (hCA I) was pur-
chased from Sigma-Aldrich and used without further puri-
fication or manipulation. Sulfonamide inhibitors of hCA I 
were synthetized by one of our groups [31, 32] or are com-
mercially available from Sigma-Aldrich (Milan, Italy). 
Auranofin (AF) was purchased from Enzo Life Sciences 
(Farmingdale, New York). Water, methanol, and ammo-
nium acetate were of LC–MS grade and were purchased 
from Sigma-Aldrich.

Sample preparation

The stock solution of hCA I 10–4 M was prepared dissolving 
the protein in H2O LC–MS grade. Stock solutions (10–2 M) 
of the inhibitors were prepared dissolving the samples in 
DMSO. AF was freshly prepared in LC–MS grade water and 
methanol (50:50 v/v) to a final concentration of 3 × 10–3 M.

For the ESI–MS experiments with hCA I, aliquots of the 
protein stock solution were diluted to 7 × 10–7 M with ammo-
nium acetate solution 2 × 10–3 M, pH 6.8.

For the experiments with the inhibitors, solutions of hCA 
I 10–5 M and each inhibitor at fixed protein-to-inhibitor ratio 
(1:1, 1:3, 1:10) were prepared diluting with ammonium 
acetate buffer 2 × 10–3 M, pH 6.8. The mixtures were then 
incubated at 37 °C for 5 min.

For the experiment with AF, a solution of hCA I 10–5 M 
and AF at 1:3 protein-to-metal complex ratio was prepared 
and diluted with ammonium acetate solution 2 × 10–3 M, pH 
6.8. The solutions were then incubated at 37 °C for 2 h and 
then diluted to a final protein concentration of 7 × 10–7 M 
using ammonium acetate solution 2 × 10–3 M, pH 6.8.

ESI–MS analysis: final dilutions

After the incubation time, all solutions were sampled and 
diluted to a final protein concentration of 7 × 10–7 M using 
ammonium acetate solution 2 × 10–3 M, pH 6.8

In the non-native-like experiments, the final solutions 
were also added with 0.1% v/v of formic acid just before the 
infusion in the mass spectrometer.
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Scheme  1   Chemical structures of the selected hCA I inhibitors: 
acetazolamide (AAZ), methazolamide (MZA), SLC-0111, and potas-
sium morpholine-4-carbodithioate (DTC)

Table 1   hCA I inhibition 
constants

*The reported KI values were 
previously published in refs. [5, 
31]

hCA I inhibitor KI (nM)*

AAZ 250
MZA 50
SLC-0111 5080
DTC 0.88
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Instrumental parameters

The ESI mass study was performed using a TripleTOF® 
5600+ high-resolution mass spectrometer (Sciex, Framing-
ham, MA, USA), equipped with a DuoSpray® interface oper-
ating with an ESI probe. Respective ESI mass spectra were 
acquired through a direct infusion at 5 μL/min flow rate.

The general ESI source parameters optimized for hCA I 
analysis were as follows:

Positive polarity, Ionspray Voltage Floating 5500 V, Tem-
perature 0, Ion source Gas 1 (GS1) 40 L/min; Ion source 
Gas 2 (GS2) 0; Curtain Gas (CUR) 10 L/min, and Colli-
sion Energy (CE) 10 V.
Selective variations of some parameters were applied for 
DP value adjustment: for native hCA I and milder DP, a 
value of 200 V was used and 2500–5000 m/z mass range; 
for native hCA I and harder DP, a value of 300 V was 
used and 2500–5000 m/z mass range; for denatured hCA I 
positive polarity, Ionspray Voltage Floating 5500 V, Tem-
perature 0, Ion source Gas 1 (GS1) 50 L/min; Ion source 
Gas 2 (GS2) 0; Curtain Gas (CUR) 20 L/min, Declus-
tering Potential (DP) 50 V, Collision Energy (CE) 10 V, 
range 760–990 m/z.
For acquisition, Analyst TF software 1.7.1 (Sciex) was 
used and deconvoluted spectra were obtained by using 
the Bio Tool Kit micro-application v.2.2 embedded in 
PeakView™ software v.2.2 (Sciex).

Results and discussion

Native‑MS analysis of hCA I

Before investigating the protein-binding properties of the 
selected inhibitors, it was necessary to assess the best condi-
tions for the ESI–MS experiment to observe the protein in its 
native-like state. In accordance with the definition of “native 
mass spectrometry” proposed by Heck [17], we aimed to 
preserve the protein tertiary structure and the binding of 
the Zn ion in the enzyme active site, as most inhibitors like 
sulfonamides and dithiocarbamates directly bind this metal 
ion [36]. The Zn ion is located in a cone-shaped pocket and 
is coordinated to three His residues and a water molecule (or 
OH− ion) in a roughly tetrahedral geometry. The His resi-
dues are invariant in the whole α-CA family: they are His94, 
His96, and His119. Other neighboring residues complete the 
coordination shell establishing hydrogen bonds [37].

In a recent work of ours, CA I was investigated in depth 
through an established protocol of protein ESI–MS analysis 
[38]. This methodology includes the direct injection into the 
ESI-Q-TOF mass spectrometer of a protein sample dissolved 
in ammonium-acetate solution (see “Sample preparation”). 

Normally, a small percentage (0.1% v/v) of formic acid is 
added just before the injection into the mass spectrometer, 
to enhance the ionization process in the ESI source. Unfor-
tunately, under these experimental conditions, the ESI–MS 
spectrum shown in Fig. 1 reveals that only apo-CA I is 
detectable. Notably, the signal at 28,780 Da is assigned to 
the apo protein and corresponds to the molecular weight of 
the hCA I amino acid sequence (Uniprot P00915) with the 
loss of Met1 and the presence of one acetylation on Ala2 
residue.

The addition of 0.1% v/v of formic acid to the ammonium 
acetate solution induces a lowering of the pH from 6.8 to 
2.9 with the rapid release of the zinc ion from the protein. 
Indeed, the His residues that coordinate the metal ion in the 
active site of the enzyme possess a pKa < 6, and in an acidic 
solution, they may undergo facile protonation, causing the 
loss of the zinc ion [39–42]. As a confirmation, the study of 
Coleman demonstrated, through optical rotatory dispersion, 
that hCA B (the old name for hCA I) loses irreversibly its 
native conformation under pH 4, with the consequent release 
of the Zn ion and the loss of the catalytic activity [43].

Most of the proteins analyzed in our previous experience 
with ESI–MS retained their native conformation under 
physiological-like conditions (i.e., with ammonium acetate 
solution, ammonium hydrogen carbonate, or water with the 
addition of 0.1% v/v of formic acid for the mass spectrom-
etry analysis), as proved by our extensive works published 
during the last years [38, 44–49]. However, the present case 
can be extremely instructive given the particular sensitivity 
of hCA I for acidic conditions. It is noteworthy to remind 
that the so-called “native conditions” for mass spectrometry 
analysis of proteins in their biologically active conformation 

Fig. 1   Deconvoluted ESI-Q-TOF mass spectrum of hCA I 7 × 10–7 M 
in ammonium acetate solution 2 × 10–3 M (pH 6.8). 0.1% v/v of for-
mic acid was added prior to infusion
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cannot be generalized in a standard method, but rather care-
fully set for each protein [17, 50, 51].

For this reason, the first experiments were devoted to the 
identification of the best experimental conditions to avoid 
protein unfolding and denaturation, besides the search of the 
best ionization performances. First of all, in the case of hCA 
I, the absence of acid in the ammonium acetate solution is 
one of the key point for ESI–MS experiments in native-like 
conditions. Moreover, in this case, also an adequate ioniza-
tion is reached, leading to a well-resolved spectrum of holo-
hCA I displayed in Fig. 2. The main signal at 28,843 Da 
is attributable to holo hCA I with the Zn(II) ion retained 

in its coordination site. Besides, signals of protein adducts 
with sodium (+ 23 Da) and oxidized forms of the protein 
(+ 16 Da) are also observed.

Therefore, non-denaturing conditions preserve the zinc 
binding to the active site of the enzyme, while the acidifica-
tion induces the release of the metal center [52, 53].

In this regard, by comparison between the multicharged 
spectra of hCA I obtained in acidic and neutral conditions, 
some interesting observations can be proposed about the 
different protein conformation.

Since folded protein molecules can accommodate fewer 
charges in comparison to the unfolded counterpart, the 
analysis of the charge-state distribution (CSD) in the mul-
ticharged spectra can give some clear information on the 
conformational state of the protein [28]. A drastic variation 
of CDS in the spectrum of CA, has been highlighted among 
both experimental conditions. Reasonably, the acidic condi-
tions also cause a considerable alteration of the protein ter-
tiary structure, giving rise to a partial unfolding and, thus, to 
a higher degree of protonation in the ESI source [54–56]. As 
a result, with the addition of formic acid, the CDS becomes 
broader and shifted to highly charged ions, with a maximum 
at + 35 protonation state, as depicted in Fig. 3.

Contrariwise, the spectrum in Fig. 4 has been performed 
on the CA solution in non-acidic conditions and shows a nar-
rower CDS with a maximum charge state of + 10. Therefore, 
it is evident that the acidification induces a partial loss of the 
tertiary structure of the protein, exposing more amino acid 
residues to the solvent and then leading to a larger protona-
tion in the electrospray compared to the folded state [27].

Another important consideration that may help to bet-
ter characterize the protein and its interactions via mass 

Fig. 2   Deconvoluted ESI-Q-TOF mass spectrum of hCA I 7 × 10–7 M 
in ammonium acetate solution 2 × 10–3 M (pH 6.8)

Fig. 3   CDS in ESI-Q-TOF multicharged spectrum of hCA I 7 × 10–7 M in ammonium acetate solution 2 × 10–3 M (pH 6.8) and 0.1% v/v of for-
mic acid
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spectrometry is related to the greater instrumental resolu-
tion achievable when dealing with lower CDS spectra. In 
fact, a lower charge state corresponds to a greater separation 
(being ∆m = 1/z) between consecutive signals in the multi-
charged isotopic cluster increasing, in case of a Tof instru-
ment, the FWHM resolution [57–59]. As a result, the mass 
spectrum of CA in native-like conditions reported in Fig. 2 
is more isotopically resolved and informative with respect to 
the spectrum in Fig. 1 recorded for a solution of CA under 
slightly acidic conditions (0.1% v/v formic acid).

The binding of the inhibitors

As reported in the literature, sulfonamide and dithiocarba-
mate inhibitors bind directly to the Zn ion of the CA [36]. 
Through high-resolution ESI–MS analysis, we succeeded in 
providing a clear demonstration of such a binding. Indeed, 
the interaction between hCA and a small panel of its inhibi-
tors (Scheme 1) can be investigated in detail and the adducts 
formed can be easily observed just in native conditions, in 
which the Zn ion binding to the three histidine residues in 
the active site of the enzyme is preserved.

First, we investigated the adduct formation of CA with 
the inhibitors in native-like conditions, varying properly the 
instrumental parameters to optimize the adduct signal.

Different aliquots of a 10–5 M protein solution were pre-
pared in the presence of the selected inhibitor (at 1:10 pro-
tein-to-inhibitor ratio) in ammonium acetate solution. Each 
mixture was incubated at 37 °C for five minutes and then 
diluted to the final concentration with the same ammonium 
acetate solution (pH 6.8). The ESI–MS spectra were then 
acquired, and adduct formation was assessed for each of 

the four inhibitors. From the literature, it is known that the 
sulfonamide inhibitors bind the Zn ion through their R-SO2-
NH− moiety [9, 60, 61], while the dithiocarbamate through 
the R2NCS2

− moiety [31, 62]. For example, Fig. 5 reports 
the deconvoluted mass spectrum of MZA incubated with 
hCA I.

Notably, the unbound protein signal at 28,843 Da is 
no longer observed, indicating that CA reacts completely 
with the inhibitor. The main signal detected at 29,080 Da 
perfectly matches the mass of the MZA/CA adduct formed 
through the binding of the R-SO2-NH− moiety to the Zn 

Fig. 4   CDS in ESI-Q-TOF multicharged spectrum of hCA I 7 × 10–7 M in ammonium acetate solution 2 × 10–3 M (pH 6.8)

Fig. 5   Deconvoluted ESI-Q-TOF mass spectrum of hCA I 7 × 10–7 M 
incubated for 5 min at 37 °C with MZA (1:10 protein/inhibitor ratio) 
in ammonium acetate solution 2 × 10–3 M (pH 6.8), DP 200 V



985JBIC Journal of Biological Inorganic Chemistry (2020) 25:979–993	

1 3

ion. Moreover, a signal corresponding to a bis adduct is 
also detected at 29,316 Da with a relative intensity of 
about 20% respect to the main peak. The formation of bis 
adducts between sulfonamide inhibitors and CA, although 
apparently surprising, is in perfect agreement with some 
NMR and MS studies already reported in the literature [63, 
64]. In fact, as described by Whitesides and co-workers, 
CA retains the tertiary structure of its binding pocket in 
the gas phase on the time scale (seconds to minutes) of 
the ESI–MS measurements [63]. Therefore, although the 
binding stoichiometry between CA and its inhibitors was 
1:1 in solution, these authors postulated that the second 
equivalent of inhibitor was likely condensed on the surface 
of the hCA I (and then at non-Zn(II) site) during the ESI 
desolvation process [63].

By comparing the multicharged spectrum of unreacted 
CA (Fig. 4) and that with a bound inhibitor, some confor-
mational considerations can be proposed. As an example, in 
Fig. 6, the charge-state distribution for the CA/MZA adduct 
is reported. Interestingly, no relevant changes in the CDS can 
be observed in comparison to the unreacted protein. Indeed, 
the most abundant charge state shifts from + 10 to + 8, and 
no broadening of CDS can be observed. This experimen-
tal evidence leads us to reasonably exclude any significant 
variation of the overall protein conformation due to inhibi-
tor binding [55]. Probably, the small variation in the CDS 
can be truly attributed to a slight and localized conforma-
tional variation of the enzyme binding pocket following the 
inhibitor binding. Likewise, the insertion of the inhibitor 
molecule inside the enzymatic pocket may be of hindrance 
to the amino acid protonation of pocket itself.

Nevertheless, when formic acid was later added to the 
mixture of the inhibitor and CA, the protein lost the Zn ion 
and, as expected, the inhibitor too. Indeed, in these slightly 
acidic conditions, only the apo-CA signal was still detect-
able, with the total disappearance of adduct-related peaks. 
To monitor this loss, we first prepared the solution of the 
enzyme with inhibitor in “native-like” condition as previ-
ously determined, and then we added the 0.1% v/v of formic 
acid just before the injection in the mass spectrometer. As a 
proof of concept, in the Supporting Information, the mass 
spectrum of CA reacted with another sulfonamide inhibi-
tor, i.e., SLC-0111, is reported: the only signal detected at 
28,780 Da refers to the apo-CA peak. Again, when the acid 
was added to the protein solution, the overall resolution rap-
idly dropped down and the relative CDS was at the higher 
values, confirming the pH-related behavior discussed in the 
previous paragraph.

Therefore, as we assessed from the comparison of the 
charge-state distribution of unreacted CA in both native 
and acidified condition, the acidification probably induces 
a partial loss of the protein tertiary structure making the 
protonation of the His residues in the active site possible 
and causing the release of the Zn(II) ion from the enzyme’s 
pocket [40, 65, 66]. On the contrary, the adduct between the 
enzyme and the inhibitor is clearly detectable in the absence 
of any acid addition, when the protein preserves its folded 
state, as clearly demonstrated from the CDS analysis.

Another important equilibrium that takes place upon 
varying the pH conditions is the protonation and deprotona-
tion of the sulfonamide and dithiocarbamate reactive moie-
ties. It has already been reported in the literature that the 

Fig. 6   Multicharged ESI-Q-TOF mass spectrum of hCA I 7 × 10–7 M incubated with MZA (1:10 protein-to-inhibitor ratio) in ammonium acetate 
solution 2 × 10–3 M (pH 6.8) for 5 min at 37 °C
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inhibitor binding was suppressed at low pH values (< 2.5), 
presumably due to neutralization of the negative charge on 
the zinc-reactive moiety [67].

Definitely, the ESI–MS data obtained for the hCA/
inhibitor system perfectly agree with the knowledge on the 
CA behavior already gathered with other complementary 
techniques (i.e. XRD), pointing out that the inhibitor binds 
directly to the Zn ion, when the enzyme is in its native state 
with the Zn ion tightly bound to its active site [62].

The declustering potential modulation: 
comparison between the Zn binding to the enzyme 
and the inhibitor binding to the Zn

Another experimental parameter that deeply influences the 
obtained results in native ESI–MS analysis of proteins, and 
particularly metalloproteins, is the declustering potential 
(DP) [68, 69]. Briefly, the DP is an electric potential dif-
ference applied between the orifice and the following lens 
of the mass spectrometer (in the region of rapid gas expan-
sion from atmosphere into vacuum) [18]. This potential 
difference establishes an electric field accelerating the ions 
through the low-density gas and is commonly adjusted to 
provide the optimum signal-to-noise ratio for the compound 
of interest. In particular, protonated solvent clusters are col-
lisionally stripped from clustered protein as the potential is 
increased. Again, low charge-state ions can be more effec-
tively declustered, while high charge-state ions are normally 
fragmented. Since we demonstrated that the CDS is closely 
related to the solution pH, this latter parameter is not only 
responsible for the native conformation retention, but it also 
plays a pivotal role in the efficacy of the DP. Then, the con-
trol of DP is another fundamental instrumental parameter 
that can improve the instrumental resolution and, therefore, 
deserves to be carefully evaluated.

Some papers show that the DP can be modulated during 
the MS analysis, to probe the nature of protein–ligand asso-
ciation. The raising of DP can induce the dissociation of the 
weaker interactions between a protein and a ligand, while 
the covalent ones are retained [70, 71].

On the other hand, a high DP value can induce, yet, the 
dissociation of the weaker ligand–protein adducts [72]. 
Therefore, we started the systematic study of the interac-
tions between hCA I and its inhibitors, once fixed the best 
pH conditions, varying the DP value until any significant 
variation in the multicharged spectrum (in terms of signals 
intensities, appearance/disappearance of signals at greater 
masses, resolution, and overall quality of the spectrum) is 
observed.

First, a solution of CA alone has been prepared and ana-
lyzed, as previously described, avoiding any acid addition. 
At low DP values (i.e., 100 V), as reported in Supporting 
Information, the signal of the holo-protein is followed by 

many signals of adducts with salts from the solution, typi-
cally observed in protein’s MS analysis, which consider-
ably complicates the mass spectrum. Specifically, the very 
intense peak at 28,904 Da (shift = + 60 Da with respect to 
hCA signal) can be reasonably attributed to the addition of 
an acetate ion from the buffer solution, while the second 
very intense peak at 29,100 Da has not yet been clearly 
assigned but probably dues to some ionic clusters from the 
buffer solution that weakly interact with the protein surface.

By raising the DP value up to 300 V (see Fig. 2), those 
adducts with salts are destroyed and the mass spectrum 
becomes cleaner with the protein signal that emerges as the 
main one. Significantly, even with this high voltage applied, 
in this case, the Zn ion is retained on its binding site and 
no significant protein unfolding occurs. A clear and well-
resolved holo-protein signal is then observed.

However, when the ESI–MS experiments have been per-
formed with the CA and inhibitor mixed together in these 
latter conditions, completely different results have been 
gathered. Indeed, at 300 V, we observed a drastic reduc-
tion of intensity of the adducts signals. In the Supporting 
Information, are displayed the deconvoluted mass spectra 
for each of the four inhibitors. Notably, in all cases, the 
main signal is now the one of the unreacted holo-proteins 
at 28,843 Da. The intensity of the adduct signals drastically 
collapses at about 30–50% intensity compared to the unre-
acted protein signal. Interestingly, bis adduct signals are no 
longer detected. At the moment, we cannot provide a plau-
sible explanation and this aspect will be the object of further 
investigations.

Then, the DP value was decreased to the optimal value 
of 200 V and the recorded spectra are shown in Fig. 7. Now 
the peak corresponding to the unreacted protein is no longer 
detected in case of the three sulfonamides, but it is still pre-
sent in case of DTC. Again, for the sulfonamide inhibitors, 
the main signal detected corresponds to the mono adducts 
with CA and further bis adducts are also revealed with a 
relative abundance of 30–40% respect to the first ones. A dif-
ferent behavior is observed for DTC; in this case, in addition 
to the partial adduct formation with CA, there is no trace 
about the bis adduct formation.

Thereafter, from the comparative analysis of the spectra 
obtained with different DP values, we can assert that 200 V 
can be considered the best value for ESI–MS analysis of 
CA/inhibitors adducts in native-like conditions, allowing to 
gather highly informative spectra with a clear and precise 
rendering of the protein reactivity towards those studied 
inhibitors.

Clearly, upon increasing the value of the applied voltage, 
the coordination bond between CA and the inhibitors is no 
longer preserved. Therefore, the observed residual mono-
adduct signal at DP 300 V is due to the presence of a large 
excess of the inhibitor. Indeed, repeating the analysis on a 
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solution with a 1:1 protein-to-inhibitor ratio, no adduct sig-
nal is observable for MZA, AAZ, and DTC, and only the 
protein signal is detected (see SI). The residual SLC-0111/
CA adduct is probably due to the larger number of hydrogen 
bonds formed with other amino acid residues in the enzy-
matic pocket respect to the other inhibitors, making this 
adduct more resistant also to the higher DP values [9, 73].

Notably, although the DP set to the maximum value pos-
sible with our instrument (i.e., 300 V), it is clear that the 
protein preserves the Zn(II) ion into the active site, despite 
the high energy involved. Indeed, the Zn ion is tightly bound 
to the enzyme through various direct and indirect interac-
tions with amino acid residues that stabilize the metal ion 
into the enzyme’s pocket [66].

Differently, the high DP values cause the fragmentation 
of the CA/inhibitors adducts with the loss of their respec-
tive signals. In this case, the kinetic energy applied to the 
system results too high to keep intact the inhibitors bound 
to the protein. Since the main signal in all the spectra at 

300 V belongs to the holo-CA (see SI), this is suggestive for 
a different binding energy between Zn-protein and inhibitor-
Zn adduct, resulting this latter one less stable with higher 
acceleration energy [74–76]. This is perfectly consistent 
with the great stabilization that the Zn ion receives from 
the coordination to the three histidine residues, while the 
inhibitor establishes only one bond with the metal ion [76].

Competition between inhibitors

For a given inhibitor, the inhibition constant KI represents 
the inhibitor concentration required to decrease the catalytic 
activity of the enzyme by 50%. Thus, KI provides an estimate 
of the inhibitor’s affinity for the enzyme: more tightly the 
inhibitor binds to the enzyme active site, the smaller the 
amount of inhibitor required for inhibition [77].

To test the validity of this concept also with mass 
spectrometry, we carried out a competition experiment 
between two inhibitors with different KI. Specifically, the 

Fig. 7   Deconvoluted ESI-Q-TOF mass spectrum of hCA I 7 × 10–7 M incubated for 5 min at 37 °C with MZA (a), SLC-0111 (b), AAZ (c), and 
DTC (d) (1:10 protein/inhibitor ratio) in ammonium acetate solution 2 × 10–3 M (pH 6.8), DP 200 V
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two sulfonamides AAZ and MZA were chosen, whose 
inhibition constants are KI 250 nM and KI 50 nM, respec-
tively [78, 79]. Therefore, AAZ is our weaker inhibitor, 
while MZA is the stronger one. The protein was mixed 
with the two sulfonamide inhibitors in a 1:10:10 protein/
inhibitor 1/inhibitor 2 ratio. We started the protein incu-
bation with the less tight-binding inhibitor (AAZ), then 
we added the stronger one (MZA). After a further 5 min 
of incubation at 37 °C, the spectrum is acquired. Later, 
we also carried out the same experiment by reversing the 
order of inhibitor addition.

In the first experiment, AAZ is incubated with hCA 
I. The ESI mass spectrum (see SI) displays the intense 
signal of the CA/AAZ adduct. After the addition of MZA, 
the CA/AAZ signal was no longer detectable. In its place, 
the peak of the CA/MZA adduct appeared very clearly 
(Fig. 8). A less intense peak attributable to the holo-hCA 
I adduct with both inhibitors was also revealed. Also, this 
behavior can be reasonably explained as described above, 
considering the particular reaction in the gas phase [63]. 
As expected, the stronger inhibitor causes the displace-
ment of the weaker one, binding in turn to the protein.

In the opposite experiment, MZA was first incubated 
with hCA I, and then, AAZ was added. Both spectra 
showed only the signals due to the holo-CA and to the CA/
MZA adduct (see SI), reflecting the tendency of MZA to 
preferentially bind the protein compared to the less strong 
inhibitor AAZ. Notably, no adduct with both inhibitors has 
been observed in this case.

The case of auranofin

We finally compared the reactivity of the studied inhibitors 
and CA with a well-known system investigated in the previ-
ous works: the binding of the gold(I)–drug auranofin (AF) 
[38, 44, 80, 81]. A recent paper of ours has clearly dem-
onstrated that AF binds selectively to the free and solvent-
accessible cysteine residues of proteins [38]. In the presence 
of an accessible thiol, AF loses its thiosugar ligand and binds 
covalently through the gold(I) center directly to the sulfur 
atom of the thiol. Through our well-consolidated protocol 
for the ESI–MS analysis, adducts with AuPEt3

+ fragment 
were observed for some representative proteins containing 
solvent-accessible free Cys residues; the exclusive binding 
on this amino acid residue has been clearly confirmed by 
competition studies with ebselen, an organoselenium com-
pound that binds selectively and covalently to thiols [82–86].

Especially for the case of CA I, the binding with AF takes 
place in acidic, denatured, conditions (0.1% v/v of formic 
acid, pH 2.9). The spectrum in Fig. 9 displays the deconvo-
luted mass spectrum of apo-CA with AF (1:3 protein to AF 
ratio) in the presence of acid. The signal of the apo protein 
is accompanied by two other peaks at 29,095 and 29,409 Da 
corresponding to the mono and bis adduct of the apo pro-
tein with AuPEt3

+ fragment, respectively. The hCA I owns 
just one Cys residue (Cys212) not involved in disulphide 
bridges, therefore, potentially available for the binding with 
AF. However, the bis adduct most likely forms upon binding 
of two AuPEt3+ fragments to the thiol of Cys212, giving rise 
to the kinetically favored thiolated-bridged digold complex, 
as already observed by F. Shaw III [87].

Fig. 8   Deconvoluted ESI-Q-TOF mass spectrum of hCA I 7 × 10–7 M 
incubated for 5 min at 37 °C with AAZ and MZA (1:10:10 protein/
inhibitor 1/inhibitor 2 ratio) in ammonium acetate solution 2 × 10–3 M 
(pH 6.8)

Fig. 9   Deconvoluted ESI-Q-TOF mass spectrum of hCA I 7 × 10–7 M 
incubated for 5 min at 37 °C with AF (1:3 protein-to-metal ratio) in 
ammonium acetate solution 2 × 10–3 M (pH 6.8) and 0.1% v/v of for-
mic acid
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Nevertheless, in the native-like conditions identified for 
hCA I, adduct formation has not been observed between 
AF and hCA I but only the holo-protein signal is detected 
(see SI). From this evidence, we inferred that, just after 
the partial unfolding of the protein, the free Cys residue 
becomes available for the binding to the gold center. 
Indeed, the Cys212 residue is not completely solvent-
accessible in the CA I native state [88, 89], as it can be 
observed from the enzyme crystal structure reported in 
Fig. 10.

Only when some partial unfolding of the protein takes 
place (due for example to acidification), the Cys residue 
becomes spatially accessible for the binding with AF. 
Contrariwise, in the absence of a potential and accessible 
binding site, AF retains the thiosugar ligand and no inter-
action occurs.

Two additional experiments were conducted mixing 
both AF and MZA with CA in a solution of 1:3:3 protein/
inhibitor/metallodrug ratio. First, we analyzed the sample 
in native-like conditions and just the mono-adduct between 
the holo-CA and MZA is detected (see SI). Again, the 
protein reacts completely with the inhibitor, but there is 
no AuPEt3

+ biding. Adding to the same solution a 0.1% 
v/v of formic acid and repeating the ESI-MS analysis, the 
new mass spectrum is perfectly superimposable with the 
one displayed in Fig. 9 (see SI). In this case, the reveled 
adducts are only between AF and apo-CA; the Zn ion and 
the inhibitor are no more bound to the protein.

Conclusions

Native mass spectrometry has been recognized as a rapid, 
sensitive, high throughput, and label-free method to 
directly investigate protein–ligand interactions, preserv-
ing all the biological functions of the macromolecule. 
However, it is worth reminding that the so-called “native 
conditions” are strictly related to the nature of the ana-
lyzed protein and to its chemico-physical properties [28]. 
In this paper, we investigated in depth the parameters that 
are involved in the ESI–MS analysis of human carbonic 
anhydrase, starting from the solution pH value up to the 
critical instrumental parameters. We found that the best 
conditions for preserving the CA tertiary structure, jointly 
to its biological activity, require a solution pH value near 
to neutrality; therefore, the conventional addition of formic 
acid must be avoided. In fact, the resulting acidic condi-
tions cause the release of the Zn ion and prevent the pos-
sibility to bind the inhibitor.

Once found the best conditions for CA analysis, we 
extended the MS study to the protein binding of three sul-
fonamide and one dithiocarbamate inhibitors. In studying 
these protein/inhibitor adducts, the declustering potential 
turned out to be another fundamental parameter to be con-
sidered to avoid an artificial alteration of the formed adduct.

Then, through this powerful and reliable methodology, 
we proved that the four inhibitors react rapidly and almost 
completely with the protein, forming mono and bis adducts 
in the case of sulfonamides and only mono adducts with 
dithiocarbamate; the adducts were characterized in detail.

As completion of this study, some competition experi-
ments between inhibitors with different affinity for CA 
were performed. Also, in this case, the technique turned 
out to be extremely reliable, highlighting a good correla-
tion between adduct formation and the relative inhibitors’ 
affinities for the protein itself.

Finally, some further experiments were carried out with 
the gold drug auranofin. This latter compound can be con-
sidered as a site-specific ligand, reacting only with free and 
solvent-accessible cysteine residues. Although auranofin 
does not hinder at all the reaction of CA with its inhibitors, 
it reacts only when the protein is partially unfolded, thus 
making the free cysteine residue accessible. At the same 
time, with a partial loss of the protein tertiary structure, the 
Zn ion and the inhibitor are released once again.
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