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Understanding how complex dynamic activity propagates over a static structural network

is an overarching question in the field of neuroscience. Previous work has demonstrated

that linear graph-theoretic models perform as well as non-linear neural simulations in

predicting functional connectivity with the added benefits of low dimensionality and a

closed-form solution which make them far less computationally expensive. Here we

show a simple model relating the eigenvalues of the structural connectivity and functional

networks using the Gamma function, producing a reliable prediction of functional

connectivity with a single model parameter. We also investigate the impact of local activity

diffusion and long-range interhemispheric connectivity on the structure-function model

and show an improvement in functional connectivity prediction when accounting for

such latent variables which are often excluded from traditional diffusion tensor imaging

(DTI) methods.

Keywords: BOLD fMRI, functional connectivity, structural connectivity, spectral graph theory, eigenvalue

decomposition, network diffusion model, inter-hemispheric connections, schizophrenia

1. INTRODUCTION

Determining the correspondence between the brain’s structural white matter connectivity (SC)
network and its temporally dependent functional connectivity (FC) network is of fundamental
import in neuroscience and may inform characteristics of brain disease. While complex dynamic
neural activity must propagate over a static structural network, whether and to what extent the
correlation structure of the latter can be directly predicted from the former is a subject of active
interest. Recently, graph based methods have been employed to relate the brain’s SC to FC.
Evolution of the structural and functional networks have been investigated using graph theoretical
statistics (Chatterjee et al., 2008; Bullmore and Sporns, 2009; He et al., 2010; Bassett and Bullmore,
2017; Liang and Wang, 2017). Structurally coupled neural mass models (NMMs) use the brain’s
connections to couple anatomically connected neuronal assemblies and perform lengthy numerical
simulations to approximate the brain’s local and global activity. Using these techniques such
simulation methods are able to achieve moderate correlation between simulated and empirical FC
(Nunez, 1974; Jirsa andHaken, 1997; Valdes et al., 1999; Honey et al., 2009; Spiegler and Jirsa, 2013).
However, stochastic simulations are unable to provide a closed form solution and inherently suffer
from lack of interpretability since dynamics are only achieved from iterative optimizations of high
dimensional NMM parameters.
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Due to these challenges many laboratories are exploring
parsimonious models that leverage the brain’s macroscale
linearity through a relationship between structural and functional
network eigenmodes. The key driving insight here is that
the brain’s activity is macroscopically linear to a large extent
(Abdelnour et al., 2014; Nozari et al., 2020; Raj et al., 2020). An
early example of this was our proposal of using low-dimensional
processes involving diffusion or random walks on the structural
graph as a simple means of simulating FC from SC (Abdelnour
et al., 2014). Graph diffusion models naturally employ the
Laplacian of SC and have been generalized to yield spectral
graph models whereby Laplacian eigenspectra were sufficient to
reproduce functional patterns of brain activity using only a few
eigenmodes (Atasoy et al., 2016; Abdelnour et al., 2018; Raj et al.,
2020). Thus, a Laplacian matrix representation of a network can
be used to find characteristic properties of the network, and its
eigenvectors form an orthonormal basis that can represent any
arbitrary patterns on the network. The Laplacian eigenmodes
are therefore emerging as the substrate on which functional
patterns of the brain may be established via several manners of
network transmission (Abdelnour et al., 2014, 2018; Atasoy et al.,
2016; Robinson et al., 2016; Preti and Van De Ville, 2019). A
recent study from our group expanded this graph modeling work
to accommodate phase delays in SC and proposed a complex
Laplacian (Xie et al., 2021). Higher-order walks on graphs have
also been proposed as a method for accounting for both direct
and indirect connections on the structural network; typically
these methods involve a series expansion of the graph adjacency
or Laplacian matrices (Meier et al., 2016; Liang and Wang,
2017; Becker et al., 2018). Not surprisingly, the diffusion and
series expansion methods are closely related, and most of these
approaches may be interpreted as special cases of each other
(Robinson et al., 2016; Deslauriers-Gauthier et al., 2020; Tewarie
et al., 2020). Recently, dynamically varying metrics quantifying
structural eigenmode coupling strength to functional patterns
were also introduced (Preti and Van De Ville, 2019). Whether
using graph diffusion, eigenvalue mapping or series expansion,
the eigen structure of the graph is integral to these models
of spread.

However, no model using structural information outperforms
a model that simply estimates a subject’s connectivity matrix
(connectome) as a function of the group average (Deslauriers-
Gauthier et al., 2020). Previous studies that use parsimonious and
global eigenvalue mapping techniques have reported correlations
between predicted and empirical FC of only around R ≈ 0.2 −

0.4. This implies that the majority of variance in FC is not
being explained by SC-based models. Although much higher R-
values have been reported (Meier et al., 2016; Liang and Wang,
2017; Becker et al., 2018; Deslauriers-Gauthier et al., 2020), these
studies typically involve large numbers of model parameters or
do not attempt to predict unseen data. Thus, current models can
be either parsimonious or accurate, not both.

1.1. Current Contributions
In this study, we aimed to advance the eigenvalue mapping
method of SC-FC relationship via two significant innovations.
First, as demonstrated in Section 3 (Figure 1), the exponential

relationship between the eigenvalues of SC and FC does
not always hold, and especially low SC eigenvalues deviate
from this relationship. There may be many reasons for
this, not least of which is likely due to challenges in
correctly estimating latent structural connections via diffusion-
weighted MRI (DWI) tractography. Therefore, we explore non-
monotonically-decreasing eigen relationships, as typified by the
well-known Gamma function. Second, we investigate how the
accuracy of linear structure-function models would be impacted
by the incorporation of biologically relevant latent structural
connections—small fibers between adjacent regions and gray-to-
gray connections along non-myelinated axons (Naze et al., 2020).
Accounting for interhemispheric connectivity is yet another
challenge presented when modeling the brain’s function from the
underlying structure. Within the brain, most interhemispheric
fibers are contained in the corpus callosum. However, the
presence of bilateral connectivity patterns in individuals without
this structure suggests the existence of yet other sources of
interhemispheric integration (Owen et al., 2013a), e.g., the
brainstem, which plays a critical role in coordinating neural
activity (Beissner et al., 2011; Brooks et al., 2013).

Therefore, in this study we use Gamma-shaped eigenvalue
mapping, followed by addition of adjacency and supplemental
inter-hemispheric connectivity strength between homologous
left and right structures in our structural connectome, and
investigate the impact of these enhancements on the structure-
function model. Since these additions do not have the same scale
as the DWI-derived SC, it is not possible to determine a priori
the scale of the additional elements. Therefore, we sweep all our
analysis results over a large range of weights, which are then
optimized such that the predicted FC using these augmented SC
matrices may achieve the best association with empirical FC. We
show that the above enhancements lead to a SC-FC model that
retains all the key benefits of the previous eigenvalue mapping
methods (e.g., parsimony, generalizability, and interpretability)
while greatly enhancing the ability to predict empirical FC. We
applied our methods to two independent datasets of structural
and functional matrices and achieved very similar performance
on both.

2. MATERIALS AND METHODS

2.1. Participants
Data were collected as part of a multi-site longitudinal study
aimed at better understanding the brain mechanisms underlying
psychosis development and provided by our collaborators in the
Brain Imaging and EEG Laboratory at the San Francisco VA
Medical Center. Sample includes fMRI and DTI data from 83
healthy controls (HC) and 49 early schizophrenia (ESZ) patients.
ESZ participants met DSM-IV criteria for schizophrenia or
schizoaffective disorder and were within 5 years of disease onset.
Data from only the healthy group were used for the majority of
this study except for comparison in Figure 7.

2.2. UCSF fMRI
Functional MRI data collection was completed at the UCSF
Neuroimaging Center using a Siemens 3T TIM TRIO. Resting
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FIGURE 1 | (A) Structural connectome derived from DTI. (B) Adjacency matrix derived from the surface area of boundary between regions in brain atlas. (C)

Interhemispheric matrix representing connections between left and right homologous brain structures. (D) Scatter plot of relationship between Laplacian eigenvalues

and the projections onto FC given by UFUH. Colors represent data from each of five different subjects. Dashed line provides an example of exponential fitting, while

dotted line represents gamma fitting.

state data were collected with the following parameters: T2*-
weighted AC-PC aligned echo planar imaging (EPI) sequence: TR
= 2,000 ms, TE= 29 ms, flip angle= 75, FOV= 240× 240, slice
thickness= 3.5 mm, acquisition time= 6:22.

2.2.1. Anatomical Data Preprocessing
The T1-weighted (T1w) image was corrected for intensity
non-uniformity (INU) with N4BiasFieldCorrection
(Tustison et al., 2010), distributed with ANTs 2.3.3 (Avants
et al., 2008, RRID:SCR_004757), and used as a T1w-
reference throughout the workflow. The T1w-reference was
then skull-stripped with a Nipype implementation of the
antsBrainExtraction.sh workflow (from ANTs), using
OASIS30ANTs as target template. Brain tissue segmentation
of cerebrospinal fluid (CSF), white-matter (WM), and gray-
matter (GM) was performed on the brain-extracted T1w using
fast (Zhang et al., 2001, FSL 5.0.9, RRID:SCR_002823).
Volume-based spatial normalization to a standard space
(MNI152NLin2009cAsym) was performed through nonlinear
registration with antsRegistration (ANTs 2.3.3),
using brain-extracted versions of both T1w reference and

the T1w template. The ICBM 152 Nonlinear Asymmetrical
template version 2009c (Fonov et al., 2009, RRID:SCR_008796;
TemplateFlow ID: MNI152NLin2009cAsym) was selected for
spatial normalization.

2.2.2. Functional Data Preprocessing
Preprocessing was performed using fMRIPrep 20.2.3 (Esteban
et al., 2018a,b; RRID:SCR_016216), which is based on Nipype
1.6.1 (Gorgolewski et al., 2011, 2018; RRID:SCR_002502). First,
a reference volume and its skull-stripped version were generated
using a custom methodology of fMRIPrep. The BOLD reference
was then co-registered to the T1w reference using flirt
(FSL 5.0.9, Jenkinson and Smith, 2001) with the boundary-
based registration (Greve and Fischl, 2009) cost-function. Co-
registration was configured with nine degrees of freedom to
account for distortions remaining in the BOLD reference.
Head-motion parameters with respect to the BOLD reference
(transformation matrices, and six corresponding rotation and
translation parameters) are estimated before any spatiotemporal
filtering using mcflirt (FSL5.0.9, Jenkinson et al., 2002).
BOLD runs were slice-time corrected using 3dTshift from
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AFNI 20160207 (Cox and Hyde, 1997, RRID:SCR_005927).
The BOLD time-series (including slice-timing correction when
applied) were resampled onto their original, native space by
applying the transforms to correct for head-motion. These
resampled BOLD time-series will be referred to as preprocessed
BOLD in original space, or just preprocessed BOLD. The BOLD
time-series were resampled into standard space, generating
a preprocessed BOLD run in MNI152NLin2009cAsym space.
First, a reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. Automatic
removal of motion artifacts using independent component
analysis (ICA-AROMA, Pruim et al., 2015) was performed
on the preprocessed BOLD on MNI space time-series after
removal of non-steady state volumes and spatial smoothing
with an isotropic, Gaussian kernel of 6 mm FWHM (full-width
half-maximum). Corresponding “non-aggressively” denoised
runs were produced after such smoothing. Additionally, the
“aggressive” noise-regressors were collected and placed in the
corresponding confounds file. Several confounding time-series
were calculated based on the preprocessed BOLD: framewise
displacement (FD), DVARS, and three region-wise global signals.
FD was computed using two formulations following Power
(absolute sum of relative motions, Power et al., 2014) and
Jenkinson (relative root mean square displacement between
affines, Jenkinson et al., 2002). FD and DVARS are calculated
for each functional run, both using their implementations in
Nipype (following the definitions by Power et al., 2014). The
three global signals are extracted within the CSF, the WM, and
the whole-brain masks. The head-motion estimates calculated in
the correction step were also placed within the corresponding
confounds file. Frames that exceeded a threshold of 0.5 mm FD
or 1.5 standardized DVARS were annotated as motion outliers.
All resamplings can be performed with a single interpolation
step by composing all the pertinent transformations (i.e., head-
motion transform matrices, susceptibility distortion correction
when available, and co-registrations to anatomical and output
spaces). Gridded (volumetric) resamplings were performed using
antsApplyTransforms (ANTs), configured with Lanczos
interpolation to minimize the smoothing effects of other
kernels (Lanczos, 1964). Non-gridded (surface) resamplings were
performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.6.2
(Abraham et al., 2014, RRID:SCR_001362), mostly within
the functional processing workflow. For more details of
the pipeline, see the section corresponding to workflows in
fMRIPreps documentation.1

2.2.3. Functional Network Generation
Average functional time series were extracted from 86 regions of
interest (68 cortical, 18 subcortical) as defined by the Desikan-
Killiany atlas (Desikan et al., 2006). Regional time series were
bandpass filtered from 0.01 to 0.25 Hz for functional connectivity
analysis. Entries of FC matrices were defined as the Pearson

1Copyright Waiver: The above boilerplate text was automatically generated by

fMRIPrep with the express intention that users should copy and paste this text into

their manuscripts unchanged. It is released under the CC0 license.

correlation coefficient between the time series of each pair of
brain atlas regions. All matrices were normalized by dividing by
the sum of all entries.

2.3. HCP Structural Connectivity
Due to the challenges, noise and processing issues involved in
DWI acquisition and analysis on individual subjects, we chose
to use a template structural connectome of healthy subjects.
Therefore we obtained openly available diffusion MRI data from
the MGH-USC Human Connectome Project to create an average
template connectome (McNab et al., 2013). The data acquisition
and pre-processing of this cohort are thoroughly described
elsewhere by the HCP consortium (e.g., McNab et al., 2013).

2.3.1. Structural Connectivity Network Calculation
We constructed structural connectivity networks according
to the Desikan-Killiany atlas where the brain images were
parcellated into 68 cortical regions and 18 subcortical regions as
available in the FreeSurfer software (Fischl et al., 2002; Desikan
et al., 2006). The processing pipeline followed conventional
and well-established procedures. Specifically, Bedpostx was used
to determine the orientation of brain fibers in conjunction
with FLIRT, as implemented in the FSL software (Jenkinson
et al., 2012). Tractography was performed using probtrackx2 to
determine the elements of the adjacency matrix. We initiated
1,000 streamlines from each seed voxel corresponding to
a cortical or subcortical gray matter structure and tracked
how many of these streamlines reached a target gray matter
structure. The weighted connection between the two structures
ci,j was defined as the number of streamlines initiated by
voxels in region i that reach any voxel within region j,
normalized by the sum of the source and target region volumes.
This normalization prevents large brain regions from having
extremely high connectivity.

2.4. Eigendecomposition Model
The eigendecomposition model is based on the assumption that
neural activity spreads along the SC network as a diffusion
process. A full description of this model can be found in
Abdelnour et al. (2018). Briefly, the change in neural activity
between two connected brain regions, Ri and Rj, can be
represented as

dxi(t)

dt
= β



δ
−1/2
i

∑

j

ci,jδ
−1/2
i (t)− xi(t)



 (1)

where ci,j is the number of physical connections between the two
regions, δi is the weighted degree of region i, and β is the decay
rate of the system. When expanded to the entire network, this
relationship becomes

dx(t)

dt
= −βLx(t) (2)

The Laplacian L of the structural connectome is defined here as

L = I − 1−1/2Cs1
−1/2 (3)
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where Cs is the structural connectivity matrix and1 is the degree
matrix. The solution of Equation (2) can thus be used to estimate
the functional connectome as

Cf = e−βLt (4)

Spectral graph models like (Abdelnour et al., 2018) and others
take this solution one step further by using the eigenvectors of the
structural Laplacian as an orthonormal basis on which FC can be
predicted. Following eigendecomposition:

L = U3UH , with U = {ui}, 3 = diag(λi), i ∈ [1,N] (5)

where ui are the eigenvectors and λi are the eigenvalues of
L, we assume that the functional connectome and structural
Laplacian share eigenvectors and their eigenvalues are related by
an exponential relationship:

λ
eig

f
= ae−αλl + b (6)

The predicted functional connectome is thus given by

C
eig

f
= a

N
∑

i=1

e−α3luiu
H
i + bI (7)

The model parameters a,α, b are optimized per subject as the
values that minimize the Frobenius norm of the difference
between the true functional matrix and the predicted matrix C

eig

f
.

2.5. Gamma Model
While previous modeling approaches using the exponential
relationship between the eigenvalues give good results and have
the benefit of being based on an implicit underlying linear
model of functional dynamics (Abdelnour et al., 2018), we have
observed that frequently the diagonal elements of the projection
matrix UHFU are not monotonically decreasing, as would be
expected for a strictly exponential decay. Indeed, it was noted by
Abdelnour et al. (2018) that the deviations from exponential fits
of the eigenvalues might be due to global signal in FC and under-
estimation of interhemispheric connections in SC. Whatever the
reason, it is likely that other functional forms of the eigenvalue
relationship might prove useful for certain subjects. In view of
these points, we therefore explored a different mapping that
retains the parsimony of the original eigen model but is able
to produce non-monotonic relationships. We chose the Gamma
function Ŵ(x|γ , k), with only a single width parameter γ , keeping
the shape parameter at k = 2. Hence, we define

λŴ
f = Ŵ(λl|γ , k) (8)

Then the prediction of FC may be given as before by:

CŴ
f =

N
∑

i=1

λŴ
f ,iuiu

H
i (9)

Some examples of the relationship between Laplacian eigenvalues
and the projections onto FC are shown in Figure 1. An example

of the Gamma function on real structure-function pairs is also
provided for comparison, along with the previous exponential
relationship. Please note, the Gamma function reduces to the
exponential for the special case of k = 1.

2.6. Parameter Inference
The model parameters, denoted by the quantity θ—which
consists of a,α, b for the eigendecomposition model, and λ

for the Gamma function model—are optimized per subject as
the values that minimize the Frobenius norm of the difference
between the true functional matrix and the predicted matrix

Cf . In this paper both models C
eig

f
and CŴ

f
will be evaluated.

For this purpose we implemented a constrained cost function
minimization, available as the routine fmincon() in MATLAB
version R2019b. The parameters were given lower limits 0 (to
ensure positive values). To ensure unique solutions from the
inference procedure a small amount of regularization was added
via ǫ = 0.001, to yield the cost function:

cost(θ) = ||F − Cf (θ)||F + ǫ||θ ||1 (10)

Please note, the cost function was evaluated against the
traditional FC F of pairwise Pearson’s correlations.

2.7. Model Evaluation
We report Pearson’s correlation R between the true FC
matrix and the model-predicted matrix as a metric for model
performance. Only the upper triangle, excluding diagonal, of each
matrix is used in the calculation.

2.8. Adjacency Matrix Addition
We generate a local connectivity matrix in which the entries are
a function of the surface area of the boundary shared between
each pair of brain regions as defined in the Desikan-Killiany atlas
(Desikan et al., 2006). The resulting matrix, referred to as the
Adjacency matrix, is represented in Figure 1B. The original atlas
image representing a given region is dilated by one pixel radius
using the imdilate function in Matlab, and the number of voxels
that overlap with a neighboring region in the dilated image are
used to weigh the adjacency. This matrix, A, is then added to the
original structural connectomewith a range of weightsw between
zero and one,

C
′

s = Cs + wA (11)

to generate an augmented C
′

s to be used as the structural matrix
in our model.

2.9. Interhemispheric Matrix Addition
We create a binary matrix the same size as the structural
connectome in which all entries are zero except at the connection
between homologous structures in the left and right lobes. This
matrix, shown in Figure 1C, is then added to the structural
connectome over a range of weights and the result is used in the
model as described for the adjacency matrix.
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3. RESULTS

First we show what the mean SC matrix pertaining to the 86-
region Desikan-Killiany parcellation looks like in Figure 1. The
correlation R between the structural connectome and mean
functional connectome is 0.37, while the R for each individual
subject ranged from 0.18 to 0.32 with a mean of 0.24. The key
driver of low correlations between the two is evident from a
visual inspection of Figures 1A, 2C—lack of inter-hemispheric
connectivity in SC, which is prominently present in FC. The
regional adjacency matrix is shown alongside, and for reference
the set of inter-hemispheric connections between left-right
homologs is also shown. It is the inter-hemispheric connections
that are largely unobserved in SC, and these are the connections
whose addition in subsequent analysis have the highest chance of
improving the structure-function relationship.

In order to motivate the use of eigen mapping between SC
and FC, we show in Figure 1D some examples of the relationship
between Laplacian eigenvalues and the projections onto FC given
by UFUH . It may be noted that while at the level of mean FC
the relationship is roughly monotonic and well-described by the
exponential decay function, this is not so at individual subjects
level. In those cases, some small λi deviate from the exponential,
and in those cases the exponential relationship would greatly
over-estimate the corresponding entry in FC. To overcome this
issue we propose the use of Gamma function as a parsimonious
mapping between the eigenvalues. An example of the Gamma
function on real structure-function pairs is provided in the
figure panel for comparison, along with the previous exponential
relationship. The width of the Gamma function is given by the
model parameter γ , and it serves to control the range of Laplacian
eigenvalues to include in the model.

3.1. Performance of Gamma and Eigen
Decomposition Models
The performance for both the previous eigen model and the
proposed Gamma model on our main UCSF dataset were
thoroughly evaluated using the stated performance metric
Pearson’s R. The results of the Gamma model are shown in
Figure 2, and of the exponential model in Figure 3. The gamma
model yields an R range of 0.22–0.42 with a mean of 0.30
(Figure 2A). The fitted γ parameter ranged between 0.16 and
0.27 with a mean of 0.22 (Figure 2B). The eigen model yields
an R range of 0.22–0.40 with a mean of 0.28 (Figure 3A).
Parameter a ranged between 0.10 and 0.34 with a mean of 0.11.
Parameter α ranged between 0.18 and 2.64 with a mean of 0.99.
Parameter b ranged between −0.14 and 0.001 with a mean of
−0.04 (Figure 3B).

When comparing the two models, several aspects are
evident. First, both produce comparable results, which are also
comparable to prior published results using similar approaches
(Abdelnour et al., 2018). However, the second aspect is that the
Gamma model has somewhat higher performance. To test this
statistically we performed a Fisher’s R-to-z transform, followed
by a student’s t-test. The R scores produced by the two models
are significantly different, with a p-value of 1.52e-34 and a t
statistic of 20.86 as determined by the two-sided t-test. Third, the

improvement in the Gamma model came despite fewer model
parameters to be inferred—γ compared to {a,α, b}. Fourth, it
may be noted that the inferred parameter distribution of γ is
much tighter than that of the exponential model parameters, in
terms of coefficient of variation. This implies that the Gamma
model has a higher chance of fitting to and correctly predicting
unseen cases.

3.2. Addition of Adjacent and
Interhemispheric Connections
All three structural connectivity networks discussed are shown
in Figure 1. The structural connectome shown in Figure 1A can
be thought of as a base to which the adjacency matrix and the
interhemispheric matrix were added with varying weights. As
shown in Figure 4, adjacency matrix had a modest impact on
the R score. When applied to all subjects individually, the mean
improvement gleaned from the addition of the adjacency matrix
was 0.01. The weighting factor for which the model achieved
the best R score for individual subjects ranged between 0 and
1 (Figure 4A). Model performance using the mean functional
connectome ranged between 0.47 and 0.48 over all weights, with
a peak R score at a weight of 0.26 (Figure 4B). The R between the
adjacency matrix and FC is 0.31, and the R between the adjacency
matrix and SC is 0.74. This high correlation is a likely reason
for the modest impact of adding one to the other; the adjacency
matrix adds little new information.

Adding the interhemispheric matrix had a more substantial
impact. For individual subjects, the mean improvement was 0.12.
Optimal weighting factors for interhemispheric matrix addition
ranged between 0.38 and 0.53 (Figure 5A) for individual subjects.
At the mean level, the peak R score of 0.66 occurred at a weight
of 0.37 (Figure 5B). The R between the interhemispheric matrix
and FC is 0.40, and the R between the interhemispheric matrix
and SC is 0.06.

Figure 6 shows the results of applying the Gamma model to
all subjects using an “optimal” structural connectome comprised
of the original structural connectome template and both the
adjacency and interhemispheric matrices added with a weighting
factor of 0.3. R values range between 0.31 and 0.58 with a
mean of 0.42 (Figure 6A). These R values were compared to
those obtained without including local and interhemispheric
connections by applying the two-sided t-test to the results of a
Fisher’s R-to-z transform as previously described. The results are
statistically significant with a p value of 8.26e-61 and a t statistic
of −46.62. The fitted γ parameter ranged between 0.10 and 0.21
with a mean of 0.16 (Figure 6B).

3.3. Application to Early Schizophrenia
Subjects
We investigated the structure-function model as a potential
biomarker for schizophrenia by applying the Gamma model
to the functional data from schizophrenia subjects. The results
we report in Figure 7 yield from using the “optimal” structural
connectome including both A and I with a weighting of
0.3. We found no significant differences between R score or
model parameters between the healthy and schizophrenia subject
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FIGURE 2 | Gamma model performance. (A) Histogram of R score. (B) Histogram of fitted parameter. (C) Mean functional connectome over all subjects. (D) Mean

functional connectome predicted by model.

FIGURE 3 | Eigen model performance. (A) Histogram of R score. (B) Histogram of fitted parameters. (C) Mean functional connectome over all subjects. (D) Mean

functional connectome predicted by model.
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FIGURE 4 | Plot of R vs. weighting factor as adjacency matrix is added to SC. (A) R vs. weighting factor for all subjects, with each line representing an individual

subject. (B) Model performance for the mean functional connectome. Dotted line indicates raw correlation between functional connectome and interhemispheric

matrix. Dashed line indicates correlation between functional connectome and structural connectome.

FIGURE 5 | Plot of R vs. weighting factor as interhemispheric matrix is added to SC. (A) R vs. weighting factor for all subjects, with each line representing an

individual subject. (B) Model performance for the mean functional connectome. Dotted line indicates raw correlation between functional connectome and

interhemispheric matrix. Dashed line indicates correlation between functional connectome and structural connectome.

groups. Mean R score for ESZ subjects is 0.41, and mean
gamma value is 0.16. These results support the notion that the
relationship between structural and functional eigenmodes is
similar in both disease and healthy populations, as was previously
reported in epilepsy subjects (Abdelnour et al., 2021).

3.4. Results From Additional Cohort
We repeated the analysis on an openly available data set
comprised of structural and functional connectomes from 70
healthy subjects (Griffa et al., 2019). Two subjects were excluded
due to data quality issues. These results can be found in
Supplementary Figures 1–6. These data only included the 68
cortical regions of the Desikan-Killiany atlas, allowing us to
investigate if any of our results were driven by subcortical
regions. Additionally, as a structural connectome was provided
for each subject, we were able to investigate the differences in
model performance when using subject-specific structural data
as opposed to one derived from averaging across subjects. Both

models performed similarly on these data, with a mean R of 0.28
for both across all subjects. The addition of both the adjacency
and interhemispheric matrices provided an improvement in
model performance, with the interhemispheric matrix addition
having a more substantial impact. A notable difference is
that, for this data, plots of R vs. weighting factor for the
mean connectomes indicate a monotonic increase, with the
optimal weights for both adjacency and interhemispheric matrix
addition near 1.

3.5. Investigation of Gamma Model
Parameters
We provide rationale for model parameter choices by repeating
our analysis while varying the gamma shape parameter k
(Supplementary Figure 7) and the regularization parameter
ǫ (Supplementary Figure 8). Changing both values has little
impact on model performance.
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FIGURE 6 | Model performance when using structural connectome comprised of original SC, adjacency matrix, and interhemispheric matrix. (A) Histogram of R

scores. (B) Histogram of fitted parameter. (C) Optimal structural connectome. (D) Mean functional connectome across healthy subjects. (E) Mean model-predicted

functional connectome.

FIGURE 7 | Comparison of model performance for healthy controls and early schizophrenia subjects shows no significant differences. (A) Boxplot of R between true

and predicted FC. (B) Boxplot of fitted model parameter.

3.6. Robustness to Noise
We investigated the impact of noise on model performance
by applying the gamma model to mean FC and SC
after adding varying levels of random noise to the SC
(Supplementary Figure 9). Noise was added at a range of
signal-to-noise ratios (SNR) between 0.01 and 100, and the
analysis was repeated 100 times. We show stable model

performance at an R of 0.47 above an SNR value of 1. At the
lowest SNR of 0.01, we show a mean R-value of 0.31± 0.0079.

3.7. Impact of Connectome Resolution
We investigated the impact of matrix resolution by repeating
our analyses on reformatted versions of the supplemental
dataset described above. These data are available in five
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different parcellation scales by subdividing the regions defined
by the Desikan atlas into smaller equally-spaced subregions, as
described in Cammoun et al. (2012). We report the results of
these studies in Supplementary Figures 10–13 for two different
matrix sizes, one with 219 regions and one with 1,000 regions.
We were not able to generate adjacency matrices for these
data, but we do not consider this a large pitfall considering
the modest effect of adjacency matrix addition demonstrated in
other experiments. Model performance is slightly lower for 219
regions than for the original 68, and lower still for 1,000-node
connectomes. We hypothesize that smaller parcels introduce
noise and other errors in the connectomes, which may explain
why poorer fits were observed. The addition of interhemispheric
connections improved model fits at both resolutions.

4. DISCUSSION

4.1. Summary of Key Results
This work presents two substantial contributions to the eigen
mapping method of relating brain structure and function.
First, we propose a model that produces reliable recreations
of functional networks by mapping structural Laplacian
eigenmodes to functional ones using the well-known Gamma
function. This method performs as well as previous linear
models of a similar nature and requires only one parameter.
The models explored in this study are based on previous work
that assume that functional connectivity patterns arise as the
result of neural activity spreading over the structural network
(Abdelnour et al., 2014, 2018). Second, we attempt to account for
network paths often excluded from graph representations of the
structural connectome and provide evidence of interhemispheric
connectivity playing a crucial role in driving the structure-
function relationship. Finally, we applied the method to multiple
datasets of varying connectome sizes, noise levels, and disease
conditions. Our results on the schizophrenia cohort in particular
support the notion that the relationship between structural
and functional eigenmodes is similar in both disease and
healthy populations, as was previously reported in epilepsy
subjects (Abdelnour et al., 2021). However, considering the well-
documented differences in structural and functional connectivity
seen in schizophrenia (e.g., Fornito et al., 2012; Van Den Heuvel
and Fornito, 2014), a more thorough investigation of the
structure-function relationship in schizophrenia subjects using
personalized structural connectomes would be enlightening. At
this stage it is not clear whether fitted parameters of a SC-FC
model may be profitably employed as biomarkers of disease.

4.2. The Shape of SC-FC Eigen
Relationship
The base model used in this study is the exponential structure-
function relationship suggested by Abdelnour et al. (2018). This is
not merely a statistical observation but was shown by Abdelnour
et al. (2018) to arise from a simple diffusive spread of functional
activity along the SC. Mathematically, the diffusion kernel on a
graph involves a matrix exponential. This interpretation is not
novel; in fact an explicit network diffusion model for SC-FC was
also proposed by our group earlier, which also led to a similar
eigen relationship (Abdelnour et al., 2014).

Thus, a spectral graph theory of brain FC is emerging (Huang
et al., 2018; Medaglia et al., 2018; Raj et al., 2020), whereby
the eigenmodes of structural and functional connectivity are
intimately related. The precise nature of the eigen relationship
is however an open question; while early proponents argued
in favor of exponential relationship (e.g., Abdelnour et al.,
2018), more recent work has explored matrix inversion (Saggio
et al., 2016) or power relationships with both negative and
positive powers (Liégeois et al., 2020). Others have reported more
flexible polynomial relationships with higher degrees of freedom
(Meier et al., 2016; Liang and Wang, 2017; Becker et al., 2018;
Deslauriers-Gauthier et al., 2020); these latter models may be
considered to arise from higher order walks on the SC graph.

The first key contribution of the current proposal, the use of
the Gamma function, is along these lines. The key motivation
behind Gamma is the desirability and need for a non-monotonic
relationship with as few parameters as possible. Gamma with
k = 2 is perhaps the most obvious such choice. The precise shape
is less important (see Supplementary Information for k > 2)
but it is important to suppress the first few (highest) functional
eigenvalues. The reasons for this have been addressed earlier;
in a nutshell the deviations from exponential fits of the early
eigenvalues are likely due to global signal in FC and under-
estimation of interhemispheric connections in SC. The Gamma
function demonstrates a better ability than the exponential to
select various regions of the Laplacian eigenspectrum. Its width
γ serves to control the range of Laplacian eigenvalues to include
in the model. The difference from the exponential model is
that the Gamma model no longer has a simple interpretation
as a passive diffusive process, which the exponential model
did. Notably, while the best results of the previous work were
reported after excluding the first two structural eigenvalues
when predicting the full network (Abdelnour et al., 2018), we
used all eigenvalues in the results presented here and did not
find significantly different results when restricting the range
of eigenvalues experimentally—clearly the Gamma serves to
suppress those problematic eigenvectors. Based on the higher
R statistics and narrower distribution of parameter fits shown
above, we conjecture that the Gamma model has a higher chance
of fitting to and correctly predicting unseen cases.

However, there may be other aspects behind Gamma’s
improvement—in general non-exponential eigen relationships
may reflect higher order walks on the structural graph. In future
work it would be interesting to explore the trade-off between
parsimony (e.g., Gamma) or flexibility (e.g., series expansion). As
indicated by Liang andWang (2017), series expansion with up to
a power of five improves greatly upon just a linear relationship.
Perhaps a Gamma-style parametrization can achieve higher-
order walks with far fewer parameters than the series expansion
or polynomial approaches above.

4.3. Incorporating Latent Structural
Connections
The second key contribution of this study is to investigate
how the incorporation of biologically relevant information
about latent structural connections would impact the accuracy
of linear structure-function models. Hence, it could be that
conventional structural connectivity methods do not account
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for all structural network paths. Structural connectivity matrices
are usually derived from DWI, which can only measure long,
myelinated axons, representing just one part of the brain’s
structural network. Growing evidence suggests that local fiber
networks within and between cortical layers play just as crucial
a role in shaping functional connectivity as long-range white
matter connections (Naze et al., 2020). However, these networks
are largely excluded from current DTI postprocessing methods.
Connections within gray matter exhibit a lower FA signal due
to their lack of myelination and are difficult to discriminate at
average MRI spatial resolutions, as a single gray matter voxel will
usually contain many overlapping fibers (Leuze et al., 2014). The
lack of an in vivo imaging method for quantifying intracortical
connections presents a significant challenge when trying to
construct a complete network representation of the human
brain. One alternative solution is to use cortical volume data
to approximate intracortical connectivity strength. Building on
the method introduced in Atasoy et al. (2016), we incorporated
cortical surface regions into the structural connectome and
weighed the adjacency of two neighboring regions proportionally
to the surface area of the boundary between them.

Accounting for interhemispheric connectivity is yet another
challenge presented when modeling the brain’s function from
the underlying structure. Most functional networks involve both
brain hemispheres and exhibit a high degree of symmetry (Stark
et al., 2008; Owen et al., 2013b), indicating the presence of a
robust pathway enabling interhemispheric synchrony. Within
the human brain, most interhemispheric fibers are contained
in the corpus callosum, a densely packed structure containing
both myelinated and unmyelinated fibers with varying diameters
terminating in a wide range of cortical regions (Fabri et al.,
2014). Given its complexity, it is likely that callosal fibers
are underestimated by current DTI quantification methods.
Moreover, the presence of bilateral connectivity patterns in
individuals without this structure suggests the existence of yet
other sources of interhemispheric integration (Uddin et al.,
2008; Tyszka et al., 2011; Owen et al., 2013b). Human
and macaque studies have suggested that, in the absence
of corpus callosum, smaller commissural fiber bundles such
as the anterior or posterior commissure are sufficient in
preserving interhemispheric functional connectivity (Uddin
et al., 2008; O’Reilly et al., 2013; Uddin, 2013). Another possible
factor driving interhemispheric synchrony is the existence of
subcortical inputs such as the brainstem (Uddin, 2013). One
study showed significant attenuation of bilateral functional
connectivity in a patient with brainstem ischaemia, underscoring
the possibility that subcortical structures play an important role
in coordinating neural activity in both hemispheres. Imaging the
brainstem is a difficult task, as it is obscured by major arteries
and other sources of noise (Beissner et al., 2011; Brooks et al.,
2013), although recent develops in mapping brainstem structural
connectivity make this an exciting area of future research (Meola
et al., 2016; Zhang et al., 2020).

Our study demonstrates the effect of adding these latent
connections. Interestingly, introducing an adjacency matrix had
a modest impact on the R score. We speculate the reason for
this modest improvement is that adjacency is closely related to

structural connectivity (R = 0.74). Thus, adding the adjacency
matrix adds little new information. However, it would be
interesting to repeat this analysis using subject-specific structural
connectomes and adjacency matrices.

Adding the interhemispheric matrix had a more substantial
impact. For individual subjects, the mean improvement was
a highly significant 0.12. It is clear that interhemispheric
connections are highly relevant for FC (they have a correlation
of 0.40) but are just not present in SC (correlation of 0.06). One
may speculate as to whether the addition of these connections
compensates for the underestimation of true interhemispheric
structural connectivity or acts as a proxy for subcortical inputs
and other indirect connections (Honey et al., 2009). Regardless,
the fact that our SC-FC model shows a dramatic improvement
with this addition suggests that this is an indispensable feature
that future models of structure-function must tackle. It also
highlights the role of left-right correlated sources—an aspect that
is currently missing from graph models. Indeed, these correlated
sources cannot be ignored even in studies of resting state. Finally,
we may speculate that our work can in future studies be used to
“invert” the model and infer missing connections that contribute
to FC but are missing in SC. Although our current results
provide a step in that direction, a comprehensive approach would
require additional sparsity constraints and a proper Bayesian
inference algorithm.

4.4. Study Limitations
As previously noted, one limitation of this work is the use
of a template structural connectome and adjacency matrix.
While this allows for higher interpretability, a future direction
of this work would involve repeating these analyses with
all subject-specific data. This would be especially interesting
in clinical applications where subjects may exhibit different
structural or functional properties. Another direction of future
research would involve a more thorough investigation of the
interhemispheric connections and their impact on generating
functional connectivity, perhaps varying the weights by region.
Although previous studies indicate robustness of the structure-
function model to changes in the processing pipeline (e.g.,
Deslauriers-Gauthier et al., 2020), it would be useful to
investigate the impact of using different DWI generation
techniques and finer-grained parcellation schemes. We also hope
to apply these findings to a dynamic functional connectivity
analysis in the future. We additionally acknowledge that the
current work does not constitute a predictive model, though it
is a step in that direction.
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