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Abstract
The 1,3-dipolar cycloaddition of acyclic 2-diazo-1,3-dicarbonyl compounds (DDC) and thioketones preferably occurs with Z,E-

conformers and leads to the formation of transient thiocarbonyl ylides in two stages. The thermodynamically favorable further

transformation of C=S ylides bearing at least one acyl group is identified as the 1,5-electrocyclization into 1,3-oxathioles. However,

in the case of diazomalonates, the dominating process is 1,3-cyclization into thiiranes followed by their spontaneous desulfuriz-

ation yielding the corresponding alkenes. Finally, carbocyclic diazodiketones are much less reactive under similar conditions due to

the locked cyclic structure and are unfavorable for the 1,3-dipolar cycloaddition due to the Z,Z-conformation of the diazo molecule.

This structure results in high, positive values of the Gibbs free energy change for the first stage of the cycloaddition process.
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Introduction
Dipolar cycloadditions of diazo compounds have been of great

interest for a long time as they provide a means for the prepar-

ation of a wide variety of nitrogen containing heterocyclic com-

pounds [1-5]. These reactions are generally known for

diazoalkanes and 2-diazocarbonyl compounds, whereas similar

processes with 2-diazo-1,3-dicarbonyl compounds (DDC) are

far less common [6-10], and reported literature data on this

matter are somewhat contradictory. For example, it was estab-

lished that diazomalonate and diazodimedone do not react under

standard conditions with the С=S bond of thiobenzophenone

[11,12], which is one of the most reactive “superdipolarophiles”

known [13]. On the other hand, it was recently demonstrated
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Scheme 1: The key experimental results on the DDC 1 reactions with thioketones 2 [19-21].

that diazoacetylacetone, even at room temperature, easily reacts

with Ph2C=S, giving rise to the formation of 1,3-oxathiole

derivatives [14,15], which are considered to be the typical final

products of the 1,3-dipolar cycloaddition of diazoketones to the

C=S bond [16-18].

In this regard, we performed a detailed experimental study of

reactions of a series of 2-diazo-1,3-dicarbonyl compounds 1

with aromatic and aliphatic thioketones 2, and it was estab-

lished that they occurred in a varied manner: acyclic diazodicar-

bonyl compounds 1 readily reacted with thioketones 2, whereas

carbocyclic diazodiketones were essentially indifferent to

aromatic and aliphatic thioketones under similar reaction condi-

tions (Scheme 1) [14,15,19-21].

Generally, the main reaction products formed in these reactions

were 1,3-oxathioles 3. However, in some cases, thiiranes 4 and

alkenes 5 were isolated from the reaction mixture as well

[19,20] (Scheme 1). In addition, it was established that in the

reaction of diazomalonate with aliphatic 2,2,4,4-tetramethyl-3-

thioxocyclobutanone, the ratio of the reaction products 3 and 5

strongly depends on the reaction conditions: at room tempera-

ture, a mixture of 1,3-oxathiole 3 and alkene 5 (4:1) was

formed, whereas at 80 °C, product 5 was formed exclusively

(81%) [20].

In order to explain the obtained results and to elucidate the reac-

tion pathway (which governs reactions of DDC 1 with aromatic

and aliphatic thioketones 2), detailed quantum-chemical calcu-

lations of the relative energy of the reagents, reaction intermedi-

ates, transition states, and reaction products on the potential

energy surfaces were carried out. The results of the performed

study are summarized and discussed in the present publication.

Results and Discussion
The subjects of the quantum-chemical calculations were the

same diazodicarbonyl compounds and thioketones that were

applied in the earlier experimental studies, namely: acyclic

diazodiketones 1a,b, diazoketoester 1c, diazomalonate 1d, and

carbocyclic diazodiketones 1e,f, along with thiobenzophenone

(2a) and 2,2,4,4-tetramethyl-3-thioxocyclobutanone (2b) as

dipolarophiles (Figure 1).

Figure 1: Diazo compounds 1 and thioketones 2 used in the study.

The calculations were performed at the density functional

theory (DFT) level using the 6-31G(d) basis set. For reactions

of diazo compounds 1a–f with thiobenzophenone (2a), the

solvent was simulated using the polarizable continuum model
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Scheme 2: General scheme for reactions of DDC 1 with thiobenzophenone (2a).

Figure 2: Optimized structures of the lowest energy Z,E-conformers of diazo compounds 1a–d.

(PCM) [22], and for the case of thioketone 2b, all calculations

were performed for the gas phase.

Reactions with thiobenzophenone (2a)
By comparison with the literature data [16-18], one can assume

that the multistep reactions of DDC 1a–d and thione 2a are

initiated by 1,3-cycloaddition of the diazogroup with the C=S

bond (step 1), followed by decomposition of thiadiazoline 6

formed (step 2) and competitive electrocyclization of the inter-

mediate thiocarbonyl ylide 7 either into 1,3-oxathiole 3 or

thiirane 4 (step 3) (Scheme 2).

According to the latest molecular orbital (MO) theory, reac-

tions of diazodicarbonyl compounds with a dipolarophile are

cycloaddition processes of type II (HOMO, LUMO controlled)

[23-25]. In order to confirm the proposed reaction mechanism

and to explain the experimental results, geometries of the

stationary points (i.e., reagents, products, intermediates, and the

appropriate transition states) on the potential energy surface of

the reaction of the diazo compounds 1a–f with thiobenzo-

phenone (2a) were located. The optimized structures of

reagents, intermediates, and products were found to be charac-

terized by the absence of the imaginary part of the frequency,

and transition states contained only one imaginary frequency

component. The calculated intrinsic reaction coordinate (IRC)

paths demonstrated that the stationary points are effectively

connected to each other.

It was found that the E,Z-conformations of acyclic DDC 1a–d

have the lowest energy as compared to their Z,E-, Z,Z- and E,E-

counterparts [26-28] (up to 4.7–5.0 kcal/mol). Because of this,

calculations were carried out for the E,Z-conformers of acyclic

1a–d and the Z,Z-locked conformation of carbocyclic DDC

1e,f. The optimized structures of the E,Z-conformers for diazo

compounds 1a–d are shown in Figure 2.

The structural formulas and the corresponding, optimized

geometry energy for the first and the second reaction steps

(cycloaddition of 1 with 2a and decomposition of 1,3,4-thiadia-

zolines 6) are given in Table 1. The positive values of the Gibbs

free energy change for the first stage of the process (Table 1;

ΔG1) demonstrate that formation of thiadiazolines 6 from 1a–d

and 2a is thermodynamically unfavorable. However, the total

value of the Gibbs free energy change for the formation of

molecular nitrogen and thiocarbonyl ylide 7 from 1a–d and 2a,

ΔG1–7 = ΔG1 + ΔG2, is negative.

Therefore, the formation of the intermediate thiocarbonyl ylides

of type 7 from 1a–d and 2a is thermodynamically favorable.

The activation energy of the 1,3-dipolar cycloaddition of diazo

compounds 1 to thiobenzophenone (2a, ΔG1
#) is significantly

larger than the decomposition energy of 1,3,4-thiadiazolines 6

(ΔG2
#). In line with these data, the first step of the process

(cycloaddition) must be a rate-determining step, and therefore,

the larger value of ΔG1
# corresponds to the slower formation of

thiocarbonyl ylide 7.

IRC scans have demonstrated that diazo compounds 1 and thio-

benzophenone (2a) are smoothly converted to thiadiazolines 6

through the single minimum energy transition state, TS1. This

observation implies that the cycloaddition reaction proceeds via

a concerted mechanism. In the case of an alternative, stepwise
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Table 1: Calculated relative energies (in kcal·mol−1) and relative reaction rates for cycloaddition reactions of diazo compounds 1a–g with thiobenzo-
phenone 2a using the PBE1PBE/6-31G*//PCM (benzene) method. The energies calculated via B3LYP/6-31G*//PCM (benzene) are given in paren-
thesis.

Entry DDC 1; R, R1 ΔG1
# ΔG1 ΔG2

# ΔG2 ΔG1–7 = ΔG1 + ΔG2 k1a/kx at 25 °Ca

1 1a; Me, Me 30.5
(36.6)

8.4
(20.3)

21.2
(16.4)

−25.1
(−34.9)

−16.7
(−14.6)

1
(1)

2 1b; Ph, Ph 31.3
(38.1)

7.5
(19.8)

18.3
(13.6)

−25.8
(−34.9)

−18.3
(−15.1)

3.8
(12)

3 1c; Me, OMe 31.2
(37.2)

8.4
(19.9)

19.6
(14.6)

−26.0
(−35.6)

−17.6
(−15.7)

3.3
(2.9)

4 1d; OMe, OMe 30.8
(36.4)

6.1
(17.4)

18.6
13.9)

−24.0
(−33.2)

−17.9
(−15.8)

1.7
(0.7)

5 1e; (CH2)3 32.7
(38.8)

12.4
(23.7)

14.9
(10.3)

−33.9
(−43.6)

−21.5
(−19.9)

43
(38)

6 1f; (CH2)2 35.8
(41.5)

12.4
(23.6)

12.9
(8.0)

−34.2
(−44.1)

−21.8
(−20.5)

8300
(3700)

aThe details of k1a/kx calculations are given in the Computational Details section.

mechanism, one would expect the appearance of at least two

transition states [29], which was not observed. In addition, the

cyclic geometry of the TS1 also confirms the concerted cycload-

dition process.

The activation energies of cycloadditions of DDC 1 with thio-

benzophenone (2a, Table 1) are in good agreement with the

reported experimental results [14,15,19]. Thus, the smallest

value of ΔG1
# (30.5 kcal·mol−1, PBE1PBE, Table 1, entry 1)

corresponds to the reaction of the most reactive diazoacetylace-

tone (1a) with thioketone 2a, which was completed at room

temperature over several days (and in good yields of oxathiole

3a  of up to 80%). The intermediate values of ΔG1
#

(30.8–31.3 kcal·mol−1, PBE1PBE, Table 1, entries 2–4) are

related to diazodicarbonyl compounds 1b–d with reaction times

of 1–3 months. The carbocyclic diazodiketone 1e with

ΔG1
# = 32.7 kcal·mol−1 (PBE1PBE, Table 1, entry 5) does

not react at room temperature with 2a (Scheme 1), while

diazocyclopentanedione 1f  with the largest value of

ΔG1
# = 35.8 kcal·mol−1 (PBE1PBE, Table 1, entry 6) was unre-

active under all conditions.

The calculated values of the relative reaction rates (Table 1, last

right column) also correlate well with the above considered

experimental data. The acyclic DDC 1b–d have much slower

reaction rates as compared to diazoacetylacetone 1a, whereas

the cycloaddition of carbocyclic diazodiketones 1e,f with 2a

occurs even at elevated temperatures at an insignificant rate.

Apparently, these differences result from the fixed cyclic struc-

ture Z,Z-conformation of DDCs 1e,f, which is unfavorable for

the 1,3-dipolar cycloaddition by stereochemical and/or the ener-

getic parameters of the process.
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Table 2: Calculated relative energies for the 1,3-dipolar cycloadditions of diazodicarbonyl compounds 1a–f with thioketone 2b on the potential energy
surface (in kcal·mol−1).

Entry Diazocompound ΔG1
# ΔG1 ΔG2

# ΔG2 ΔG1–7’ = ΔG1 + ΔG2 k1a/kx at 25 °Ca

1 1a; Me, Me 30.7
(36.2)

0.6
(12.9)

26.0
(20.5)

−12.8
(−22.6)

−12.2
(−9.7)

1
(1)

2 1b; Ph, Ph 29.3
(34.7)

-4.2
(8.1)

25.8
(20.7)

−8.3
(−17.7)

−12.5
(−9.6)

0.1
(0.08)

3 1c; Me, OMe 31.2
(36.8)

2.1
(13.9)

22.6
(17.3)

−14.8
(−24.4)

−12.7
(−10.5)

2.3
(2.5)

4 1d; OMe, OMe 30.8
(36.2)

-1.1
(10.5)

23.6
(18.4)

−13.3
(−22.7)

−14.4
(−12.2)

1.4
(0.9)

5 1e; (CH2)3 31.9
(37.3)

5.6
(17.5)

16.0
(10.7)

−22.9
(−33.2)

−17.3
(−15.7)

7.7
(6.2)

6 1f; (CH2)2 33.8
(39.4)

4.6
(15.9)

14.8
(10.0)

−24.2
(−33.6)

−19.6
(−17.7)

210
(210)

aThe details of k1a/kx calculations are given in the Computational Details section.

Reactions with 2,2,4,4-tetramethyl-3-thioxo-
cyclobutanone (2b)
The mechanism of the 1,3-dipolar cycloaddition of diazo com-

pounds 1 with aliphatic thioketone 2b was assumed to be

similar to their reaction with aromatic thione 2a (Scheme 2).

Thus, the reaction of 1 with the C=S bond of thioketone 2b

(step 1) is followed by the decomposition of the intermediate

1,3,4-thiadiazoline 6' (step 2) giving rise to thiocarbonyl ylide

7'. The latter undergoes competitive 1,5- or 1,3-electrocyliza-

tions (step 3).

Considering that thiadiazolines with bulky substituents are

rather stable compounds (in particular, those derived from

thioketone 2b [18,30]), it seems difficult to predict in advance

whether step 1 or step 2 determines the reaction rate. In this

respect, the relative energy of the stationary points on the poten-

tial energy surface for cycloaddition of diazo compounds 1a–f

with cycloaliphatic thioketone 2b were calculated (Table 2). All

calculations refer to the gas phase, since all reactions of DDC 1

with the thioxocyclobutanedione 2b were carried out under

solvent-free conditions [20].
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Table 3: Calculated relative energies for competitive 1,5- and 1,3-electrocyclizations of thiocarbonyl ylides 7 and 7' on the potential energy surface (in
kcal·mol−1).a

Entry Ylide 7, 7'
(R, R')

ΔG1
#

1,5-EC
ΔG1
1,5-EC

ΔG-1
#

retro-1,5-EC
ΔG2

#

1,3-EC
ΔG2
1,3-EC

1 7a (Me, Me) 2.8 −19.5 22.4 15.6 −15.0
2 7b (Ph, Ph) 6.1 −22.7 28.8 13.6 −14.2
3 7c (Me, OMe) 2.7 −19.9 22.6 14.3 −13.1
4 7d (2OMe) 8.9 −6.8 15.6 13.5 −16.4
7 7'a (Me, Me) 2.8 −29.7 32.5 17.5 −22.1
8 7'b (Ph, Ph) 3.3 −33.0 36.4 14.6 −29.0
9 7'c (Me, OMe) 2.4 −30.8 33.2 16.0 −23.0
10 7'd (2OMe) 8.7 −15.2 23.8 15.1 −26.6

aPBE1PBE functional was solely used for calculations.

The driving force behind the DDC 1a–d reactions with thiocy-

clobutanedione 2b, similar to thiobenzophenone (2a), are the

significant negative values of the Gibbs free energy change of

the 1,3,4-thiodiazoline 6’ decomposition process to produce

thiocarbonyl ylide 7’ (ΔG2). This results in the overall negative

total value of Gibbs free energy calculated according to the

equation: ΔG1–7’ = ΔG1 + ΔG2.

The lower relative energy of the 1,3,4-thiadiazoline 6' decom-

position products, as well as the smaller activation energy of the

second step of the process (ΔG2
# < ΔG1

#), result in the forma-

tion of thiocarbonyl ylide 7'. Since the activation energy of the

cycloaddition step is larger than that of step 2 (the formation of

C=S ylide), it is evident that step 1 determines the reaction rate.

Furthermore, based on the character of the minimum energy

transition states TS1, and by analogy with reactions of thio-

benzophenone (2a), it is plausible to suggest that cycloaddi-

tions of DDC 1 with 2b also proceed via a concerted pathway.

The calculated activation energy of DDC 1a–f cycloadditions

with thioketone 2b correlate well with the experimental results,

where the lowest values of ΔG1
# (30.7–31.2 kcal·mol−1;

Table 2) are related to the most reactive of acyclic diazoadicar-

bonyl compounds 1a–d [20] in this process. Carbocyclic

diazodiketone 1e with ΔG1
# = 31.9 kcal·mol−1 (PBE1PBE,

Table 2, entry 5), in a similar way as the reaction with thio-

benzophenone (2a), would not easily react at room temperature

with thioketone 2b. The largest ΔG1
# = 33.8 kcal·mol−1

(PBE1PBE, Table 2, entry 6) corresponds to the lowest reac-

tion rate of the carbocyclic diazodiketone 1f, which produces

neither related oxathiole 3’f nor any other product in this reac-

tion [20]. Apparently, the predicted reaction pathway stems

from the unfavorable 1,3-cycloaddition process of the Z,Z-

locked conformation of carbocyclic diazodiketones 1e,f.

Transformations of thiocarbonyl ylides 7 and
7'
In order to evaluate the correlation between the structure of

thiocarbonyl ylides 7, 7' and the direction of their electro-

cyclizations (1,5- or 1,3-dipolar electrocyclization), the relative

energies of the stationary points on the potential energy surface

of both reaction pathways were calculated (Table 3) for the

electrocyclizations of transient species 7 and 7'.

The negative values of the Gibbs free energy change for 1,5-

and 1,3-electrocyclizations of the ylides 7 and 7' (ΔG1 and ΔG2,

respectively), indicates that the reaction is thermodynamically

allowed in both directions. However, based on the relative
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Scheme 3: Reactions of the intermediate thiocarbonyl ylide 7'd via competative 1,5-EC (a) or 1,3-EC (b) followed by desulfurization of thiirane 4'd
into alkene 5'd.

values of ΔG1 and ΔG2 for thiocarbonyl ylides 7a–c and 7'a–c

(Table 3, entries 1–3 and 7–9), the 1,5-electrocyclization

leading to 1,3-oxathioles 3a–c and 3'a–c is a thermodynami-

cally more favorable process. However, in the case of the

diazomalonate derivatives 7d and 7’d (Table 3, entries 4 and

10), the 1,3-electrocyclization process is thermodynamically

preferable, resulting in the formation of thiiranes 4d and 4'd. At

the same time, from the kinetic point of view, the 1,5-electro-

cyclization process is more efficient because the activation

energy for the 1,5-electrocyclization (ΔG1
#) is usually smaller

than for the 1,3-electrocyclization (ΔG2
#).

The obtained computation results are in good agreement with

the experimental observations, which demonstrate that at 20 °C,

due to a kinetic reaction control, 1,3-oxathioles 3 and 3’ are in

most cases the major products of the multistep reactions of

diazo compounds 1 with thioketones 2 [14,15,19,20]. At the

same time, at elevated temperatures (80 °C), where the reaction

is thermodynamically controlled, the lowest energy reaction

products are expected to be formed. Indeed, the reaction of

diazo compounds 1a–c with thioketones 2a and 2b results in the

formation of oxathioles 3a–c and 3’a–c, while with diazoma-

lonate 1d the thiiranes 4d, 4’d and alkenes 5d, 5’d, the

desulfurization products of thiiranes are the principal reaction

products [20].

To understand the mechanism of alkene 5’d formation and the

effect of temperature on this process, the relative energy of the

stationary points on the potential energy surface for the trans-

formation of ylide 7'd into 1,3-oxathiole 3’d (path a), and

further to alkene 5’d (path b) via the intermediate thiirane 4’d,

were calculated (Scheme 3).

It was assumed that the mechanism includes the following steps

[12,31,32]: 1,5-electrocyclization of C=S ylide 7’d (step a), 1,3-

electrocyclization of C=S ylide 7’d (step b), disproportionation

of the thiirane 4’d dimer into thiirane S-sulfide 8’d and alkene

5’d (step c). The subsequent decomposition of thiirane-S-

sulfide 8’d (step d) and the tetramerization of the extruded S2

molecule results in the formation of the most thermodynami-

cally stable, rhombic modification of sulfur S8 (step e). The

obtained computational results for this process are summarized

in Table 4 (the data for the Gibbs free energy change for the

tetramerization of the S2 molecule into S8 were taken from the

literature [33]).

According to the calculations, the Gibbs free energy changes for

the 1,5-electrocyclization of ylide 7’d to 1,3-oxathiole 3’d

(ΔG1), and/or 1,3-electrocyclization of ylide 7’d to thiirane 4’d,

ΔGb, are equal to −15.2 and −26.6 kcal·mol−1, respectively,

whereas the relevant values of the activation energy for the

steps a (ΔGa
#)  and b (ΔGb

#)  are equal to 8.7 and

15.1 kcal·mol−1, respectively. As a result, the thiirane deriva-

tive 4’d is thermodynamically more stable than 1,3-oxathiole

3’d, and therefore, 4’d and the corresponding alkene 5’d

resulting from desulfurization are the main products formed at

elevated temperatures when the reaction is thermodynamically

controlled.

At the same time, the lower activation barrier of 1,5-electro-

cyclization (ΔGa
# = 8.7 kcal·mol−1) as compared to 1,3-electro-

cyclization (ΔGb
# = 15.1 kcal·mol−1) results in the dominance

of oxathiole 3’d, which is preferentially formed in the reaction

mixture at room temperature when the reaction is kinetically

controlled. Due to the relatively low activation barrier of the
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Table 4: Computed relative energies for conversion of thiocarbonyl ylide 7'd into 1,3-oxathiole 3’d and alkene 5'd on the potential energy surface (in
kcal·mol−1).

Step a b c d e

7’d → 3’d 7’e → 4’d 4’d → 8’d + 5’d 8’d → 5’d + S2 S2 → S8
ΔGi −15.2 −26.6 9.3 0.9 −16.9
ΔGi

# 8.7 15.1 22.7 4.9 –
ΔG-i

# 23.8 41.7 13.4 4.0 –

1,3-oxathiole 3’d  r ing opening back into ylide 7’d

(ΔG-a
# = 23.8 kcal·mol−1), the thermodynamically more stable

alkene 5’d is accumulated in the reaction mixture with time

even at room temperature.

As for a disproportionation mechanism of two thiirane mole-

cules 4’d (step c) into thiirane S-sulfide 8’d and alkene 5’d, fol-

lowed by the decomposition of the transient thiirane S-sulfide

8’d (step d), it is most likely that it follows the pathway

proposed for the spontaneous desulfurization of matrix-isolated

oxathiiranes [32].

Conclusion
The quantum-chemical calculations show that the initial step of

the 1,3-dipolar cycloaddition of acyclic 2-diazo-1,3-dicarbonyl

compounds with the C=S bonds of “superdipolarophilic”

thioketones proceeds with Z,E-conformers of DDC via a

concerted mechanism and adequately agree with experimental

data. At room temperature, the 1,5-electrocyclization of the

intermediate ylides into the 1,3-oxathiole derivatives is a ther-

modynamically and kinetically favorable process for DDC with

at least one electron-withdrawing acyl group. At higher

temperatures, however, due to the entropy contribution, the

dominating process becomes the 1,3-cyclization followed by

desulfurization of the obtained thiiranes, which leads to the

corresponding alkenes. In the case of the C=S ylides bearing

two alkoxycarbonyl groups, the latter pathway clearly domi-

nates. The reversibility of the 1,5-electrocyclization of the tran-

sient C=S ylide, generated from diazomalonate 1d and thione

2b, is attributed to a relatively low activation barrier

(ΔG# = 23.8 kcal·mol−1) for the ring opening of the 1,3-

oxathiole back to thiocarbonyl ylide. Carbocyclic diazodike-
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tones are practically unreactive at room temperature due to the

locked Z,Z-configuration of the diazo molecule, which is unfa-

vorable for initiating the cycloaddition step.

Computational Details
The geometry optimization of reagents, intermediates, products,

and transition states, and the calculations of the molecular

orbital energies, vibrational frequencies, and ground-state IRC

scans, were all performed at the B3LYP and PBE1PBE theory

level employing the 6-31G(d) basis set using the GAUSSIAN

09 program package [34]. The calculated energies for the

B3LYP and PBE1PBE functionals were found to be consistent.

The thermochemical parameters were calculated for 298.15 K

and all are given in kcal·mol−1. For the reactions of diazo com-

pounds 1a–f with thiobenzophenone (2a), the solvent was simu-

lated using the polarizable continuum model (PCM) [22]. All

calculations for the reactions of diazo compounds 1a,c,d with

thiocyclobutanedione 2b were performed in the gas phase. To

characterize the nature of the stationary points, the corres-

ponding vibrational frequencies were calculated. The optimized

structure of the reagents, intermediates, and products was char-

acterized by the absence of an imaginary frequency, and tran-

sition states containing only one imaginary frequency compo-

nent. The calculated IRC paths demonstrated that the stationary

points are effectively connected to each other. The relative reac-

tion rates were estimated using the Arrenius equation

(Equation 1), where k is the reaction rate, A is the prefactor,

ΔG# is the activation energy, R is the universal gas constant,

and T is the temperature.

(1)

(2)

The relative reaction rates of DDC 1b–f, as compared to the

most reactive diazoacetylacetone 1a, were estimated by Equa-

tion 2 (Table 1 and Table 2).

Supporting Information
Supporting Information File 1
Details of computational studies: cartesian coordinates,

computed geometries of compounds, transition states, and

computed total energies.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-11-57-S1.pdf]
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