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Haplotype-based analyses have recently been leveraged to interrogate the fine-scale
structure in specific geographic regions, notably in Europe, although an equivalent
haplotype-based understanding across the whole of Europe with these tools is lacking.
Furthermore, study of identity-by-descent (IBD) sharing in a large sample of haplotypes
across Europe would allow a direct comparison between different demographic histories
of different regions. The UK Biobank (UKBB) is a population-scale dataset of genotype
and phenotype data collected from the United Kingdom, with established sampling of
worldwide ancestries. The exact content of these non-UK ancestries is largely uncharac-
terized, where study could highlight valuable intracontinental ancestry references with
deep phenotyping within the UKBB. In this context, we sought to investigate the sam-
ple of European ancestry captured in the UKBB. We studied the haplotypes of 5,500
UKBB individuals with a European birthplace; investigated the population structure
and demographic history in Europe, showing in parallel the variety of footprints of
demographic history in different genetic regions around Europe; and expand knowledge
of the genetic landscape of the east and southeast of Europe. Providing an updated map
of European genetics, we leverage IBD-segment sharing to explore the extent of popula-
tion isolation and size across the continent. In addition to building and expanding
upon previous knowledge in Europe, our results show the UKBB as a source of diverse
ancestries beyond Britain. These worldwide ancestries sampled in the UKBB may com-
plement and inform researchers interested in specific communities or regions not lim-
ited to Britain.
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Recent studies utilizing haplotype- (or “chunk”-) based approaches (1) have demonstrated
a wide-spread fine-scale genetic structure in multiple regional populations, particularly
within Europe (2–9). These studies have revealed a varied genetic structure whose land-
scapes often echo historical groups or events, commonly utilizing individuals with genea-
logical ancestry from specific subregions and thus being able to compare geographic and
genetic similarities. This work has understandably focused on specific regions, elucidating
their fine-grained histories and genetic structure, which is fundamental in designing studies
of rare variation and its association with traits of interest in specific populations. However,
these geographically localized studies have meant that a similar understanding of the haplo-
typic landscape across the span of Europe has yet to be attained.
At the same time as improvements into the study of genetic history with haplotype-

based coancestry information (1, 10, 11), identical-by-descent (IBD) segments have been
increasingly used in population history inference (12, 13). IBD segments are contiguous
spans, haplotypes, of the genome that are identical between two individuals. This state of
shared identity reflects at that the haplotypes are copies that descend from a common
ancestor in the pairs’ “recent” genealogical past. Patterns of IBD segment sharing between
groups of individuals from the same population reflect that population’s demographic his-
tory, including population structure (12, 13), recent effective population size (14, 15), and
migration rates (5, 16). Furthermore, IBD segments can also be used to identify genomic
regions carrying disease-related variants (17–19)—highlighting the wide applicability of
haplotype data in understanding history and disease. Self-matching of IBD segments,
so-called “runs of homozygosity” (ROH), have additionally been used to both explore pop-
ulation history (20, 21) and disease association (22)—especially in small and/or endoga-
mous populations where ROH are more common than in large outbred populations.
Motivated by recent haplotype-based analyses of specific European populations

(2–4, 7, 23) and developments in haplotype-based analytical approaches (7, 11, 15),
we sought to describe the patterns of haplotype diversity across the span of Europe.
Since previous analyses of the genetic structure (24, 25) and haplotypic diversity (26)
within Europe, new methodologies utilizing haplotype and IBD-segment data have
become available, as have large genomic datasets of European ancestry such as the UK
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Biobank (UKBB) (27). Therefore, we aimed to address several
research questions in European genetics:

1) What sample of European genetics is found in the UKBB
dataset?

2) Utilizing chunk-based haplotype methods, how does the genetic
structure found within this large European sample match and
inform on previous European population genetics research?

3) What is the diversity of demographic histories captured in
this sample of European haplotypes?

Results

A European Sample from the UKBB. Investigating the genetic
landscape of Europe, we subsetted individuals form the UKBB
(27) who sample European genetic diversity across the continent.
This process included selection based on UKBB phenotype
data as well as initial genetic analysis and is described fully in
Methods. In total, 5,550 individuals from 47 European countries/
regions (henceforth regions) that spanned the continent were
used to investigate the European genetic landscape (Fig. 1).

This European sample refines and expands upon previous
work (24). A principal component analysis (PCA) of the allele-
frequency-based genetic relationship matrix using PLINK
(28, 29) shows that the genetic landscape of Europe is one pri-
marily of gradients. These gradients link genetic regions to one
another typically by land but also by sea, as is evidenced in the
south of Europe between Italy and Greece and in the Near
East populations captured in this dataset. The spread of sam-
ples in this genetic space from each region varies (SI Appendix,
Supplementary Data 2), with samples from most regions form-
ing a primary cluster reflective of their common ancestry. Some
regions appear more heterogenous such as Germany or Malta
(SI Appendix, Supplementary Data 2 and Figs. 2.3 and 2.5),
suggestive that a substantial fraction of individuals in the data-
set have a recent genetic ancestry that does not match most
individuals with the same place of birth label, possibly due to
modern economic or other recent migration within the conti-
nent. Due to this heterogeneity in birth-location label versus
principal component (PC) coordinates, using a separate PCA,
we projected our European sample to western Eurasian referen-
ces from the Human Origins dataset (30). We found agreement
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Fig. 1. A sample of European structure in the UKBB. (A) The number of individuals included from each European country analyzed. Countries are grouped by
geographic region; these regions are chosen as a means of group representation and do not necessarily imply historical links. Sample sizes from each region
are also shown. Abbreviations are as follows: SE Europe (southeastern Europe), S Europe (southern Europe), E Europe (eastern Europe), C Europe (central
Europe), N Europe (northern Europe), W Europe (western Europe), Brit. & Ire. (Britain and Ireland). (B) The sample counts for each European region. (C) The first
two PCs calculated by PLINK of 5,500 European individuals. Individual genotypes are shown by letters that encode the alpha-2 ISO 3166 international standard
codes and are color coded according to geographic region. The median PC for each country/region of birth is shown as a label. Plots were generated using the
ggplot2 package (65) in the R statistical computing language (59).
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between the equivalent labels suggesting the UKBB sample to
be representative of the overall structure in Europe.
Interestingly, there appears to be a common cluster of individu-

als projected onto the same PC space who collectively do not
match the ancestry of individuals with their reported place of
birth. A substantial number of individuals of Hungarian, Czech,
or Russian birthplaces appear to be members of this cluster.
Indeed, these individuals separate together on PC six (SI
Appendix, Fig. 2.9). This suggests a community of individuals
with shared common ancestry that is not private to one European
country but is more common in samples from Eastern Europe.
To further explore the possibility of genetic communities not well
captured by country-of-birth-based labels, we sought to cluster
individuals based on degrees of haplotype sharing.

Haplotypes Mirror European Geography. Conventional haplotype-
based approaches (1) struggle to scale to the size of this large sam-
ple of European haplotypes. We therefore applied a combination
of approaches to organize our European sample into labels based
on genetic relationships. We summarized genetic relationships
between haplotypes using the “paint” algorithm implemented in
the “pbwt” program (31), which scales better at higher sample
sizes than the more utilized “ChromoPainter.” Next, we applied
the recent network clustering algorithm the Leiden method (32)
implemented in the R package “leidenAlg” to cluster individuals
iteratively. This allowed a scalable methodology to explore the
population structure in this large sample (Methods).
Using the Leiden algorithm, we clustered individuals over a

four-step recursive method, allowing us to group related clusters
together, which are summarized in the dendrogram output of the
Leiden algorithm (Fig. 2). To aid cluster interpretation of the 41
identified clusters, we performed several additional analyses. We
recorded region membership per cluster (Fig. 2 and Dataset S1),
visualized the structure captured in the pbwt coancestry matrix
by performing PCA (Fig. 2), presented “ADMIXTURE” compo-
nents stratified by cluster (SI Appendix, Fig. 4.1), and compared
clusters to Human Origins references (SI Appendix, Fig. 4.2).
Adapting an approach using the “non-negative-least-squares”
function (2) to estimate ancestry profiles, we estimated propor-
tions of haplotype sharing between the 41 clusters to detect
recent gene flow and further elucidate relationships between clus-
ters (SI Appendix, Fig. 4.3). Finally, we also assessed intercluster
distance using total-variance-distance estimates (2) (Dataset S2)
and FST (Dataset S3) using “ADMIXTOOLS2” (Methods).
PCA of the pbwt paint coancestry matrix refines our initial

PCA based on allele frequency covariances (Fig. 2). It provides
more separation of clusters of individuals in the PC space and
consistent with similar decompositions of ChromoPainter coan-
cestry matrices (1). We further discuss a comparison of allele-
frequency- and haplotype-based PCA results in SI Appendix,
Supplementary Data 3. Clustering of coancestry sharing results
in three broad groups of clusters, as organized into three pri-
mary branches of a dendrogram by the recursive R implementa-
tion of the Leiden algorithm (Fig. 2). These groups correspond
to individuals predominantly born within the northwest of
Europe (NW Europe), center and east of Europe (CE Europe),
and the south of Europe (S Europe). We highlight interesting
information or findings from these regions below; for a full dis-
cussion of the clustering and ancestry of these clusters see SI
Appendix, Supplementary Data 5.

NW Europe. The NW Europe branch contains individuals pre-
dominantly from Scandinavia, the Low Countries (Netherlands
and Belgium), France, Switzerland, the British Isles, and

Ireland. Differentiation is low within this branch, as evidenced
from an average within-branch fixation index (FST) value of
0.0006 (Dataset S3) and more limited dispersal in PC space
(Fig. 2). The NW Europe branch is divided into two main sub-
branches, separating British and Irish individuals (i.e., those
with a British or Irish birthplace) from continental Europeans.
We detect 15 clusters of predominantly British or Irish mem-
bership, which we attribute to the larger sampling numbers
from Britain resulting from treating each country within the
United Kingdom as a separate sampling region. We observed a
split in Britain and Ireland between the eastern populations of
the British Isles (e.g., England and Wales) and the northwest-
ern (e.g., Ireland and Scotland). We report genetic results from
the Channel Islands, an archipelago off the northern French
coast. Additionally, one cluster of predominant French mem-
bership (“France”) groups with English clusters, possibly reflect-
ing gene flow across the channel or a signature of genetic affin-
ity of northwestern France with neighboring Britain (23, 33).
Evidence of such admixture is supported in our “nnls” analysis,
where France is a mixture of “England 2” and another French
membership cluster, namely, “France & Switz.”

Forming an outgroup to the rest of the branch, French,
Swiss, Belgian, Dutch, and Scandinavian individuals are
branched together, with subbranches separating Scandinavian
countries (including Denmark) from the others. All 17 Icelan-
dic individuals sampled are branched with Norwegians, which
we attribute to the small sample of Icelandic individuals. In the
nnls analysis we observe that the Netherlands and Denmark
clusters show evidence of haplotype sharing consistent with
their geographic proximity.

Central-Eastern Europe. The CE Europe branch contains the
following three subbranches: NE Europe (with Baltic, Polish,
and Russian membership), CE Europe (with membership from
the north of the Balkans and the center and east of Europe),
and Finland as an outgroup. Consistent with previous observa-
tions (34, 35) Finland shows evidence of isolation from other
European regions, projecting away in PC space and showing
high differentiation in FST and total variance distance (TVD)
values (Datasets S2 and S3). The majority of Estonian individ-
uals are placed in the “Mixed Scand.” cluster that also groups
Swedish, Norwegian, and Finnish individuals who project
between Finland and the rest of Scandinavia.

Individuals from the Baltic countries Latvia and Lithuania
are clustered together. Estonian individuals project intermedi-
ately between Finnish and Baltic–Russian individuals in PC
space (Fig. 1), suggesting Finish to Baltic gene flow. Grouped
with the “Latvia & Lithuania” clusters are two clusters of pre-
dominantly Polish and Russian membership, respectively,
forming a cline from east to west (Fig. 2).

The CE Europe branch bridges northeastern and western
Europe in PC space (Fig. 2), containing two clusters, namely,
“CE Europe 1 and 2.” The latter groups individuals from more
western countries and the former more eastern, apparently
reflecting the east to west cline in central Europe. This gradual
cline in central European genetics (Fig. 2) highlights the need
for analyzing continuous genetic data concurrently with cluster-
ing analyses for full context of such genetic structure.

The two clusters of northern Balkans membership include 246
of the 448 individuals from the Balkans/SE Europe region (which
we additionally associated Romania with). Cluster membership is
predominantly from countries north of Albania/Greece/North
Macedonia—suggesting a north/south divide on the peninsula that
is echoed in PCA (Fig. 2). The “NW Balkans” and “NE Balkans”
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clusters demonstrate a further geographic cline from east to west,
with the former grouping Croatian, Bosnian and Herzegovinian,
and Serbian individuals and the latter Romanian and Bulgarian.
Our nnls analysis models more southern ancestry (proxied by
Greek individuals) in the NE Balkans cluster than the NW (SI
Appendix, Fig. 4.3).

Southern Europe. Leiden clustering yields three broad groups
of clusters with southern European membership, as follows: one

grouping individuals born around the eastern Mediterranean (i.e.,
Italy, Greece, Turkey, and Cyrpus), the Iberia Peninsula (Spain
and Portugal), and finally two outgroup clusters (“Mixed Euro-
pean” and “Malta”).

Most sampled Greek individuals form a single cluster that in
the nnls analysis is modeled as a mixture of haplotypes from
neighboring southern clusters such as “Italy” and “Turkey,” but
as well haplotypes from the north from NE Balkans. We
observe a smaller cluster grouped with the “Greece” cluster on
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Fig. 2. Leiden clustering of 5,500 Europeans from the UKBB. (A) The dendrogram of Leiden clusters, grouping them according to their hierarchical relation-
ships. The three main branches are color coded, with additional subdivisions shown as vertical lines. Each of the 41 cluster labels are shown alongside their
associated color and shape coding. (B) The membership of each of the 41 Leiden clusters. Along the x axis shows country/region of birth, and along the
y axis cluster membership. The heat map shows the proportion of individuals from each country of birth in each cluster (Freq), and the absolute number.
(C) The first two PCs of the pbwt paint chunkcounts coancestry matrix. Each point represents the phased genotype of an individual, color and shape coded
according to Leiden cluster membership, using the convention shown in A. Additional labels are shown to show the broad European region that individuals
were born from. Plots were generated using the ggplot2 package (65) in the R statistical computing language (59).
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the dendrogram (Fig. 2) that contains all sampled Albanian
individuals and also projects separately to Greece in PCA; this
finding is suggestive of an additional structure that we explore
in our IBD-based analyses below. Elsewhere in this branch are
the majority of Cypriots, Turkish, and Italian samples grouped
into their own three respective clusters. In Italy, our clustering
approach does not resolve the north–south clustering previously
observed (4). In the Iberian branch, we group individuals from
Spain and Portugal into their own respective clusters that is
consistent with previous findings (3), although the “Portugal”
cluster contains approximately a quarter of sampled Spanish
individuals. In addition, a cluster of mixed French and Swiss
membership (France & Switz.) is grouped with Spain and Por-
tugal, appearing to group individuals with haplotype sharing
between Switzerland, Italy, France, and Spain in the nnls analy-
sis (SI Appendix, Fig. 4.3).
We report to our knowledge the largest sample of dense

genome-wide genotypes from the small Mediterranean archipel-
ago of Malta (n = 200). In PCA, these are distributed along a
gradient along PC seven, forming three clusters. The first con-
tains Maltese individuals who projected separately from the rest
with British samples. The other two project away from these
Maltese samples, with one equidistant between the British–
Maltese individuals and another of sole Maltese membership in
PC space (SI Appendix, Supplementary Data 6). Our Leiden
clustering groups these latter 2 groups of samples into 1 cluster
of 79 individuals and the former into clusters of predominant
British membership. These results suggest recent western European

gene flow into Malta, with the intermediate PCA cluster of Maltese
individuals consistent with first-generation offspring of ancestral
Maltese and western European parents. Nevertheless, we identify a
core cluster of Maltese membership who project onto the same PC
space as Human Origin references and with who we investigate the
Maltese demographic history below.

Finally, we observe that Leiden clustering identifies a cluster
whose membership includes the individuals who separate out
along PC six of the PLINK-based PCA. As describe above, these
individuals have a mixture of European birthplaces, with a slight
bias toward central or eastern Europe. Previous work has shown
evidence that the British Jews have been sampled by the UKBB
(36). To test whether the membership of this cluster included
substantial Jewish ancestry, we utilized references from the
Human Origins dataset performing f-statistic tests of allele shar-
ing (37) (see SI Appendix, Supplementary Data 7) and found
strong evidence that this cluster indeed reflects a community with
Ashkenazi Jewish ancestry.

Footprints of European Demography. Having identified geneti-
cally homogenous clusters of individuals, we sought to address
our third research question pertaining to the landscape of
demographic histories within Europe. We leveraged IBD-
segment sharing to investigate both the strength and age of iso-
lation (Fig. 3) and the population sizes of each of the clusters
over the last ∼2,000 y (Methods) (Fig. 4 and SI Appendix, Figs.
8.1–5). Complementing these IBD-based approaches, we esti-
mate inbreeding coefficients (FROH and FSNP) to explore the
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evidence of small-effective population size versus endogamy
(Fig. 5).
We first differentiated demographic histories characterized

by long IBD-segments shared within populations (for example,
recently isolated or practiced endogamy) from those character-
ized by large numbers of short IBD-segments (for example, a
historical bottleneck). For individuals within the same cluster,
we plotted the per-individual mean total length of IBD versus
the mean number of IBD segments shared (Fig. 3), showing
the overall distribution of such values across all clusters (Fig. 3,
Left) and focusing on subbranches of related clusters (Fig. 3B).
Generally, we confirm a broad south–north gradient of increas-
ing haplotype sharing in Europe. Individuals of Finnish ances-
try present some of the highest levels of within-population IBD
sharing in our sample of European haplotypes and is predomi-
nated by sharing of short IBD-segments. These Finnish results
are consistent with a historical bottleneck and previous genetic
observations (38, 39), as well as one of the lowest estimated his-
torical Ne in our analysis (Fig. 4) and average coordinates of
the inbreeding coefficient that is the proportion of the genome
covered by ROH > 1.5 Mb (FROH), and the inbreeding coeffi-
cient that is measured by the observed versus the number of
expected homozyotes (FSNP) for the Finnish clusters (Fig. 5).

Although S Europe trends toward a larger historical effective
population size (Ne) and low levels of haplotype sharing (e.g.,
within Italy), there are notable exceptions. Maltese genetic dif-
ferentiation is expanded upon in IBD-segment analysis (Fig. 3)
and agrees with previous IBD estimates from a smaller Maltese
sample (40). Malta has a slightly lower average within-cluster
total IBD length than Finland, although the average Maltese
IBD-segment is longer (Malta IBD segment = 3.17 cM, Fin-
land = 2.07 cM), suggesting a more recent source of this ele-
vated sharing. These results are matched by low historical Ne.
FROH and FSNP analysis show that autozygosity is consistent
with a historically small Ne rather than consanguinity in Malta.

Within SE Europe, both Turkey and Cyrpus exhibit elevated
haplotype sharing (Fig. 3), as well as a lower historical Ne (Fig. 4)
and evidence of modest consanguinity (Fig. 5). The IBD sharing
profile of the Albania and Greece cluster supports evidence of
isolation, with elevated haplotype sharing that is equivalent to
that found in northeastern Europe (Fig. 2). Albania and Greece
also present a consistently lower Ne than Greece, and FROH/FSNP
results are consistent with isolation. Elsewhere in SE Europe, we
observe NW Balkans presenting slightly longer within-cluster
IBD segments than NE Balkans, which is matched with a consis-
tently lower Ne and elevated ROH—suggestive of a smaller
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population than the northeast of the Balkans or neighboring
central Europe to the north. Interesting, we find that a subset of
Spanish individuals who present elevated within-cluster IBD-seg-
ment sharing differ with those of most in Spain (Fig. 3). In a
focused analysis (SI Appendix, Supplementary Data 9), we con-
clude that these represent a distinct community or population
clustered with other Spanish individuals who nevertheless exhibit
elevated haplotype sharing consistent with isolation. These indi-
viduals project from other Spanish individuals in PC six (SI
Appendix, Supplementary Data 9) and when projected on top of

Human Origin references project toward “Spanish North” or
“Basque” references (SI Appendix, Fig. 4.2).

Continuing previous observations of elevated haplotype shar-
ing in island populations, we confirm previous signatures of
isolation in island communities in northern Britain and expand
with more results. We observe increased haplotype sharing of
the British archipelago communities of Orkney, the Channel
Islands, and the Isle of Man (Fig. 3) that is consistent with pre-
vious observations from Orkney (2), showing results from the
Channel Islands and expanding upon previous analyses of the
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Isle of Man (9). These footprints appear to be more pronounced
in Orkney, with a smaller Ne 10 generations ago (Fig. 4), as well
as slightly longer IBD segments than those shared within the
Channel Islands (Orkney IBD segment = 2.18 cM, Channel
Island segment = 1.86 cM, Isle of Man segment = 1.90 cM).
While Icelandic individuals do not form a private cluster
(Fig. 2), there is evidence of elevated IBD sharing consistent
with previous observations of homogeneity (41). We observe
an increase of the total length of IBD and number of IBD seg-
ments between “Norway” Icelanders (i.e., Icelandic individuals
placed in the cluster Norway) (45.9 cM and 20 segments,
respectively) compared to that observed between Norway
Norwegians (22.6 cM and 14 segments). This difference was
significant both for total length of IBD (Mann–Whitney U,
P = 4.5 × 10�11) or number of segments (Mann–Whitney U,
P = 1.1 × 10�10).
Lastly, in an analysis of country-of-birth versus PCA of

genetic relationship matrices, and network-based clustering
methods, we have identified a community of individuals sampled
from the UKBB with evidence of Ashkenazi Jewish ancestry. An
analysis of haplotype sharing patterns supports a population of
increased haplotype sharing that is intermediate between our
Finnish and Maltese profiles (Fig. 3), with a low historical Ne 30
generations ago that has expanded within the past 10 generations
(Fig. 4) and an increase in homozygosity (Fig. 5). In a focused
analysis, we show that this cluster contains two broad groups of
individuals, as follows: one with elevated haplotype sharing, with
more and longer IBD and ROH detected, and another with a
mixture of ancestries reflective of individuals with a recent
admixture outside of the community and a generally higher his-
torical Ne. This cline of elevated haplotype sharing is captured
by PC three of the PCA of the pbwt paint coancestry matrix.

Discussion

Utilizing a subset of 5,500 individuals from UKBB (27), we
have demonstrated that the dataset contains a wealth of ances-
tries not limited to that ancestral to Britain or Ireland, which
may be of interest to researchers interested in communities
with non-European ancestry potentially sampled in the UKBB.
We have leveraged a large European sample to present an
updated map of the genetic structure present across the conti-
nent and provide insights into the footprints of demographic
histories within Europe. While our haplotype-based clustering
analysis divides this sample into three main branches of S, CE,
and NW Europe, lower dimensional analyses reveal that the
genetic landscape of Europe is one of clines. Undoubtably,
focused studies on individual European populations have
revealed illuminating insights into fine-scale structure and pop-
ulation histories of those regions (2, 4, 7–9, 23, 33, 38). This
analysis of the overall structure of Europe using a Europe-wide
sample has been able to show the connected haplotypic land-
scape of Europe together, as well as leveraging IBD sharing and
ROH to demonstrate European genetic histories in parallel.
This work has also demonstrated the potential utility in bio-

banks like the UKBB in exploring the genetics of populations
outside of their sampled region (i.e., the British Isles). World-
wide ancestries have been shown to be captured by the UKBB
(42), and this work has demonstrated that the selection of key
phenotypes with an initial analysis of global ancestries can pro-
vide an informative sample of a continental group. The com-
parison with ancestry-ascertained references from the Human
Origins dataset (30) demonstrates good overlap between the
distribution of ancestries captured, although it is possible that

we are not able to account for subtle biases in fine-scale regional
structure. Furthermore, we expect some bias in the ancestry of
individuals from each country who were able to move to the
United Kingdom and participate in the UKBB, which may fur-
ther bias these subtler local regional structures.

Our results have implications for genetic mapping, for example
via the characterization of genetic isolates. The haplotype profile
displayed by Malta is significant in this context. The footprints of
isolation in the primary Maltese cluster are comparable to more
documented isolates such as Iceland, Finland, or Orkney. We are
confident that our results are representative of the overall Maltese
genetic profile for several reasons. In sampling individuals from
Malta, we observe three groups of individuals in PCA, as follows:
one of individuals placed mainly in clusters of British member-
ship, one forming the majority of the Malta cluster, and another
projecting in between the former two. We therefore already iden-
tify recent migrants to the island who do not represent the histori-
cal ancestry there. The collective genetic profile of the Malta
cluster is also consistent with previous literature, where Maltese
uniparental data (43) and limited autosomal STR data (44), as
well as analysis (40) of a small sample of Maltese SNP-array geno-
types from the Human Origins dataset (30) have shown evidence
of an island genetic isolate. Indeed, these Human Origin Maltese
genotypes colocate with our sample in the projected PCA (SI
Appendix, Fig. 4.2). Our results, in the context of disease mapping
work highlights the potential of this isolate community in genetic
mapping efforts. As similarly argued recently by Borg et al. (45),
identifying such isolates for study has the potential to expand cap-
tured rare, community-specific disease variation and aid genetic
disease research.

Our result highlights other communities relevant to genetic
mapping efforts, some that are well established in the literature
such Orkney and Shetland (20, 21, 46, 47) or the Basque
(48–51) and some novel, e.g., the Channel Islands. The Channel
Islands are an archipelago of isles off the northern coast of France
and are a British dependency. Arguably, our sampling scheme,
i.e., birthplace, is not specific to the islands compared to other
previous British sampling ascertainments (2, 9), and this is dem-
onstrated where individuals with a Channel Island birthplace are
found in a number of British clusters (Fig. 2). Nevertheless, we
do identify a cluster of predominant Channel Island membership
that is distinct in IBD analysis. It presents a profile like that in
Orkney, suggesting there is a community of reduced haplotype
diversity on the islands, which warrants further study.

We improve sample coverage in SE Europe where sampling
has been lower than other European regions in previous analyses
(52–54). Our results demonstrate a north–south cline in this
region at the crossroads of S Europe, the Near-East, and NE
Europe. This cline is associated with higher haplotype sharing in
the north and haplotype affinity to Italy in the south. Our obser-
vations expand upon and agree with previous work that included
Balkans genotypes (54), observations of a genetic cline on the
peninsula (52), and relationship with northern European genet-
ics (53). Greece in the south appears genetically distinct in our
analysis, although this may be driven by the higher sample size
of Greek samples compared to other regions with the peninsula.
Interestingly, we capture a community of relatively isolated indi-
viduals (“Albania & Greece”), with haplotype sharing equivalent
to Orcadian or Mixed European individuals. This small cluster
(n = 38) consists of Albanian, Kosovan, and some North Mace-
donians. Whether this is a specific immigrant community sam-
pled by happenstance in the UKBB or a feature of the region is
unclear, and expanded sampling within this region may further
elucidate how varied the haplotype landscape of this region is.
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Elsewhere in S European genetics, we have studied a
genetic community of individuals that we denote as Mixed
European. Although we discuss in more detail in SI Appendix,
Supplementary Data S7, to summarize, we show using f-statistics
(37) that these individuals share ancestry with Ashkenazi Jewish
references from the Human Origins dataset as well as projec-
ting onto the same PC space (SI Appendix, Fig. 4.2). The
demographic profile from haplotype sharing and estimated his-
torical Ne of individuals within this cluster matches well with a
proposed demographic model from a previous study of Euro-
pean Ashkenazi Jews (55) with a bottleneck 25 to 35 genera-
tions ago with a subsequent period of population expansion.
This model included admixture between southern European
and Middle Eastern sources and latter Eastern European sour-
ces (55), which match our nnls sharing patterns of IBD (SI
Appendix, Fig. 4.3).
Overall, our work has demonstrated a utility of large cosmo-

politan biobank studies in providing an informative continental
sample of European genotypes. We have leveraged this to
expand the map of the European genetic landscape and show
genetic signatures of interest to geneticists. The use of joint
analysis of both chunk- and IBD-based haplotype analysis
shows that they complement each other to interrogate the pop-
ulation structure and demographic profile of different commu-
nities on the continent. This work raises the possibility of
similar analyses of non-European communities within the
UKBB, as well as highlighting the need for focused genomic
analysis on European regions not typically captured by large
datasets to provide fine-scale insights into their genetic history
and current stratification of genetic variation.

Methods

Identification of European Sample of UKBB. To select a European sample
of genotypes from the UKBB, multiple filtering steps were carried out by firstly
selecting individuals based on phenotype codes provided in the UKBB. Pheno-
type codes are indicated with a F.X coding, where X is a numerical code. Further
data coding within each of these phenotypes are indicated with a C.X coding,
where X is a numerical code. We first selected individuals with an ethnicity
(F.21000) that was either “White” (C.1), “White British” (C.1001), “White Irish”
(C.1002), “any other white background” (C.1003), or “other ethnic group” (C.6).
The proportions of these ethnicity labels in each European country of birth group
label and Leiden cluster are shown in SI Appendix, Supplementary Data 1.

These individuals were further filtered based on a birthplace (F.20115) from
Europe (C.300-C.400), excluding countries from central Asia or Caucus (Armenia
(C. 303, n = 5), Azerbaijan (C. 305, n = 6), Georgia (C.319, n = 4), and Kazakh-
stan (C.327, n = 15)) and also excluding United Kingdom (C.354) and Irish
(C.356) birthplaces. In addition to these individuals, we separately identified
individuals with a British or Irish birthplace (F.1647), selecting from England
(C.1), Wales (C.2), Scotland (C.3), Northern Ireland (C.4), and the Republic of Ire-
land (C.5). Furthermore, we identified additional individuals with a geographic
birth coordinate (F.129, and F.130, Easting and Northing) that corresponded to
the island(s) of Orkney (11e5 < Northing < 12.5e5, and 4e5 < Easting < 5e5),
Isle of Man (2e5 < Easting < 2.5e5, and 4.5e5 < Northing < 5e5). Lastly, we
randomly down-sampled countries to 200 individuals if their sample size was
larger to retain comparable sample sizes between regions.

With this dataset, we performed initial PCA using PLINK (28, 29) to identify
ancestry outliers. With PLINK and raw single nucleotide polymorphism (SNP)
genotypes (F.22418), we filtered for autosomal genotypes, removing stand-
ambiguous SNPs (A/T, G/C); removing SNPs with missingness of >5%, minor
allele frequency (MAF) of <2%, and Hardy–Weinberg equilibrium (HWE) of
P <1e6; removing individuals with missingness of >5%; and removing one
individual from a pair of individuals related closer than third degree with KING
(56). We calculated PCs on a set of SNPs pruned with respect to linkage disequi-
librium using the PLINK command –indep-pairwise 1000 50 0.2. With these

PCs, we manually identified and removed overall outlier samples in European
samples indicative of non-European ancestry.

This left 5,500 individuals with a common set of markers that were non-
strand-ambiguous SNPs with missingness of <5%, MAF of >2%, and an HWE
P >1e6 (482,591 markers).

European Population Structure. To explore the sampled population struc-
ture of Europe from 5,500 individuals from the UKBB, we initially performed
PCA using PLINK (28, 29) and estimated ancestry components using the model-
based maximum likelihood method of ADMIXTURE (57). In each analysis, we
used the 5,500 individuals and 204,652 SNPs that had been pruned with regard
to linkage disequilibrium, i.e., they were independent markers. In ADMIXTURE
analysis, we modeled every individual as a mixture of k ancestral components
(from 2 to 7) over 10 replicate runs, choosing the replicate with the highest log-
likelihood and the lowest cross-validation error.

Comparing the ancestries of our European sample from the UKBB, we coana-
lyzed these with population references from the Human Origins dataset (30).
We selected 905 “West Eurasians” from the Human Origins dataset, selecting
ancestries within and adjacent to Europe for further context. We merged the gen-
otypes of the 4,920 UKBB Europeans and the 905 Human Origins West Eura-
sians, using the SNPs common to both datasets, and using PLINK (28, 29), we
selected individuals and SNPs with <5% missingness, a MAF of >2%, and a
HWE P >1e-6. We additionally pruned for linkage disequilibrium using the
plink command –indep-pairwise 1000 50 0.2, leaving a final common SNP
count of 46,173 variants. We performed PCA, projecting UKBB Europeans onto
the genetic variation of the Human Origins West Eurasians in PLINK using the
–within and –pca-cluster-names in conjunction with the –pca command.

Chunk Haplotype Analysis. Using the dataset of 5,500 Europeans and
482,591 markers, we phased haplotypes with Beagle v5.1 (58) using default
parameters and a recombination map of human genome build 37. These
phased haplotypes were subsequently used for both pbwt (31)-based and IBD-
based analyses. Due to the large sample size, “fineSTRUCTURE” clustering of the
CHROMOPAINTER coancestry matrix has a significant cost, indeed as does the
estimation of the CHROMOPAINTER coancestry matrix, although that is paralleliz-
able. We therefore instead utilized the pbwt (31) program to estimate the coan-
cestry matrix in a more scalable fashion and then utilized network community
clustering approaches to group our European sample into genetically related
communities.

Using the phased genotypes from Beagle, we calculated the coancestry
matrix for each autosome with the pbwt (31) utility’s paint algorithm, setting the
number per region as 100 to match default ChromoPainter (1) parameters. To
estimate the whole-autosome “chunkcounts” and “chunklengths” coancestry
matrices, we summed each of the per-autosomal coancestry matrices together.

With the pbwt paint chunkcount coancestry matrix as the input, we con-
structed a network graph using the statistical computing language R (59) and
the “igraph” (60) package. We constructed a network with every individual’s dip-
loid haplotype as a node and the chunkcount value between each individual as
edges. We filtered edges >2 and <25 to down-weight deep genetic relation-
ships as well as recent genetic relationship within the past few generations as an
equivalent to previous IBD-based network clustering approaches (12, 13). With
this network, we performed Leiden community detection (32) (henceforth
“clustering”). The Leiden method has been shown to be faster than the more
commonly used Louvain method (12, 13), as well as yielding communities that
are more connected, and when used iteratively, the nodes in the identified com-
munities are locally optimally assigned to clusters. We used the “leidenAlg,” an
implementation in R, rleiden.community function, using default parameters
with the exception of max.depth (we set this to 4 to perform a 4-step recursive
clustering process) and min.community.size (we set this to 100 to ensure small
clusters of <100 individuals were not attempted to be subdivided).

Visualizing haplotype sharing, we applied PCA to the pbwt paint chunk count
coancestry matrix with scripts provided by the authors of fs (1). We additionally
applied the R (59) implementation of the t-distributed stochastic neighbor
embedding (t-SNE) algorithm (61) to the top 10 coancestry PCs using default
parameters aside from max_iter= 2,000 (SI Appendix, Fig. 4.4).

Quantifying haplotype sharing profiles between Leiden clusters, we utilized a
modification of a regression nnls-based method to estimate ancestry profiles (2).
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Using the pbwt paint chunklengths coancestry matrix as the input, we estimated
haplotype sharing profiles for each Leiden cluster. Specifically, we modeled each
cluster as a “target” cluster, estimating the proportion of haplotype sharing
donated from P “source” clusters, where we treated every other Leiden cluster as
a potential source. For each target cluster of N individuals, we recorded a X
matrix that has N rows and P columns, recording the summed chunklengths
that each source cluster donates to each target cluster individual. We record a Y
matrix that records the mean summed chunklength estimates between each
source cluster. Using the same nnls adaption as used by Leslie et al. (2), we esti-
mate our equivalent of βg, the average proportion of haplotypes in an individual
in each target Leiden cluster that is most closely related to each source cluster.
We show these βg values in a heat plot (SI Appendix, Fig. 4.3). This approach
appears to identify the closest neighbors of haplotype identity, as well as recent
admixture (SI Appendix, Fig. 4.3), and thus does not capture the deep related-
ness between all Europeans (62).

To quantify genetic distance between these clusters, we calculated FST using
ADMIXTOOLS2 (63), an R package implementation of f-statistics that can also
calculate a Hudson estimate of FST. We calculated this between clusters using
204,652 SNPs that were pruned with regard to linkage disequilibrium. We
additionally calculated the TVD between clusters using the methodology of
Leslie et al. (2) and applying it to the pbwt chunklengths coancestry matrix. This
measures the difference between copying vectors of a pair of fineSTRUCTURE
clusters.

IBD Analysis. We detected IBD segments in our European sample with refine-
dIBD (v17Jan20.102) (64), detecting IBD segments with a minimum length of
1 cM. Genotyping and haplotype phase-switch errors can erroneously split true
IBD segments apart into shorter but adjacent detected segments. Therefore, we
used the merge-ibd-segments.17Jan20.102.jar utility to remove such breaks or
short gaps between IBD segments, removing gaps that contain at most one dis-
cordant heterozygote and less than 0.6 cM. To estimate Ne, we used the IBDNe
program (15), selecting IBD segments >4cM that were shared between individ-
uals belonging to the same Leiden cluster. We ran the IBDNe program, using
100 bootstrap samples to compute confidence intervals. We show the Ne esti-
mates for 30, 15, and 10 generations ago in Fig. 4, and show the full curves for
each cluster in SI Appendix, Supplementary Data 8.

Measures of Inbreeding F. Exploring the degree of isolation in our European
sample, we calculated two estimates of the inbreeding coefficient (F), namely,
FROH and FSNP (22).

FROH is defined as the fraction of the total genome (2,879,248,291 bp) in
ROH of >1.5Mb. We detected ROH using PLINK with the following parameters:

–homozyg-window-snp 50; –homozyg-snp 50; –homozyg-kb 1500; –homozyg-
gap 1000; –homozyg-density 50; –homozyg-window-missing 5; –homozyg-
window-het 1. No linkage disequilibrium pruning was performed.

FSNP is a SNP-based measure of inbreeding in the most recent generation
and is an estimate of FIS (22). We calculated FSNP using PLINK’s –het command
that is an implementation of:

FSNP ¼ OðHOMÞ � EðHOMÞ
N� EðHOMÞ

where O(HOM) is the observed number of homozygous SNPS, E(HOM) is the
expected number of homozygous SNPs given the HWE, and N is the total num-
ber of SNPs. We calculated FSNP separately for groups of clusters, as follows: NW
Europe (Belgium & France, Netherlands, Switzerland, Belgium, Denmark, Nor-
way, Sweden 1), N Britain & Ireland (N.Ireland & Scotland 1, N.Ireland & Scot-
land 2, N.Ireland & Scotland 3, N.Ireland & Scotland 4, Orkney, Ireland 1, Ireland
& N.Ireland, Ireland 2, Isle of Man), England & Wales (England 1, France,
England 2, Wales 1, Wales 2, Channel Islands), CE Europe (CE Europe 1, CE
Europe 2, NE Balkans, NW Balkans), E Europe (Poland, Russia, Latvia & Lithua-
nia), Finland 1 (Finland), Finland 2 (Mixed Scand.), S Europe (Italy, Greece, Alba-
nia & Greece, Turkey, Cyprus), SW Europe (Portugal, Spain, France & Switz.),
Mixed European (Mixed European), and Malta (Malta).

Data Availability. UKBB genotype data can be accessed from the UKBB
through the process specified at https://www.ukbiobank.ac.uk/scientists-3/
genetic-data/. The Human Origins genotype data with population labels can be
publicly accessed from the David Reich Lab at https://reich.hms.harvard.edu/
datasets.
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