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Abstract: De novo variants (DNVs) are critical to the treatment of neurodevelopmental disorders
(NDDs). However, effectively identifying candidate genes in small cohorts is challenging in most
NDDs because of high genetic heterogeneity. We hypothesised that integrating DNVs from multiple
NDDs with genetic similarity can significantly increase the possibility of prioritising the candidate
gene. We catalogued 66,186 coding DNVs in 50,028 individuals with nine types of NDDs in cohorts
with sizes spanning from 118 to 31,260 from Gene4Denovo database to validate this hypothesis.
Interestingly, we found that integrated DNVs can effectively increase the number of prioritised
candidate genes for each disorder. We identified 654 candidate genes including 481 shared candidate
genes carrying putative functional variants in at least two disorders. Notably, 13.51% (65/481)
of shared candidate genes were prioritised only via integrated analysis including 44.62% (29/65)
genes validated in recent large cohort studies. Moreover, we estimated that more novel candidate
genes will be prioritised with the increase in cohort size, in particular for some disorders with high
putative functional DNVs per individual. In conclusion, integrated DNVs may increase the power of
prioritising candidate genes, which is important for NDDs with small cohort size.

Keywords: neurodevelopmental disorder; de novo variant; candidate gene

1. Introduction

Neurodevelopmental disorders (NDDs) are disorders with high clinical heterogeneity,
leading to considerable personal suffering, morbidity, and disability, which also increase
the burden of global healthcare [1]. NDDs, including autism spectrum disorder (ASD),
congenital heart disease (CHD), developmental disorders/intellectual disability (DD/ID),
epileptic encephalopathy (EE), and schizophrenia (SCZ), are diagnosed following clinical
practise guidelines created by practiced experts based on symptoms and signs. However,
the diagnosis does not follow a uniform biological framework, which leads to the clinical
heterogeneity and overlap between different kinds of NDDs. According to previous studies,
almost 26% of patients with ASD, DD, or ID, presented with the clinical phenotypes
of EE [2]. Additionally, patients with CHD were reported to share significant clinical
features [3,4] and genetic components with those with other NDDs [5]; 10% of CHD
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cases and 50% of severe CHD cases have a similar clinical phenotype to those with other
NDDs [6].

With the development of next-generation sequencing technologies, genetic disruptions
have been identified as the major reasons for NDDs, especially for de novo variants (DNVs)
with important functional effects contributing to early NDDs. Candidate genes in ASD [7],
CHD [8], DD [9], EE [10], ID [11], and SCZ [12] were detected and prioritised successfully
using whole-exome sequencing (WES) or whole-genome sequencing (WGS) in recent
studies. For instance, due to strong functional effects of DNVs, CHD8 [13] was found
to be associated with ASD, ID, sleeping problems, macrocephaly, and gastrointestinal
symptoms, while DYRK1A [14] is associated with ID, microcephaly, and febrile seizures
infancy. However, for most NDDs, only several candidate genes have been identified
based on DNVs due to genetic heterogeneity, rarity DNVs, limited cohort size, and small
gene-level relative risks. This genotype-phenotype association method was validated in
our studies based on GeneMatcher [15–17]. To prioritise additional candidate genes, detect
DNVs in specific genes, and perform genotype–phenotype analysis, as well as statistical
burden analysis, large cohort size is required. However, sequencing new patients with
NDDs requires time and funds, which is not the optimal choice. Another method is to
integrate DNVs from multiple NDDs with phenotypic similarities to increase the statistical
power of candidate gene discovery, which has been validated recently [18–20].

In this study, we aimed to validate the performance of cross-disorder analysis in
prioritising candidate genes. We catalogued DNVs in 50,028 individuals with nine types of
NDDs that had clinical and genetic similarities. Our results demonstrated that integrating
DNVs of different disorders effectively increased the number of prioritised candidate genes.
All novel candidate genes shared putative functional variants with more than one disorder.
Moreover, we found that both gene-level relative risks and cohort size were the major
contributors to candidate gene prioritisation.

2. Materials and Methods
2.1. Data Collection and Annotation

We collected DNVs detected using WGS or WES in 48 published studies (Table S1).
The redundant DNVs were removed based on the description of these studies. We focused
on DNVs in nine kinds of NDDs with cohort sizes spanning from 118 to 31,260, including
ASD, SCZ, EE, DD/ID, CHD, Tourette disorder (TD), bipolar disorder (BP), obsessive-
compulsive disorder (OCD), and complex motor stereotypies (CMS). ANNOVAR [21] and
VarCards [22] were used to annotate DNVs in the human reference genome (hg19). We
catalogued DNVs into five classes as follows: (1) Loss-of-function (LoF) variant including
splicing (≤2 bp), stopgain, and stoploss SNVs, and frameshift indels; (2) deleterious
missense (Dmis) variant; (3) tolerant missense (Tmis) variant; (4) synonymous (Syn) variant;
(5) non-frameshift indels (NF) variant. We used ReVe [23] to predict Dmis/Tmis variants.
Both LoF and Dmis variants were defined as putative functional (Pfun) variants. All these
variants are available in our Gene4Denovo database [24].

2.2. Overlap of Genes across NDDs Based on De Novo Variants

To test genetic similarities among different NDDs, we used DNENRICH [12,25] soft-
ware, taking gene size, structure, and local trinucleotide variant rate into consideration to
test whether one specific kind of DNVs was significantly shared between any two NDDs.
We focused on LoF, Dmis, and Pfun, which increase the genetic risk of NDDs. For this
test, we counted the variant number of each gene in each disorder and then calculated the
number of overlapping variants between any two disorder. Based on the observed number
of variants for each disorder, we randomly selected the matching gene number from all
human genes and calculated the expected genetic overlap between any two disorders. Per-
mutation tests were performed to estimate genetic similarity. Details of this method can be
found at https://fromem03.u.hpc.mssm.edu/dnenrich/ (accessed on 25 September 2018).

https://fromem03.u.hpc.mssm.edu/dnenrich/
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2.3. Candidate Genes Prioritization Based on TADA

We next performed transmitted and de novo association (TADA) analysis [26,27]
to prioritize candidate genes. In this study, we used TADA-Denovo which identified
candidate genes only based on DNMs. TADA-Denovo is a Bayesian model which used
observed Pfun DNVs including LoF and deleterious missense variant and expected de
novo mutation rate to prioritised candidate gene of disease. Genes carrying significant
more Pfun DNVs than expectation were defined as candidate genes. In the first strategy, we
counted LoF and Dmis DNVs number in each disorder and performed TADA to calculate
the false discovery rate (FDR) for each gene. In the second strategy, LoF and Dmis DNVs
in each gene of all NDDs were counted to perform TADA analysis based on the shared
genetic components of NDDs. Genes with FDR < 0.05 in these two strategies were defined
as candidate genes. Genes carrying Pfun DNVs in more than one disorder were defined as
shared genes, and those carrying DNVs in only one disorder were defined as unique genes.

2.4. Predicted Gene Discovery Rate

To determine gene discovery rate of each disorder in increased sample size, we
sampled (with replacement) populations of 500, 1000, 2000, 4000, 8000, 16,000, and 32,000
cases, and performed TADA analysis to prioritise candidate genes. As TADA only considers
Pfun (LoF and Dmis), we used Pfun per individual of each disorder and the sampling
number to calculate Pfun DNVs and then performed TADA analysis. The number of genes
with FDR < 0.05 of each prediction was counted.

2.5. Statistical Analysis

We performed statistical analyses by using R software (v3.5.0) and Linux system
(vCentOS 7.1). The R code are available in supplementary file and related input files are
available from the corresponding author on reasonable request. The genetic similarity
between any two NDDs were performed by DNENRICH software (v1.0). TADA software
was used to prioritize candidate gene. p-value or FDR in method less than 0.05 were
defined as statistically significant. The detail information of two statistical methods were
as follows:

DNENRICH (https://fromem03.u.hpc.mssm.edu/dnenrich/) (accessed on 25 Septem-
ber 2018).

TADA (http://www.compgen.pitt.edu/TADA/TADA_guide.html) (accessed on 1 Septem-
ber 2020).

3. Results

We curated a total of 348,812 DNVs from 50,028 patients with nine kinds of NDDs with
varying sample sizes as reported in 48 published studies (Table 1; Table S1). The DD/ID
(n = 31,260) accounted for the highest proportion of NDDs in this study and included the
highest number of trios based on a WES study to detect coding DNVs (n = 44,825) in NDDs.
ASD (n = 10,318), SCZ (n = 3402), CHD (n = 2645), EE (n = 973), and TD (n = 909) were also
major NDDs in the identification of candidate genes based on DNVs. However, there was
only a small number of patients with BP (n = 219), OCD (n = 118), and CMS (n = 184). In
addition, we also found significant Pfun enrichment in NDDs, which were not associated
with the sample size (Table 1). DD/ID, OCD, and EE exhibited the most DNVs enrichment,
revealing 0.60, 0.58, and 0.55 Pfun DNVs per patient, respectively. Whereas ASD, CHD,
SCZ, and TD showed 0.40, 0.39, 0.32, and 0.31 Pfun DNVs per patient, respectively, and
exhibited lower DNV enrichment followed by BP (0.25) and CMS (0.21) (Table 1).

https://fromem03.u.hpc.mssm.edu/dnenrich/
http://www.compgen.pitt.edu/TADA/TADA_guide.html
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Table 1. Summary of collected DNVs in neurodevelopmental disorders.

Phenotypes Study Trios DNVs Coding DNVs PTVs Dmis Pfun Pfun per Individual

ASD 14 10,318 287,444 12,141 1580 2507 4087 0.40
SCZa 11 3402 3422 3357 358 716 1074 0.32

EE 9 973 1248 1191 170 364 534 0.55
DD/ID 6 31,260 45,541 44,825 7078 11,683 18,761 0.60
CHD 1 2645 2990 2981 369 654 1023 0.39
TD 3 909 842 818 85 199 284 0.31
BPa 3 219 6995 199 34 21 55 0.25

OCD 1 118 134 128 48 20 68 0.58
CMS 1 184 205 198 27 12 39 0.21

ASD, autism spectrum disorder; SCZ, schizophrenia; EE, epileptic encephalopathy; DD/ID, developmental disorders/intellectual disability;
CHD, congenital heart disease, TD, tourette disorder; BP, bipolar disorder; OCD, obsessive-compulsive disorder; CMS, complex motor
stereotypies; DNVs, de novo variants; PTVs, protein-truncating variants; Dmis, deleterious missense variant; Pfun, putative functional
variant, combining PTVs and Dmis. a, several patients with SCZ/BP come from one study.

As LoF, Dmis and Pfun contributed to the formation of NDDs, we explored genetic
similarities between any two NDDs using these two kinds of DNVs based on DNENRICH.
As nine kinds of NDDs were involved in the genetic similarity analysis, we performed
36 (9 × 8/2) tests. We found that most NDDs showed similar genetic components with
others in Dmis, LoF, and Pfun, in particular for ASD and DD/ID. ASD exhibited significant
genetic similarity (p < 0.05) with 7/8, 7/8, and 8/8 of other NDDs in Dmis, LoF, and Pfun,
respectively (Figure 1). DD/ID exhibited significant genetic similarity (p < 0.05) with 6/8
of other NDDs in Dmis, LoF, and Pfun, respectively (Figure 1). We did not find statistically
significant genetic overlapping among NDDs in 44.44% (16/36), 55.56% (20/36), and 41.67%
(15/36) of Dmis-, LoF-, and Pfun-based comparisons, respectively, which might be due
to genetic heterogeneity, limited cohort size, or small gene-level relative risks, but 94.4%
(34/36) of observed genetic overlapping was high than expected (OE > 1) (Figure 1).
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Figure 1. Genetic similarity between different neurodevelopmental disorders. Genetic similarity among disorders were
performed based on three classes of variants include LoF, Dmis and Pfun. OE, ratio of observed to expected numbers of
shared genes. Solid and coloured circle indicate OE greater than 1 and p value less than 0.05. Solid circle with no colour
indicate OE greater than 1 but p value great than 0.05. Solid circle with no colour indicate OE greater than 1. Hollow circle
indicate that OE less than 1. Dmis, Deleterious missense variants; LoF, loss of function. LoF include frameshift, stoploss and
stopgain, splicing variants. Pfun, Putative functional variants, including Dmis and LoF variants. p value was calculated
by using DNENRICH software (v1.0). ASD, autism spectrum disorder; SCZ, schizophrenia; EE, epileptic encephalopathy;
DD/ID, developmental disorders/intellectual disability; CHD, congenital heart disease, TD, Tourette disorder; BP, bipolar
disorder; OCD, obsessive-compulsive disorder; CMS, complex motor stereotypies.
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Based on the TADA analysis of Pfun DNVs in nine NDDs, we prioritised 589 candidate
genes (FDR < 0.05), containing 104, 8, 24, 527, 22, and 1 genes in ASD, SCZ, EE, DD/ID,
CHD, and CMS, respectively (Table 2; Table S2). Due to the smaller number of sample
size and low contribution of DNVs, we did not prioritise any candidate gene in TD, BP,
and OCD based on DNVs in single disorder. Since most NDDs exhibited more genetic
similarities than expected (OE > 1), we integrated Pfun DNVs to all NDDs and performed
TADA analysis. We prioritised a total of 523 candidate genes with FDR < 0.05, including
65 novel genes that were not included in the above 589 genes (Table S2). Genes carrying
putative functional DNVs in a specific disorder, which passed each FDR threshold in
the integration analysis was defined as a candidate gene of this disorder. We found that
integrated DNVs increased the number of prioritised candidate genes for each disorder
from 5 to 258, in particular for disorders that exhibited more genetic overlapping with
integrated DNVs or those with large sample size. This was observed in ASD (n = 10,318,
p-value = 1.00 × 10−4, OE = 3.72), SCZ (n = 3402, p-value = 1.00 × 10−4, OE = 1.67), EE
(n = 973, p-value = 1.00 × 10−4, OE = 6.54), and CHD (n = 2645, p-value = 1.00 × 10−4,
OE = 2.84). Moreover, we prioritised putative candidate genes of NDDs with a small
cohort size, including TD, OCD, CMS, and BP. For TD and OCD, we prioritised 28 and
14 novel candidate genes, respectively, compared with zero in a single disorder-based
analysis. These two disorders exhibited relatively more genetic similarities with other
NDDs and allowed us to prioritise more candidate genes. For CMS and BP, we prioritised
nine and five novel candidate genes, respectively, compared with one and zero in a single
disorder-based analysis.

We prioritised a total of 654 candidate genes with FDR < 0.05 (Table 3; Table S2).
Based on the strength of the statistical evidence, we ranked candidate genes into four
ranks as follows: Rank 1 (FDR ≤ 0.0001, n = 316); rank 2 (0.0001 < FDR < 0.001, n = 60);
rank 3 (0.001 < FDR < 0.01, n = 101); and rank 4 (0.01 < FDR < 0.05, n = 177). Moreover,
based on the number of disorders carrying Pfun DNVs of a specific gene, we identified six
groups of candidate genes. Precisely 26.45% (173/654) of candidate genes showed Pfun
DNMs in only one disorder and 36.54% (239/654), 25.54% (167/654), 9.02% (59/654),
1.99% (13/654), and 0.46% (3/654) of candidate genes showed Pfun DNMs in two,
three, four, five, and six disorders, respectively (Table 3). For example, CACNA1E
(FDR = 1.00 × 10−11), KMT2C (FDR = 6.31 × 10−15), and KDM5B (FDR < 2.00 × 10−18)
showed Pfun in six NDDs. Integrated analysis prioritised 65 novel candidate genes
compared to a single disorder-based analysis and all showed Pfun DNVs in more
than one disorder (Table S2). To validate these novel candidate genes, we compared
them with previously identified candidate genes of NDDs [20,28–32]. In addition, the
gene with an expression value > 1 read per kilobase per million map reads in > 50%
human brain samples or in >50% human foetal brain samples were defined as a gene
expressed in the brain using the BrainSpan database. We found that 44.62% (29/65) of
novel candidate genes were reported previously [20,28,29,31–33]. Moreover, we used
the probability of loss-of-function intolerance (pLI) > 0.9 to filter candidate genes and
55.18% (16/29) passed this threshold, including SPRY2, PSMD12, RALA, CIC, ATP1A1,
ZMYND8, BHLHE40, NR6A1, RYR2, GGNBP2, EIF4A2, RAB11A, CTR9, RAB2A, UPF3B,
and KCNC1. We did not identify additional 55.38% (36/65) novel genes in previous
studies [20,28,29,31–33]; however, we identified 30.56% (11/36) of the genes with a
pLI > 0.9, including RNF220, AP1G1, TRIM8, LHX2, CRIM1, UBR3, RPSA, WDR20,
SUFU, PHEX, and KPNA1.
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Table 2. Comparison of prioritised candidate gene number by integrated analysis based on mutation type.

Disorders (N) Genetic Similarity Category Type FDR < 0.0001 0.0001 < FDR
< 0.001

0.001 <
FDR < 0.01

0.01 < FDR
< 0.05

p-Value OE

ASD (10,318) 1.00 × 10−4 3.72 Before 24 7 23 50

After
Pfun 229 31 47 55
LoF 141 16 24 30

Dmis 175 21 31 33
SCZ (3402) 1.00 × 10−4 1.67 Before 0 0 3 5

After
Pfun 68 9 17 18
LoF 29 1 8 13

Dmis 47 9 11 6
EE (973) 1.00 × 10−4 6.54 Before 7 4 5 8

After
Pfun 87 6 10 6
LoF 38 1 9 2

Dmis 58 5 1 5
DD/ID
(31,260) 1.00 × 10−4 6.80 Before 278 53 81 115

After
Pfun 287 56 79 96
LoF 237 46 64 65

Dmis 267 50 70 73
CHD (2645) 1.00 × 10−4 2.84 Before 3 3 4 12

After
Pfun 78 14 16 20
LoF 45 6 8 14

Dmis 46 8 11 10
TD (909) 1.00 × 10−4 2.02 Before 0 0 0 0

After
Pfun 21 1 6 0
LoF 7 0 2 0

Dmis 14 1 4 0
BP (219) 2.89 × 10−2 1.90 Before 0 0 0 0

After
Pfun 3 1 1 0
LoF 2 0 0 0

Dmis 2 1 1 0
OCD (118) 2.00 × 10−4 3.20 Before 0 0 0 0

After
Pfun 10 1 3 0
LoF 2 0 0 0

Dmis 9 1 3 0
CMS (184) 1.00 × 10−2 2.49 Before 0 0 0 1

After
Pfun 4 1 1 3
LoF 3 0 0 0

Dmis 1 1 1 3

ASD, autism spectrum disorder; SCZ, schizophrenia; DD/ID, developmental disorders/intellectual disability; CHD, congenital heart
disease; TD, Tourette disorder; BP, bipolar disorder; OCD, obsessive-compulsive disorder; CMS, complex motor stereotypies; Pfun, putative
functional variant; LoF, loss of function variant; Dmis, deleterious missense variant; Before, prioritised candidate gene base on putative
functional DNVs of specific disorder with FDR < 0.05; After, prioritised candidate gene base on the integration of DNVs in all disorders.
Gene carrying Pfun, LoF and Dmis in specific disorder and pass each FDR threshold in integration analysis was defined as candidate gene
of this disorder. OE, ratio of observed to expected numbers of shared genes with putative functional de novo variants.

To strengthen the evidence for candidate genes, we sourced them on a priority basis
from genome wide association studies (GWAS) of NDDs based on a threshold of p < 10–5
in GWAS Catalog database (https://www.ebi.ac.uk/gwas/ (accessed on 6 March 2021)).
We noted that 14.68% (96/654) of candidate genes that were associated with NDDs by
common SNPs (Table S2) which was significant than random expectation (Fisher’s exact
test, p = 0.023, OR = 1.29, 95% CI 1.03–1.61). This result provided bidirectional genetic
evidence for these genes.

Based on the existing DNVs, we projected the gene discovery rate in an increased
sample size. We sampled cohorts with 500, 1000, 2000, 4000, 8000, 16,000, and 32,000 sam-
ple sizes for each disorder and performed TADA analysis to prioritise candidate genes.
We found that the gene discovery rate rapidly increased with the increasing sample size

https://www.ebi.ac.uk/gwas/
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and then gradually reached a plateau for most NDDs (Figure 2). In addition, we found
that putative functional DNVs enrichment was positively correlated with candidate gene
discovery rate and negatively correlated with candidate gene discovery plateau. DD/ID,
OCD, and EE revealed 0.60, 0.58, and 0.55 putative functional DNVs per patient, respec-
tively, and prioritised more candidate genes with the same cohort size than other disorders.
We did not find a candidate gene discovery plateau in the cohort with 32,000 samples.
ASD, CHD, SCZ, TD, BP, and CMS exhibited low putative functional DNV enrichment,
revealing 0.40, 0.39, 0.32, 0.31, 0.25, and 0.21 Pfun DNVs per patient, respectively. These six
NDDs gradually reached a plateau with reduced putative functional DNVs enrichment.
For example, BP and CMS plateau in candidate genes were prioritised in the cohort with
16,000 samples.

Table 3. Candidate gene carrying putative functional variants in different number of disorders (FDR < 0.05).

Rank (FDR)
Unique

Disorders
n = 173, 26.45%

Two Disorders
n = 239, 36.54%

Three
Disorders

n = 167, 25.54%

Four Disorders
n = 59, 9.02%

Five Disorders
n = 13, 1.99%

Six Disorders
n = 3, 0.46%

[0, 0.0001)
(48.32%) 42 113 98 50 10 3

[0.0001, 0.001)
(9.17%) 14 26 18 2 0 0

[0.001, 0.01)
(15.44%) 31 41 21 6 2 0

[0.01, 0.05)
(27.06%) 86 59 30 1 1 0

Candidate genes are split into six parts based on the number of disorders with putative functional DNMs in specific gene. Unique genes
means gene only carry putative functional DNMs in one disorder. We ranked all candidate genes into four tiers based on the strength
of FDR.
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Figure 2. Projected gene discovery in larger cohort size. We assume the sample size were 500, 1000, 2000, 4000, 8000, 16,000,
and 32,000 for each disorder and sampling de novo variant from exist based on putative functional de novo variant rate per
individual. We then estimate the number of candidate gene for each disorders with FDR < 0.05 by transmitted and de novo
association (TADA) analysis. ASD, autism spectrum disorder; SCZ, schizophrenia; EE, epileptic encephalopathy; DD/ID,
developmental disorders/intellectual disability; CHD, congenital heart disease, TD, Tourette disorder; BP, bipolar disorder;
OCD, obsessive-compulsive disorder; CMS, complex motor stereotypies.
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4. Discussion

In this study, we tried to explore a new method to improve the effectiveness of NDD
candidate genes by integrating NDDs with similar clinical features. We observed that
DD/ID, OCD, and EE exhibited the most DNVs enrichment, revealing 0.60, 0.58, and 0.55
Pfun DNVs per patient, while BP exhibited 0.25 Pfun DNVs per patient, and CMS exhibited
0.21 Pfun DNVs per patient.

NDDs cause suffering, morbidity, and disability, with challenges in the diagnosis
and treatment, due to the high clinical heterogeneity within individual disorders [34].
Next-generation sequencing technologies have revealed that DNVs play an important role,
functionally contributing to the development of NDDs. However, the genetic heterogeneity,
rarity of DNVs, limited cohort size, and small gene-level relative risks, are major challenges
for identifying novel candidate genes, which might result in reduced effectiveness in
screening for disease-candidate genes [7–12]. Due to the limited cohort size, for CMS
(n = 184), only one candidate gene was prioritised and for BP (n = 219), OCD (n = 118), and
TD (n = 909) no candidate genes were prioritised in the single disease-based analysis. It is
laborious and costly to collect sufficient cohort information and genomic data, especially
for the NDDs with low incidence rates. Therefore, it is a great challenge to study NDDs
in-depth with small sample size.

Further analyses of genetic components in the present study showed that NDDs
presented similar genetic components in Dmis, LoF, and Pfun. We prioritised a total of 523
candidate genes, including 65 novel genes, which could not be screened by analysing a
single NDD. This suggested that integrated analyses could reveal potentially useful data
that single disorder-based analysis might have missed. By comparing our findings with
previously reported NDD candidate genes and analysing the expression of novel genes
using the BrainSpan database, we observed that 29 novel genes were expressed in the brain,
overlapping with known candidate genes. Exactly 16 out of 29 genes, including SPRY2,
PSMD12, RALA, CIC, ATP1A1, ZMYND8, BHLHE40, NR6A1, RYR2, GGNBP2, EIF4A2,
RAB11A, CTR9, RAB2A, UPF3B, and KCNC1 were more intolerant to LoF with a pLI > 0.9.
This suggested that the results of integrated analyses were highly reliable. In other 36 genes,
we detected that 11 genes with LoF, such as RNF220, AP1G1, TRIM8, LHX2, CRIM1, UBR3,
RPSA, WDR20, SUFU, PHEX, and KPNA1, were more likely to cause disease.

Compared with previous studies [20,28,29,31–33], the 11 genes have not been screened
out as the candidate genes of NDDs. Through literature research, we found that most
of the 11 novel genes were associated with NDDs. For instance, RNF220 contributes
to noradrenergic neuron development [35] and specifies spinal progenitor domains [36].
AP1G1 plays an important role in the PI3K/AKT pathway, which is not only associated with
cancers but also with megalencephaly [37], ASD [37,38], neurodevelopmental delay [39],
and other NDDs [40]. Both TRIM8 [41] and UBR3 can act on CTNNB1, which can promote
the Wnt signalling pathway. Notably, the Wnt signalling pathway is a classical neuron
development signalling pathway [42]. Meanwhile, TRIM8 [43] and RPSA [44] are also an
important regulators of the PI3K-AKT-mTOR signalling pathway, which is a developmental
disease-related signalling pathway [40]. LHX2 is a regulator of neural differentiation [45,46].
Furthermore, LHX2 controls cortical size by regulating the balance between proliferation
and differentiation in cortical progenitors [45]. Other novel genes identified in this study
are associated with cancer, such as WDR20 with medulloblastoma [47] and SUFU with
renal cell carcinoma [48,49]. We previously found that NDDs share a common genomic
basis with cancers [42]. Therefore, we hypothesised that these genes contribute effectively
to the development of NDDs.

Based on projection estimates, we found that gene discovery was affected by sample
size and DNV per individual for each disorder. These results were consistent with previous
studies. In our future studies, we will prioritise more novel candidate genes and strengthen
the genetic evidence of previous putative candidate genes with the increased sample size.
For example, Deciphering Developmental Disorders Study identified 94 candidate genes
in 4293 families [9] and 285 genes involved in developmental disorders in 31,058 parent-
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offspring trios [29]. DNVs are also significant influences for candidate gene discovery.
For example, based on the sampling method and hypothetical 3000 trios, about 200 high
confidence candidate gene (FDR < 0.1) and 300 probable candidate gene (FDR < 0.3) were
proposed for the OCD [50] but for the TD only about 25 high confidence candidate genes
(FDR < 0.1) and 80 probable candidate genes (FDR < 0.3) were discovered [51]. Moreover,
the degree of functional disruption of the variant can also influence the gene discovery rate.
Coe et al. found that gene discovery based on LoF and Dmis variants reaches a plateau and
may identify a few novel candidate genes. However, increased cohort size will probably
identify more novel candidate genes based on fewer severe de novo missense variants,
in particular, missense variant cluster in specific hotspot regions, which was not studied
previously [20].

DNVs contribute significant to NDDs and one single DNV might result in the for-
mation of NDDs. Previous studies also found than DNV exhibited potential cumulative
effect to NDDs which was defined as “oligogenic model” [52–54]. Du et al. found that the
number of patients with ASD carrying multiple extreme DNVs are significant more than
controls. In addition, they also found that patients with ASD carrying more than 2 DNVs
exhibited lower IQ than patients carrying 1 or 0 DNV [55]. This was consistent with another
study which found that patients with DD/ID carrying more DNVs than ASD [20]. Gifford
et al. found three missense variants contribute to heart disease [56]. These results indicated
that genes with deleterious variants in one patient might participate in common biological
pathway or one variant work as genetic modifier to other genes.

There are still some limitations to this study. First, the large difference in sample sizes
of different NDDs may lead to genetic statistical bias, although we statistically corrected
these. Second, only classical LoF including classical splicing, stopgain, and stoploss
SNVs, and frameshift indels were involved into conventional TADA analysis. Other kinds
of variants such as de novo cryptic splice variants predicted by SpliceAI [57], inframe
indels variants and small de novo CNV deletions (SmallDel) could also participate in the
formation of NDDs. For example, Ruzzo take SmallDel into adjusted TADA analysis [31].
Third, we used in silico tool to predicted missense variant and not all predicted deleterious
missense are pathogenic. The combined of multiple tools are useful to identify truly
positive candidate genes [58]. Fourth, the novel candidate genes screened in this study by
using bioinformatic tools and further functional experimental verification were necessary
to validate whether genes were involved in NDDs. Fifth, environmental factors are also
involved in the aetiology of NDDs. Combining environmental factors with genetic factors
in further research will improve the accuracy and efficiency of DNVs research.

5. Conclusions

Taken together, it is inferred from the existing evidence that 11 new candidate genes
are relatively reliable for further research. Integrated analysis can effectively improve
the candidate gene discovery rate in NDDs. This study provides a new idea for genetic
research of NDDs with insufficient samples.
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