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This study investigates CO2 biofixation and pyrolytic kinetics of microalga G.

pectorale using model-fitting and model-free methods. Microalga was

grown in two different media. The highest rate of CO2 fixation (0.130 g/L/

day) was observed at a CO2 concentration of 2%. The pyrokinetics of the

biomass was performed by a thermogravimetric analyzer (TGA).

Thermogravimetric (TG) and derivative thermogravimetric (DTG) curves at

5, 10 and 20°C/min indicated the presence of multiple peaks in the active

pyrolysis zones. The activation energy was calculated by different model-

free methods such as Friedman, Flynn-Wall-Ozawa (FWO), Kissinger-

Akahira-Sunose (KAS), and Popescu. The obtained activation energy

which are 61.7–287 kJ/mol using Friedman, 40.6–262 kJ/mol using FWO,

35–262 kJ/mol using KAS, and 66.4–255 kJ/mol using Popescu showed

good agreement with the experimental values with higher than

0.96 determination coefficient (R2). Moreover, it was found that the most

probable reaction mechanism for G. pectorale pyrolysis was a third-order

function. Furthermore, the multilayer perceptron-based artificial neural

network (MLP-ANN) regression model of the 4-10-1 architecture

demonstrated excellent agreement with the experimental values of the

thermal decomposition of the G. pectoral. Therefore, the study suggests

that the MLP-ANN regression model could be utilized to predict

thermogravimetric parameters.
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1 Introduction

Microalgae are potential candidates for CO2 biofixation and

renewable energy. Microalgae can be cultivated in a closed

photobioreactor located on non-arable land or in an open vast

pond. It is a cost-effective source of carbon dioxide (CO2)

mitigation through photosynthesis (Aresta et al., 2005). The

fixation of CO2 by microalgae is sought as an attractive strategy

to produce biofuels, aquaculture products, and renewable food.

Furthermore, it can be processed into a variety of products, for

example, fuel gases, soil modifiers, biodiesel, green diesel, and

methane (Christenson and Sims, 2011). The fixation of CO2 by

microalgae depends on various biotic and abiotic factors, such as

temperature, quality and quantity of light, pH of the solution,

mode of cultivation, purity, and CO2 concentration being supplied.

Furthermore, CO2 fixation is also affected by microalgae strain

(Daneshvar et al., 2022; Farooq et al., 2022). Microalgae biomass

after CO2 fixation can be processed as an environmentally friendly

renewable feedstock through different conversion technologies

such as gasification, pyrolysis, liquefaction and bioethanol

technology. Pyrolysis technology is a distinctive chemical

reaction that produces valuable chemicals such as biochar, light

olefins, and syngas. The pyrolysis of microalgae comprises

numerous reactions in series and parallel. There are different

pyrolysis processes for microalgae such as fast pyrolysis, slow

pyrolysis, catalytic pyrolysis, and microwave-assisted pyrolysis

(Farooq et al., 2021).

TGA examines the decomposition of materials by weight

changes as a function of rising temperature. The relationship

between temperature and weight loss due to oxidation,

dehydration, and decomposition is recorded as the TGA

plot, while derivative thermogravimetric (DTG) curve

records the derivative of weight change with respect to

temperature. The rate of the thermochemical reaction is

represented by the peak of the DTG curve. The elevation of

the DTG curve detects the potential to release volatile

substances from a reaction during the slow process of

pyrolysis (Yang et al., 2014). However, TGA technology

only evaluates total weight loss due to reactions, restricts

its usage, and provides general information on the overall

kinetics of the reaction rather than individual reactions (Yang

et al., 2019).

So far, commercialization of microalgae pyrolysis has been

tested only on a bench scale although microalgae pyrolysis has

been used since the early 1990s. TGA was extensively used to

show the kinetics of the degradation process and to simulate the

slow pyrolysis process (heating rate is usually lower than 1°C/s in

a fixed-bed tubular reactor). Much research on pyrolysis of

microalgae was conducted using a slow pyrolysis approach,

while only a few studies were conducted using fast pyrolysis.

Fast pyrolysis with a heating rate greater than 10°C/s can be

performed in the fluidized bed reactor (Yang et al., 2019).

The kinetic data of TGA can be analyzed by various methods.

The two most commonly applied approaches are model-free and

model-fitting. The model-fitting method cannot characterize non-

isothermal data adequately compared to the model-free approach.

The model-free approach is much simpler, it avoids errors related to

the kinetic model choice and offers better fitting of

thermogravimetric curves than the model-fitting method. One of

the limitations of this method is that several kinetic curves are

collected to perform the analysis. Reaction rates can be calculated

based on data collected at different heating rates at the same

conversion value, resulting in the calculation of the activation

energy at each conversion point (Subagyono et al., 2021). No

study on thermogravimetric analysis of G. pectorale is reported.

Fewer studies on the genetic transformation of G. pectorale

microalgae are available (Lerche and Hallmann, 2009; Hanschen

et al., 2016). Lot of work has been done on CO2 fixation of

microalgae along with its bioenergy potential. Besides improving

the cultivation and harvesting process to increase the yield of

biomass, a search for new strain with better growth and CO2

fixation potential is needed as well. To best of our knowledge,

this strain has not been investigated for its CO2 fixation potential

and its bioenergy contents. We targeted this strain as there is no

study on potential of the strain for CO2 and bioenergy potential.

The objectives of this study were to 1) Investigate the

potential of the G. pectorale microalga for its CO2 fixation

potential, which to best of our knowledge has not been

reported in the literature, 2) Estimate its total energy content

through higher heating value (HHV), and 3) Kinetic analysis of

the conversion process using model-free and model-fitting

methods, and 4) The conversion of G. pectorale was modeled

using an artificial neural network (ANN) to predict the pyrolysis

behavior. The input data were time, temperature, and weight loss,

while the output data was the change in weight loss with respect

to time.

2 Materials and methods

2.1 Media preparations

The microalga was cultivated in two different growth

mediums, namely Tris-Acetate-Phosphate (TAP) medium

and Modified Bold 3N medium (3NBBM). To test whether

this microalga prefers organic carbon or not, the first

medium contains an organic carbon compound

(CH3COOH) while the latter does not. Stock solutions for
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the growth medium were prepared in a 250 ml volumetric

flask. After that, the stock solutions were combined in a 2 L

flask for the growth medium. Each prepared medium was

autoclaved at 121°C for 4 h to eliminate bacterial

contamination and then allowed to cool to room

temperature before microalgae inoculation.

2.2 G. pectorale biomass growth and CO2
fixation potential

G. pectorale (strain K3-F3–4, mating type minus, NIES-2863

obtained from the Microbial Culture Collection at the National

Institute for Environmental Studies, Tsukuba, Japan; Available

online: http://mcc.nies.go.jp/) was grown under continuous light

(1,300 lux) in 50 ml of modified Bold’s 3N medium (UTEX,

Austin, TX, United States) (Guerriero et al., 2018). The

Erlenmeyer flasks were incubated at 25°C and 120 RPM on

a shaker under approximate illumination of 100 μmol m−2 s−1

using cool white florescent light (Liu et al., 2019). Then, both

the optical density (OD) and dry weights were taken daily.

After 14 days of incubation with a continuous light supply,

algal biomass was harvested, dried, and then ground to

powder. A standard calibration curve for G. pectorale was

generated to estimate its biomass concentration in [g/L] at any

measured OD by Eq. 1.

DW[g/L] � 0.263OD688 + 0.0104 (1)

CO2 bio-fixation rate can be measured using the equation of

the reference (Adamczyk et al., 2016).

RCO2 � P · CC
MWCO2

MWC
(2)

where RCO2 is the fixation rate, and P is the productivity in

[mg per L per Day], CC is the average carbon content

calculated by the elemental analyzer, MWC is the

molecular weight of one carbon atom, and MWCO2 is the

molecular weight of CO2.

2.3 Ultimate analysis of G. pectorale and
higher heating value

The ultimate analysis of the dried biomass was performed using

(Perkin Elmer Model 2400 CHNS/O Elemental analyzer, Perkin

Elmer Corporation). The harvested samples were dried in the drying

oven at 60°C for 24 h. The dried biomass samples were weighted

(0.75–1.5 mg) in clean tin capsules (5 mm × 8mm, Perkin Elmer).

The capsules were then heated to 975°C using oxygen gas as the

combustion gas feed and helium gas as the purging gas in a furnace.

The instrument was calibrated with different criteria of ±3.75 for

hydrogen, ±0.15 for carbon and ±0.16 for nitrogen. Furthermore,

the oxygen content was found by difference.

The higher heating value (HHV) was calculated from the

equation of reference (Noushabadi et al., 2021).

HHV [MJ/kg] � −0.8738 × N × H−1.3101

−0.1583 × C × O0.3497

+0.3856 × C × (H × O)0.1462

+2.1436 × (H
O
)−0.3846

+0.1076 × C × H−0.3846 + 0.1098 × N × S

−11.2794 × (H
C
)

(3)
where C, H, N, O, and S represent carbon, hydrogen, nitrogen,

oxygen, and sulfur contents, respectively.

2.4 Thermogravimetric analysis of G.
pectorale biomass

TGA analysis was conducted using the SDT Q600 TG-DTA

thermogravimetric analyzer to explore the non-isothermal

pyrolysis of microalgae remnants. Approximately 5–6 mg of

each dried sample were placed in an alumina crucible, which

was then inserted into the analyzer chamber. Nitrogen was

continuously supplied with a constant flow of 100 ml/min as a

purging gas to prevent undesirable oxidation reactions and

remove any trapping gases. At first, the temperature for each

run was equilibrated at 30°C. The sample was then heated from

30 to 800°C, with a heating rate of 5°C per minute. Additionally,

two more heating rates at 10 and 20°C per minute were employed

using the same procedure.

2.5 Kinetic analysis

The kinetics of chemical reactions can easily be determined

from DSC or TGA measurements (Vyazovkin, 2020). The basic

rate equation for this kinetic analysis is given by Eq. 4.

dα

dt
� k(T) · f(α) (4)

where k(T) is the rate constant, f(α) is the kinetic model, and α

is the degree of conversion, which is calculated by Eq. 5

α � w0 − w

w0 − wf
(5)

In whichw0, w, andwf are the initial, instantaneous, and the

remaining mass of the sample, respectively.

With Arrhenius equation

k(T) � A exp(−Ea

RT
) (6)
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where A, Ea, R, and T are the pre-exponential factor, activation

energy, gas constant, and temperature.

The term k(T) in Eq. 4 is combinable with Eq. 6 and gives the

equation below

dα

dt
� A exp(−Ea

RT
) · f(α) (7)

Incorporating the temperature dependence of the reaction

from the Arrhenius law and subsequently modifying it for

isochronal heating, the equation becomes the following.

dα

dT
� A

β
· exp(−Ea

RT
) · f(α) (8)

In which β is the applied heating rate (dTdt)
After integration, Eq. 8 becomes:

g(α) � ∫α

0

dα

f(α) � ∫T

T0

A

β
· exp(−Ea

RT
) · dT (9)

where g(α) is the integral form of f(α) and T0 is the initial

temperature.

A model-free technique will be adopted to estimate the

activation energy.

2.5.1 Model-free kinetics
Model-free kinetics assumes that the activation energy

changes during the reaction. Furthermore, this approach also

assumes that the activation energy at a particular conversion

point is independent of temperature (“isoconversion principle”).

Various model-free kinetic approaches are reported. The model-

free approach allows one to determine the activation energy of a

reaction without assuming a kinetic model. Various model-free

kinetics approaches are reported. Friedman is a differential

isoconversional method, whereas Ozawa-Flynn-Wall (OFW)

and Kissinger-Akahira-Sunose (KAS) are integral

isoconversional methods. In all methods, the measurements

are analyzed for multiple conversion levels. These methods are

suitable for multistep reactions and give an average activation

energy value (Naqvi et al., 2018). Friedman requires at least two

measurements.

Friedman (Friedman, 2007):

ln(β dα
dT

) � ln(dα
dt
) � ln[A · f(α)] − Ea

RT
(10)

Ea is determined from the slope of ln(dαdt)versus 1
T plot at

constant α.

OFW (Maia and de Morais, 2016):

ln β � constant − 1.052
Ea

RTα
(11)

KAS (Naqvi et al., 2018):

ln
β

T2
α

� constant − Ea

RTα
(12)

Popescu (Kokalj et al., 2017):

ln( β

Tα − Tα−Δα
) � constant − 2Ea

R(Tα + Tα−Δα) (13)

where Δα is the conversion interval, T(α-Δα) is the absolute

temperature at α-Δα, and Tα is the temperature corresponding to α.

2.5.2 Model-fitting kinetics
The model function in the rate equation can be attained by

the linear regression of the equation below, which is known as the

combined kinetics method (Pérez-Maqueda et al., 2006).

ln(dα
dt
) − ln[(1 − α)nαm] � ln(cA) − Ea

RTα
(14)

where c, n, and m are the parameters of the model

function, f(α) � c(1 − α)nαm

2.5.3 Thermodynamic analysis
Thermodynamic parameters such as changes in the Gibbs

free energy of activation, the enthalpy of activation, and the

entropy of activation are obtained from the kinetic parameters by

the equations below.

ΔH � Ea − RT (15)

ΔG � Ea + RTp ln(KBTp

hA
) (16)

ΔS � ΔH − ΔG
Tp

(17)

where KB is the Boltzmann constant (1.381 × 10−23 J/K), h is the

Planck constant (6.626 × 10−34 J s), and Tp is the temperature

corresponding to the maximum DTG in Kelvin.

2.6 Artificial neural network

In this study, artificial neural network (ANN) models were

developed to predict activation energy. ANN use the input/

target data to map the patterns between the variables.

Statistica 13.5 was used to develop the network architecture

using MLP regression to model the target values. Temperature

(K), heating rate (°C/min), conversion (−) and conversion rate

(s−1) were used as input neurons in the input layer, while the

activation energy was used as output neuron in the output

layer. Three subsets were obtained randomly from the original

data set as training (70%), testing (15%) and validation (15%).

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithms

were used to develop MLP based ANN regression models. The

hidden and output layers use different built-in activation

functions such as logistic, exponential, tangent hyperbolic,

SoftMax, sine and gaussian. Each neuron is connected through

its nodes to all nodes in the other layers with some network

parameters (weights and biases). Neural networks are trained
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through supervised learning by minimizing the sum of

squared errors. Trained networks were evaluated and

verified using testing and validation data sets. Five best-

performing models are retained, out of which one best is

chosen using external validation and predictions.

3 Results and discussion

3.1 G. pectorale growth

Microalga G. pectorale was cultivated under standard

room conditions in a modified Bold 3N medium with

initial pH of 6.8 at different CO2 concentrations; 1, 2 and

5%. A maximum of 5% CO2 concentration was investigated, as

some studies suggest that exceeding this concentration can

harm algal cells and hinder their growth (Farooq, 2022;

Farooq et al., 2022). Furthermore, N. oculate and Chlorella

sp. strains have shown optimal growth at a concentration of

2% CO2 (Farooq et al., 2022). A light intensity of

100 μmol m−2 s−1 using cool white florescent light was used

for the growth analysis. The effect of CO2 concentration on G.

pectorale microalgal growth was found to be inversely

proportional (Figure 1). Preference of microalgae for

carbon source either inorganic as CO2 and organic carbon

depends on algal species (Khan et al., 2022). There is no

published study on this strain, that makes comparative

analysis more difficult. However, when comparing its

biomass concentration after 10 days of cultivation with N.

oculate, around 0.35 g/L was achieved, while the latter

achieved a higher value, which is approximately 1.20 g/L.

Furthermore, less biomass concentration was achieved

without feeding CO2 to our cultivation process and a

higher value was achieved when the ambient air was fed

instead of CO2.

The growth of microalgae for 10 days period (Ale et al.,

2014) is shown in Figure 1 which implied that microalgae

prefer low CO2 contents and do not prefer higher CO2 for its

growth despite controlling pH. To investigate the possibility

of microalgae preference for organic carbon, microalgae algae

were cultivated in Triacetate Phosphate medium containing

organic carbon (acetic acid and glucose) and without the

organic carbon. Figure 2 showed that microalgae growth

was affected by the presence of the organic carbon source

in the form of acetic acid. A difference in growth is evident

during growth without acetic acid. Purging the growth media

with air in the presence of acetic acid further improved

growth, which could be due to mixotrophic behavior and

exposure of cells to lighter cells due to mixing (Gao et al., 2019;

Patel et al., 2020). The use of organic waste and wastewater

loaded with organic carbon will be a good cultivation medium

for the growth of microalga, G. pectorale, because of its

mixotrophic mode of growth.

The growth of microalgae was further investigated at

various glucose concentrations as a carbon source. The

results in Figure 3 showed that growth improved with low

glucose supplementation. Biomass increased from 0.4 g/L

under control to 0.7 g/L under 0.2% glucose

supplementation. The G. pectorale microalga was shown to

be capable of consuming different types of organic carbon.

TAP medium was preferred for glucose supplementation,

unlike Modified Bold 3N medium. When the cultivation

FIGURE 1
Different CO2 concentrations in 3NBBM.
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process was conducted in a modified Bold 3N medium with

the addition of glucose, the culture growth failed. However,

adding a higher glucose concentration (0.5%) to the TAP

medium also resulted in growth failure. The biomass

concentrations achieved in [g/L] are 1.01 ± 0.05, 1.10 ±

0.07, and 0.98 ± 0.08 for control, 0.1 and 0.2% glucose,

respectively. For the same supplementation concentration

and conditions, Karpagam et al. (2015) found the biomass

concentration in [g/L] to be 0.77 ± 0.04, 0.81 ± 0.01, and 0.85 ±

0.03 for control, 0.1 and 0.2% glucose, respectively, for

Chlamydomonas reinhardtii, strain CC1010 (Karpagam

et al., 2015). In Figure 3, although 0.2% glucose

supplementation improved G. pectorale growth, it does not

make a noticeable difference compared to control growth

using acetic acid as a source of organic carbon.

Consumption of organic and inorganic form of carbon is

supported by optimal light intensity, types and its duration

(Mondal et al., 2017).

FIGURE 2
Supplementation variation in TAP medium.

FIGURE 3
Growth comparison after glucose addition in TAP medium.
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3.2 Ultimate analysis, CO2 fixation rate and
higher heating value

The results of the ultimate analysis for the microalgae in

Table 1 are consistent with a previous study (Yang et al., 2016;

Farooq et al., 2022) in which most species of algae have a

carbon content ranging from 40 to 50%, while the hydrogen

content is approximately 7% of the total dry weight of the

algal. The sulfur content in the microalgae is small, which

ranges from 0.5% to 1.5%. The nitrogen content related to the

microalgae protein content and amino acids ranges from 3.1%

to 10.6%.

3.3 TG-DTG analysis of G. pectorale and
pyrolytic kinetics

The TG and DTG curves of the G. pectorale at 5, 10, and

20°C/min are shown in Figures 4, 5. It is noticeable that an

increase in the heating rate results in an increase in both the

TABLE 1 Ultimate analysis and higher heating value of G. pectorale at different TAP media conditions.

Ultimate analysis [wt%] HHV [MJ/kg] P [mg/L/Day] RCO [g/L/Day]

C H N S O

TAP + air 50.78 7.70 8.83 0.48 32.69 23.69 118.8 —

TAP + nitrate 48.43 7.72 8.78 0.57 35.07 22.67 84.7 —

TAP without acetic acid 43.17 6.55 7.0 0.96 43.28 18.42 68.3 —

TAP + 0.1% glucose 54.55 7.09 9.72 0 28.64 22.14 98.1 —

TAP + 0.2% glucose 45.99 6.53 8.30 0 39.18 18.08 110 —

TAP control 49.00 8.67 8.54 0.42 29.34 20.69 101 —

3NBBM control 47.19 7.49 7.75 0 37.57 19.01 65.4 —

3NBBM + air 47.18 6.49 8.16 0.05 38.17 18.62 72.8 —

3NBBM + 1% CO2 44.58 8.81 6.28 0 40.33 18.24 79.4 0.130

3NBBM + 2% CO2 49.34 7.04 8.64 0.69 34.98 20.42 74.2 0.134

3NBBM + 5% CO2 45.46 5.96 8.50 0.44 40.08 18.01 77 0.128

FIGURE 4
TG curves of G. pectorale at different heating rates.
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degradation rate (dα/dt) and the releases of volatile matter and

in fewer pyrolysis residues (Subagyono et al., 2021). This is due

to the limitation of mass and heat transfer that is normally

attributed to high temperatures (Ceylan et al., 2014). Figure 4

shows a significant weight loss in the temperature range of

540–740 K. In addition, even the DTG peaks shifted to higher

temperatures. The DTG curves at 5, 10, and 20°C/min

indicated the presence of multiple peaks and pyrolysis

zones, with the maximum peaks’ temperatures shown in

Table 2 that correspond to the devolatilization process or

the main pyrolysis. These peaks are generally attributed to

the decomposition of proteins and carbohydrates

(Vuppaladadiyam et al., 2019). Three stages can be clearly

shown on the TG-DTG curves. The first stage is at ≤ 400 K,

where evaporation of moisture and low-boiling point organic

compounds occurs. Furthermore, chlorophyll decomposition

can occur during this stage because it is an unstable compound

that generally degrades at 80°C–145°C (Chen et al., 2012). The

second stage lies between 400 and 740 K, is the active pyrolysis

zone where the thermal decomposition of carbohydrates,

proteins and lipids occurs at 410–540 K, 470–550 K, and

560–630 K, respectively. The third stage, known as the

passive pyrolysis zone, is indicated by flat curves that are

higher than 760 K, where the decomposition of the

compounds occurs due to gasification and non-

volatile carbon compounds that evaporate to form gaseous

CO2 and CO at high temperature (Agrawal and Chakraborty,

2013).

3.4 Model-free kinetics

Activation energy, Ea, is the minimum energy required in

order to form a product. The value of activation energy can be

found from Arrhenius plot. Arrhenius plot analyze the effect

of reaction temperature on rate of reaction. The Arrhenius

plots for Gonium pectorale are plotted for different kinetic

models as Figure 6. The estimated values of the activation energy,

which depend on the composition of the biomass, for the pyrolysis

of the microalgae biomass are given in Figure 7. The obtained Ea

values were calculated for the conversion range of 0.1–0.8 with a step

interval of 0.05. The relative contents of lipids, carbohydrates, and

protein and their classes vary between microalgae strains. A higher

standard deviation at the end might be due to the presence of ash

contents containing minerals. Furthermore, calculated activation

energy values using FWO (40.6–260 kJ/mol),

Friedman (61.7–287 kJ/mol), Popescu (66.4–255 kJ/mol) and

KAS (35.0–262 kJ/mol), respectively. The estimated values of

activation energies from different models at multiple heating

rates of 5, 10 and 20°C/min are in close agreement with each

other and agree with the reported literature. (Farooq et al., 2021).

estimated activation energy for the pyrolytic conversion of

Parachlorella kessleri HY-6 using KAS and Friedman methods as

FIGURE 5
DTG curves of G. pectorale at different heating rates.

TABLE 2 Characteristics of DTG curves at different heating rates of G.
pectorale pyrolysis.

β [°C min−1] Tp [K] dα/dt [sec−1] |Tp

5 592.72 0.031

10 593.62 0.063

20 606.99 0.119
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241.91 (±53.05) kJ/mol and 253.54 (±58.81) kJ/mol, respectively. In

another study, the authors calculated activation energy for Spirulina

pyrolysis using KAS method in the range of 160–335 kJ/mol (Hong

et al., 2020).

Activation energy values using the KAS, FWO, Popescu,

and Friedman methods for conversion rates from 0.1 to

0.3 increased due to protein decomposition in this

conversion temperature range (233°C–340°C). A slight

decrease in the activation energy value was observed at

conversion rates of 0.4–0.6, which showed cellulose

decomposition in the temperature range (326°C–393°C).

Pyrolytic degradation of lipid compounds required higher

activation energy values conversion rates of 0.6–0.9, in a

higher temperature range of 377°C–484°C

(Vuppaladadiyam et al., 2019; Subagyono et al., 2021).

Similar observation was reported in another study, where

model compound of protein decomposed earlier at

lower temperature than carbohydrates and then lipid

(Hong et al., 2020).

3.5 Thermodynamics parameters
estimation

Endothermic or exothermic nature of the reaction is

indicated by ΔH. The value of ΔH also indicates the energy

difference between the activated complex and the reactants.

Small ΔH represents the formation of activated complex and a

low potential energy barrier (Naqvi et al., 2018). The average ΔH
was 135.82 (±57.58) kJ/mol and the difference between Ea and

ΔH is around 5 kJ mol−1. ΔG refers to the increase in the energy of

the system towards an equilibrium by forming activated complex.

ΔG values range from (61.2–250 kJ/mol), (168–384 kJ/mol),

(176–214 kJ/mol), and (121–162 kJ/mol) for the Popescu,

KAS, FWO, and Friedman methods, respectively. These ΔG
values indicate the increase in total energy available in G.

pectorale pyrolysis and the formation of an activated complex.

Furthermore, these values are higher compared to the values of

waste red peppers (139.0 kJ/mol) (Maia and deMorais, 2016) and

rice straw (165.1 kJ/mol) (Xu and Chen, 2013). ΔS indicates the

FIGURE 6
Arrhenius plots forG. pectorale at different kinetic models (A) Friedman, (B) Flynn-Wall-Ozawa (FWO), (C) Kissinger-Akahira-Sunose (KAS), and
(D) Popescu.
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degree of proximity of the system to thermodynamic

equilibrium. Lower values of ΔS indicate that material passed

a process, moving to a thermodynamic equilibrium, while higher

ΔS values states that the material is away from thermodynamic

equilibrium. The negative value of ΔS and the positive value of

ΔG indicated in Table 3 imply that the thermal decomposition of

G. pectorale is a non-spontaneous process. When R2 is close to 1,

this indicates that we have an excellent fit model to the

experimental data from TG. However, a higher R2 of fit is not

always a suitable criterion to decide which methods are best

because it does not determine whether the activation energies are

correct (Subagyono et al., 2021).

FIGURE 7
Activation energy versus conversion for four model-free methods.

TABLE 3 G. pectorale thermodynamic parameters by Flynn-Wall-Ozawa (FWO) method.

Conversion Ea [kJ/mol] R2 A [min−1] ΔH [kJ/mol] ΔG [kJ/mol] ΔS [kJ/mol/K]

0.1 40.6 0.88 5.14E + 01 35.4 175.9 −0.227

0.15 60.3 0.93 5.22E + 03 55.2 171.8 −0.188

0.2 70.0 0.95 3.05E + 04 64.8 172.4 −0.173

0.25 89.6 0.96 2.06E + 06 84.5 170.3 −0.138

0.3 111.2 0.97 1.97E + 08 106.0 168.3 −0.101

0.35 123.1 0.97 1.85E + 09 118.0 168.8 −0.082

0.4 130.3 0.98 5.51E + 09 125.2 170.3 −0.073

0.45 136.9 0.98 1.37E + 10 131.7 172.2 −0.065

0.5 142.7 0.98 2.80E + 10 137.5 174.3 −0.059

0.55 147.3 0.99 4.36E + 10 142.1 176.6 −0.056

0.6 151.3 0.99 5.71E + 10 146.1 179.2 −0.053

0.65 156.6 0.99 9.12E + 10 151.5 182.2 −0.050

0.7 167.4 0.99 3.71E + 11 162.2 185.7 −0.038

0.75 185.6 0.99 5.12E + 12 180.4 190.3 −0.016

0.8 204.8 0.99 6.66E + 13 199.7 196.4 0.005

0.85 218.7 0.98 2.51E + 14 213.5 203.4 0.016

0.9 260.3 0.94 9.88E + 16 255.2 214.3 0.066
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3.6 Model-fitting kinetics

Figure 8 shows the kinetics plots of the conversion of G.

pectorale under slow pyrolytic conditions with three different

heating rates. At 10 and 20°C/min, the heating rates yielded

near-straight lines that fit the experimental curve.

However, at 5°C/min, the line produced differs from the

experimental curve.

FIGURE 8
Combined kinetics plot of G. pectorale at heating rates of 5, 10, and 20°C/min.

FIGURE 9
Normalized model function f(α)/f(0.5) with different ideal models.

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Altriki et al. 10.3389/fbioe.2022.925391

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.925391


Figure 9 shows model-fitting kinetics with master plot

agreement with five different models. These models are the

most likely reaction mechanism for a single-step reaction. A

third-order (F3) corresponded to the combined kinetic

parameters obtained in this study. The obtained kinetics order

at different heating rates is shown in Table 4, the order is slightly

lower than reported by (Alshareef and Ali, 2020) in the pyrolysis

of halophyte. By the high reaction order indicates random

nucleation within the particles during pyrolysis (Xu et al., 2017).

3.7 Artificial neural network prediction

MLP based ANN regressionmodels were trained and five better

performing models were retained. The most suitable model was

selected on the basis of the highest correlation coefficient and lowest

sum of squared errors during training, testing and validation of the

data sets. The structure of the best performing network at different

heating rates was MLP 4-10-1. MLP based ANN model containing

10 hidden layers with exponential function in the hidden layers and

sine function in the output layer returned excellent correlation

coefficient. MLP 4-10-1 was therefore used to understand the

microalgae biomass conversion process through pyrolysis. The BFGS

algorithm for the said model reached optimal outcomes after 62 cycles.

The regression graph in Figure 10 shows the correlation

between the target and the model output values. The high

correlation coefficient implies good agreement of the model

output with the experimental target values.

To see the performance, MLP 4-10-1 was used to predict the

activation energy at different heating rates. As can be seen from

Figure 11, MLP based ANN regression model can predict activation

energy accurately for different heating rates as a function of conversion.

R2 value reached to 0.999. MLP based ANN performed better than

ANN results reported in a recent study on the thermal degradation of

green river shale (You and Lee, 2022) where heat flow, heating rate and

difference in conversion were chosen as inputs. There model

performance was relatively poor at lower heating rate.

4 Conclusion

G. pectorale was grown to analyze its growth, CO2 fixation

capacity, thermogravimetric analysis (TG), derivative

thermogravimetric analysis (DTG), and elemental analysis to

TABLE 4 Summarizes the combined kinetics plots of G. pectorale at three different heating rates.

Heating rate [oC/min] Ea [kJ/mol] ln(cA) [1/s] n [−] m [−]

5 71.5 ± 2.5 9.7 ± 0.5 3.38 ± 0.04 0.4 ± 0.04

10 99.9 ± 3.3 15.6 ± 0.7 3.61 ± 0.06 −0.43 ± 0.06

20 82.6 ± 9.6 12.1 ± 1.9 3.07 ± 0.18 −0.18 ± 0.18

FIGURE 10
Regression plot of the ANN model output with the
experimental target.

FIGURE 11
Prediction of activation energy as a function of conversion at
different heating rates.
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estimate its energy content. Growth was carried out under

different culture conditions in two different media, reporting

the highest biomass productivity, and the CO2 fixation rate was

obtained from TAP culture and 3NBBM with a concentration of

2% CO2, respectively. The highest biomass concentration

achieved after 14 days of cultivation was 1.08 g/L. As a result,

TAP is considered a better medium compared to 3NBBM for the

cultivation of G. pectorale. This shows that G. pectorale prefers

organic carbon over inorganic carbon (CO2). TG-DTG curves at

5, 10, and 20°C/min indicated the presence of multiple peaks and

active pyrolysis zones due to the multicomponent biomass of

microalgae (carbohydrates, protein, and lipids). In addition, the

kinetics of G. pectorale was studied using model-free and model-

fitting methods. The predicted activation energy values of the

Friedman, FWO, KAS and Popescu models indicated excellent

agreement with the experimental values (R2 > 0.96). The higher

values of 200 kJ/mol of Ea obtained suggest that algal lipids are

more difficult to decompose in the N2 atmosphere. Moreover, it

was found that the most probable reaction mechanism for the

pyrolysis of G. pectorale was the third-order function. Also, the

F3 model-fitting method gave a good prediction. The study

showed the effectiveness of MLP based ANN regression model

for the prediction of activation energy at different heating rates.

Further investigations must be conducted on the heterotrophic

andmixotrophic cultivation using different organic molecules for

lipids production. Detailed characterization of the strain with

respect to its biomolecules is also recommended. As this

microalga showed a preference for organic carbon, it is

recommended to use this strain for treatment of high organic

load wastewater.
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