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Regulation of dendritic cell function
improves survival in experimental sepsis
through immune chaperone

Pengfei Li1, Ran Zhao2, Kevin Fan2, Stephen Iwanowycz2,
Hongkuan Fan1, Zihai Li2 and Bei Liu2

Abstract

Dendritic cells (DCs) are professional Ag-presenting cells that play a critical role in both innate and adaptive immune

responses. DCs recognize and respond to bacteria through multiple PRRs, including TLRs. Heat shock protein gp96/

grp94 is a master essential chaperone for TLRs in the endoplasmic reticulum. We generated DC-specific gp96-knockout

(KO) mice and showed that gp96 KO DCs were unable to respond to multiple TLR ligands. TLR-mediated hyper-

inflammatory response can lead to sepsis. However, the roles of neither DCs nor the DC-intrinsic gp96 in the process

are completely understood. In a LPS-induced sepsis model, we hereby found that deletion of gp96 in DCs significantly

reduced serum TNF-a levels and improved survival. Furthermore, using the well-defined polymicrobial sepsis model of

cecal ligation and puncture, we found that DC-specific ablation of gp96 improved survival with significantly attenuated

liver and renal injuries, decreased circulating inflammatory cytokines, altered DC maturation and activation, and

increased serum Ig. Collectively, we demonstrate that deletion of gp96 in DCs is beneficial in protecting mice against

sepsis induced by both endotoxemia and polymicrobial infections. We conclude that targeting gp96 in DCs may provide

a potential novel approach for reducing the morbidity and mortality of sepsis.
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Introduction

Sepsis is a life-threatening condition caused by a dys-

regulated host response to microbial infections or bac-

terial products, such as LPS. The cellular components

of the innate immune system serve as the first line of

defense against invading pathogens; however, excessive

activation of various immune cells, including B cells,

T cells, macrophages, and dendritic cells (DCs), which

leads to release of inflammatory cytokines including

TNF-a and IL-12, is a hallmark of sepsis.1

Among professional Ag-presenting cells, DCs serve

as an essential interface between innate and adaptive

immune responses.2–4 DCs recognize and respond to

microbes such as bacteria and virus through multiple

PRRs, including TLRs, NLRs, RIG I-like receptors,

C-type lectins, and mannose receptors.5–7 During

sepsis, DCs can be activated by TLRs and this

activation contributes to sepsis-associated

immunosuppression, organ injury and mortality.8–10

Activation of adenosine monophosphate kinase
(AMPK), which suppresses the activation of DCs, has
been reported to prevent the inflammation and organ
damage during sepsis.9,11,12 Targeting DCs was there-
fore thought to be promising for the management of
sepsis via both an immunotherapeutic and an immuno-
modulatory approach.9 Thus, it becomes very important
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to understand the function and related mechanisms of
DCs in the immunopathogenesis of sepsis.

Heat shock protein (HSP) gp96,13 also known as
grp94,14 endoplasmin,15 ERp99,16 and HSP90b1,17 is
an endoplasmic reticulum (ER) paralogue of HSP90.
As a molecular chaperone, gp96 is the most abundant
and ubiquitous protein in the ER lumen and is induced
by the accumulation of misfolded proteins.18 Genetic
studies have demonstrated that gp96 is an essential
master molecular chaperone for most of the TLRs,19–
24 multiple integrins,20,23 GARP,25–27 and Wnt co-
receptor LRP6.28,29 gp96 can bind to and act as a
master chaperone for TLRs on macrophages and DCs,
while it itself might also stimulate pro-inflammatory
cytokines (TNF-a and IL-12) secretion.20,30 Our recent
study demonstrated that macrophage-specific gp96-
knockout mice have significantly less inflammation in
the colon and lower percentages of Th17 and Th1 cells
in colonic lamina propria (cLP) compared with their
wild type (WT) littermates.31 Furthermore, we generated
a unique CD11cþ cell-specific gp96-deficient mouse
model (abbreviated as KO mice hereafter) with selective
deletion of gp96 in DCs and demonstrated that gp96-
deficient DCs were unable to respond to TLR ligands,32

suggesting a critical role of gp96 in DC activation and in
exacerbating inflammation. This constellation of find-
ings led us to explore the role of DC-intrinsic gp96
in sepsis.

In this study, we investigated whether DC-intrinsic
gp96 contributes to the pathogenesis of sepsis. First,
we challenged WT and KO mice with a lethal dose of
LPS, and we found that WT mice produced significantly
more serum TNF-a than did KO mice. Consistent with
the detrimental effect of this cytokine in sepsis, we found
that the WT mice were more susceptible to LPS-induced
endotoxemia than the KO mice. Furthermore, using a
well-defined sepsis model of cecal ligation and puncture
(CLP),33–35 we found that KO mice had significantly
attenuated liver and renal injury, decreased circulation
inflammatory cytokines, and improved survival.
Interestingly, we found that KO mice had reduced DC
maturation but increased serum level of Ig after CLP,
which may contribute to the protection against sepsis.
Our results demonstrate that deletion of gp96 in DCs is
protective against sepsis induced by both endotoxemia
and polymicrobial infection. This work supports the
notion of targeting gp96 in DCs as a potential novel
approach for the treatment of sepsis.

Materials and methods

Mice

DC-specific gp96-deficient mice (CD11cCreþ

Hsp90b1flox/flox) and control littermates

(CD11cCre�Hsp90b1flox/flox) were generated by cross-

ing Hsp90b1flox/flox mice with CD11c-Cre transgenic

mice.32 All animal experimental protocols were

approved by the Medical University of South

Carolina Institutional Animal Care and Use

Committee (IACUC). All procedures complied with

the standards for care and use of animal subjects as

stated in the Guide for the Care and Use of

Laboratory Animals (Institute of Laboratory

Resources, National Academy of Sciences, Bethesda,

MD, USA) as well as established institutional guide-

lines and regulations.

Reagents

Abs used for flow cytometry were obtained from BD

Biosciences (Mountain View, CA) and eBioscience

(San Diego, CA). LPS (055: B5) was purchased from

Sigma-Aldrich (St Louis, MO). All other chemicals

were obtained from Sigma-Aldrich (St Louis, MO)

and Fisher Scientific (Pittsburgh, PA).

LPS-induced endotoxemia and survival study

Endotoxemia was induced in DC-specific gp96 KO

mice and their WT littermates (8–12 wk old) by i.p.

injection of LPS (25 mg/kg body mass; Escherichia

coli LPS 055: B5; Sigma-Aldrich, St. Louis, MO) dis-

solved in sterile saline, as described previously.20,33 The

sera were collected at 1.5 h after LPS administration

for cytokine analyses. For the survival study, mouse

survival was monitored every 12 h for a total of 3 d.

CLP-Induced sepsis and survival study

DC-specific gp96 KO mice and their WT littermates

(12–16 wk old) were housed in a specific pathogen-

free environment. All surgery was performed under

anesthesia. CLP was performed as described previous-

ly.33 Briefly, the cecum was ligated at the colon juncture

and punctured once with a 22-gauge needle. All ani-

mals were fluid-resuscitated subcutaneously with sterile

normal saline. Sham operations were performed in the

same way as CLP, but without ligation and puncture of

the cecum. Mice were sacrificed at 24 h after CLP, and

serum was collected for biochemical analyses. The

spleen was isolated for DC maturation analysis by

flow cytometry. For the survival study, mice were mon-

itored every 24 h for a total of 7 d.

ELISA

IL-12p40 and TNF-a levels in the serum were measured

with ELISA kits from BD Biosciences (San Diego, CA)

according to the manufacturer’s protocol. IL-10 levels

in the serum were measured using a mouse IL-10
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ELISA kit (eBioscience, San Diego, CA) according to
the manufacturer’s protocol. The serum alanine trans-
aminase (ALT), aspartate aminotransferase (AST),
blood urea nitrogen (BUN), and creatinine levels
were measured using appropriate mouse ELISA kits
(BioAssay Systems, Atlanta, GA). Ig levels in the sera
were determined by a sandwich ELISA kit from
Southern Biotechnology Associates (Birmingham, AL).

Flow cytometry

Surface staining of cells and flow cytometry were done
as described previously.20,36 Briefly, splenocytes were
isolated and RBCs were lysed. After washing with
FACS buffer (PBS with 2% FBS and 0.09% NaN3),
cells were pelleted and blocked with FcR Ab for 10
min, followed by incubation with fluorochrome-
labeled Abs at the appropriate dilution for 30 min at
4�C. After staining, cells were then washed with FACS
buffer and acquired on FACSVerse (Becton Dickinson,
Franklin Lakes, NJ). Dead cells were always gated out
by 7AAD exclusion. The results were analyzed with the
FlowJo software (Tree Star, Ashland, OR).

Culture of bone marrow-derived DCs

WT and KO bone marrow (BM) cells were isolated
from femurs and tibias. BM cells were cultured in
RPMI 1640 medium supplemented with 10% FCS,
100 U/mL of penicillin, 100 mg/mL of streptomycin,
20 ng/mL GM-CSF, and 10 ng/mL IL-4 for 6 d. The
floating cells were harvested, which were mostly BM-
derived DCs (BMDCs) by phenotypic analysis.

Microarray and pathway analysis

WT and KO BMDCs were stimulated with 200 ng/mL
LPS (E. coli 055:B5) from Sigma for 6 h. Total RNA
was extracted from WT and gp96 KO BMDCs using
an RNeasy Mini Kit (Qiagen, Valencia, CA).
Fluorescent antisense amplified RNA (aRNA) target
preparation was performed using an Eberwine-based
amplification method with an Amino Allyl
MessageAmp II aRNA Amplification Kit. Cy5-
Labeled RNA targets were hybridized to Mouse
Whole Genome OneArrayVR v2 (Phalanx Biotech
Group, Belmont, CA), and slides were scanned by the
Axon 4000 scanner (Molecular Devices, Sunnyvale,
CA). The Cy5 fluorescent intensity of each spot was
analyzed by Genepix 4.1 software (Molecular
Devices, Sunnyvale, CA). Genes with log2 ratio � 2.0
or log2 ratio � 2.0 and P value< 0.05 are further ana-
lyzed. Genes were classified using KEGG Pathway
Database (http://www.genome.jp/kegg/pathway.html)
and those involved in inflammation were highlighted.
A heat map was generated to demonstrate differential

expression of genes in the WT and KO DCs. In the heat

map, the given gene is presented as compared to the

median value for that gene in the WT and KO DC
data sets.

Statistical analysis

Statistical significance was determined by analysis of

variance (ANOVA) with Fisher’s probable least-
squares difference test, and Student’s t-test or log-

rank (Mantel–Cox) test using GraphPad Prism

software. Error bars represent SEM. A value of

P< 0.05 was considered statistically significant.

Results

Attenuation of LPS-induced endotoxemia in dendritic

cell-specific gp96-deficient mice

Recently, we have generated DC-specific gp96-deficient

mice by crossing Hsp90b1flox/flox mice with CD11cCre

mice.20,21,32,37 We found that deletion of gp96 in DCs

rendered them unresponsive to stimulation by TLR2,
TLR4, and TLR9 ligands.32 Thus, our DC-specific

gp96-deficient mice present a DC-specific pan TLR

KO mouse model. To determine the effect of DC-

intrinsic gp96 in endotoxin shock, WT and KO mice
were administrated intraperitoneally with a lethal dose

of LPS. Mouse survival was monitored every 12 h. By d

2, 100% of the WT mice succumbed to endotoxemia; in
contrast, 40% of DC gp96 KO mice survived after LPS

administration (P< 0.0001; Figure 1a). Compared to

the LPS treated WT mice, deletion of gp96 markedly

reduced serum levels of TNF-a (WT: 22.3� 1.9 ng/mL,
KO: 4.3� 0.9 ng/mL; P< 0.0001; Figure 1b). This

result demonstrates that DCs play a significant role

during the hyperinflammatory phase of LPS-induced
endotoxemia and deletion of gp96 in DCs attenuates

the TLR-induced inflammatory response.

Deletion of gp96 in DCs protects against CLP-

Induced polymicrobial sepsis

To further investigate whether DC-intrinsic gp96 plays

a pivotal role in sepsis, we used a well-defined sepsis
model of CLP. We found that KO mice exhibited sig-

nificantly increased the survival rates in comparison

with their WT littermates (n¼ 21, P< 0.01;
Figure 2a). In addition, deletion of gp96 dramatically

lowered CLP-Induced serum levels of IL-12p40 (WT:

903.9� 42.7 pg/mL, KO: 341.6� 55.8 pg/mL; n¼ 5,

P< 0.001; Figure 2b) and IL-10 (WT: 5.1� 1.4 ng/
mL, KO: 0.5� 0.1 ng/mL; n¼ 4, P< 0.05; Figure 2c).

Liver function was significantly improved in KO mice

after CLP surgery evidenced by reduced circulating
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ALT (WT: 38.8� 3.5 U/l, KO: 24.4� 2.5 U/l; n¼ 3–6,

P< 0.05; Figure 2d) and AST (WT: 65.3� 8.1 U/l, KO:

36.0� 3.9 U/l; n¼ 3–6, P< 0.05; Figure 2e). However,

the ALT (WT: 18.3� 0.6 U/l, KO: 24.6� 4.8 U/l) and

AST levels (WT: 21.7� 2.1 U/l, KO: 21.1� 5.8 U/l)

were comparable between WT and KO mice after

Sham operation (Figure 2d and e). Moreover, two

important renal functional indicators, serum creatinine

(WT: 0.7� 0.1 mg/dl, KO: 0.4� 0.02 mg/dl; n � 4,

P< 0.001; Figure 2f) and BUN levels (WT: 134.7

� 11.0 mg/dl, CLP KO: 59.6� 11.1 mg/dl; n � 4,

P< 0.01; Figure 2g) were also significantly attenuated

in KO mice after CLP surgery, in comparison with WT

mice. These data indicated that deletion of gp96 in DCs

protected against CLP-Induced polymicrobial sepsis.

Deletion of gp96 in DCs impairs DC maturation in

CLP-Induced septic mice

We reported previously that gp96-deficient DCs were

unable to respond to TLR ligands.32 We next examined

whether gp96 deletion in DCs has an impact on the DC

maturation and activation in CLP-Induced septic mice

as well as sham mice in vivo. We isolated splenic cells

from WT and KO mice after CLP or Sham procedure

and performed comparative phenotypic analysis of

DCs. Previous studies demonstrated that gp96 is an

essential molecular chaperone for multiple integ-

rins.20,21,23 Deletion of gp96 from DCs resulted in

decreased surface expression of CD11c. Thus, we

used a negative gating strategy (B220-MHC class IIþ)
to define DC lineages (Figure 3a, left),32,38 and further

checked surface expression of CD83 and CD86 in DCs

(Figure 3a, right), which are characteristic cell surface

markers for fully matured DCs and are important for

providing costimulatory signals for T cell activation

and survival. We found that deletion of gp96 in DCs

completely abrogated up-regulation of CD83 and

CD86 in the CLP-Induced septic mice (n¼ 6–7,

P< 0.001; Figure 3b and c). This result suggested

that DC-intrinsic gp96 is essential for the maturation

and activation of DCs during the CLP-Induced sepsis.

Deletion of gp96 in DCs significantly increases the

systemic Ig production

A recent study reported that commensal bacteria-

induced systemic IgA contributed to protecting against

polymicrobial sepsis.39 Previously we have demonstrat-

ed that DC-specific gp96-deficient mice developed

spontaneous colitis with age. Consistent with the

report that intestinal IgA coating represents ongoing

inflammatory conditions, we also found that DC-

specific gp96 KO mice had significantly higher levels

of IgA and IgG1 in the sera compared with WT con-

trols at baseline, and the level of fecal IgA was also

significantly higher in KO mice.32 Next, we examined

whether deletion of gp96 in DCs affects systemic Ig

production in CLP-Induced septic mice. Indeed, we

found that sham KO mice had significantly higher

levels of IgA (Figure 4a), IgG1 (Figure 4b), and

IgG2c (Figure 4d) but not IgG2b (Figure 4c), IgG3

(Figure 4e), and IgM (Figure 4f) compared with

sham WT controls. Moreover, the levels of IgA

(Figure 4a) and IgG1 (Figure 4b) were also significantly

increased in the CLP KO mice compared with the CLP

WT controls, while the levels of IgG2b and IgM

remained the same. However, IgG2c and IgG3 levels

were significantly reduced in the CLP KO mice com-

pared with the CLP WT controls (Figure 4d and e).

Our data suggest that systemic IgA and IgG1 contrib-

ute to protecting against polymicrobial sepsis. Thus,
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targeting gp96 in DCs will provide a potential thera-

peutic for the treatment of sepsis.

Microarray analysis of LPS-induced inflammatory

pathways in BMDCs

We so far have shown that deletion of gp96 in DCs in

mice significantly reduced the level of systemic

inflammatory cytokines, improved their survival in
response to LPS-induced endotoxemia and CLP-
Induced polymicrobial sepsis (Figures 1 and 2). Also,
deletion of gp96 attenuated DC maturation and
activation after CLP. By using a gene expression micro-
array analysis, we next investigated what were the
LPS-inducible genes in DCs that were altered by gp96
deletion. We treated WT and KO BMDCs with or
without LPS for 6 h, and then quantified the levels of
mRNA encoded by genes involved in inflammatory
pathways. We found that multiple inflammatory cyto-
kine levels were significantly decreased in the KO
BMDCs including Il1a, Il1f6, Il1rn, Il6, Il12b, and
Tnfsf4 along with inflammation-related genes (Cxcl1,
Cxcl5, Cxcl9, Cxcl12, Nr1h3) (Figure 5) after LPS
treatment. However, the levels of inflammatory cyto-
kines in unstimulated DCs are very low or undetectable
compared with LPS stimulated DCs. Also, the expres-
sion levels of these genes are comparable between unsti-
mulated WT and KO DCs (data not shown). This
result is consistent with that gp96 chaperone
TLRs.20,21,23,32 This data suggests that gp96 deletion
offers a unique advantage in treating sepsis over exist-
ing approaches by down-regulating multiple inflamma-
tory pathways.40–43

Discussion

DCs are professional Ag-presenting cells that play an
important role in both innate and adaptive immunity.
DCs have been shown to be significantly involved in all
phases of the pathological development of sepsis from
the initial inflammatory response to the immune sup-
pressive stage; however, the extent of their contribu-
tions has not been fully elucidated. DCs recognize
microbes and pathogens through PRRs, including
TLRs and NLRs.5–7 We previously reported that heat
shock protein gp96 is an essential immune chaperone
for TLRs including TLR1, TLR2, TLR4, TLR5,
TLR6, TLR7, TLR8, and TLR9, integrins, and other
vital innate receptors.20,21,23,44 Consistent with gp96
chaperone function, gp96 KO DCs failed to respond
to stimulation by TLR2, TLR4, and TLR9 ligands
in vitro.32 In this study, we found that specific deletion
of gp96 in DCs protected against both LPS-induced
endotoxemia and CLP-Induced polymicrobial sepsis,
evidenced by decreased circulating inflammatory cyto-
kines (TNF-a and IL-12), attenuated liver and renal
injury, and reduced mortality. Moreover, deletion of
gp96 in DCs completely abrogated up-regulation of
CD83 and CD86 in the CLP mice (Figure 3b and c),
which suggested that DC-intrinsic gp96 is essential for
the maturation and activation of DCs during multi-
microbial sepsis. Our study suggested that DCs are a
major source of inflammatory cytokines during sepsis
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and that DC-intrinsic TLR signaling including TLR2
and TLR4 may contribute to mortality associated
with sepsis.

Recent studies demonstrate that DCs can adopt tol-
erogenic functions in the presence of Wnt3a and Wnt5a,
and that these DCs produce high levels of IL-10, TGF-b,
retinoic acid (RA), IL-27, and vascular endothelial
growth factor in response to TLR ligands.45–47 In addi-
tion, DC-intrinsic TLR2 signaling activated b-catenin
and induced IL-10 and RA production.48 We have dem-
onstrated that gp96 is an essential molecular chaperone
for Wnt co-receptor LRP6. Consistent with the loss of
LRP6 and Wnt signaling, gp96 KO cells failed to up-
regulate Axin2 mRNA in response to Wnt-3a.28 In the
present study, we found that gp96 KO mice produced a
low level of IL-10 during CLP-Induced polymicrobial

sepsis (Figure 2c), which may be due to loss of both
TLR and Wnt signaling. Further studies are needed to
clarify the relative contribution by each of the two path-
ways in sepsis.

Low levels of circulating IgA, IgG1, and IgM have
been associated with low survival rates in patients with
severe sepsis or septic shock.49,50 Treatment with com-
bined i.v. IgG/IgA/IgM decreased the risk of death
after 28 d in patients with severe sepsis and/or septic
shock.51 In addition, a recent study reported that com-
mensal bacteria-induced systemic IgA contributed to
protecting against polymicrobial sepsis.39 We found
that CLP KO mice had significantly higher levels of
IgA and IgG1 (Figure 4) compared with the CLP
WT controls; while the levels of IgG2b and IgM
remained the same. However, IgG2c and IgG3 levels
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were significantly reduced in the CLP KO mice com-

pared with the CLP WT controls (Figure 4d and e).

Our data indicate that systemic IgA and IgG1 contrib-

ute to protecting against polymicrobial sepsis.
In summary, our results demonstrate that DCs are

one of the major cellular sources of inflammatory

cytokines during sepsis. Deletion of gp96 in DCs is

beneficial in both LPS-induced endotoxemia and

CLP-Induced polymicrobial sepsis through a variety

of mechanisms including blocking TLR signaling,

inhibiting Wnt signaling, and increasing systemic IgA

and IgG1. Therefore, targeting gp96 in DCs either

genetically or pharmacologically29,52–54 may provide a

potential novel approach for the sepsis treatment.
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at 24 h after the surgery, and then the Ig levels of IgA (a), IgG1
(b), IgG2b (c), IgG2c (d), IgG3 (e), and IgM (f) in the sera were
measured by ELISA. Error bars indicate SEM.
*P< 0.05; **P< 0.01.
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Figure 5. Microarray analysis of mRNAs levels in WTand gp96
KO BMDCs in response to LPS. WTor KO BMDCs were stim-
ulated with LPS (200 ng/mL) for 6 h followed by mRNA
extraction, reverse transcription, and cDNA microarray analysis
using the whole mouse cDNA array. The heat map shows the
genes involved in the inflammatory pathway using the KEGG
Pathway Database analysis. Comparing with WT BMDCs, KO
cells expressed significantly less inflammatory cytokines in
response to LPS.
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