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Antibiotic-resistant infections complicate treatment and increase morbidity and mortality. Mathematical modeling

has played an integral role in improving our understanding of antibiotic resistance. In these models, parameter
sensitivity is often assessed, while model structure sensitivity is not. To examine the implications of this, we first
reviewed the literature on antibiotic-resistance modeling published between 1993 and 2011. We then classified
each article’s model structure into one or more of 6 categories based on the assumptions made in those articles
regarding within-host and population-level competition between antibiotic-sensitive and antibiotic-resistant strains.
Each model category has different dynamic implications with respect to how antibiotic use affects resistance prev-
alence, and therefore each may produce different conclusions about optimal treatment protocols that minimize
resistance. Thus, even if all parameter values are correctly estimated, inferences may be incorrect because of the
incorrect selection of model structure. Our framework provides insight into model selection.

anti-bacterial agents; bacteria; bacterial infections; basic reproduction number; drug resistance; humans; models,

theoretical

Abbreviations: MRSA, methicillin-resistant Staphylococcus aureus; MSSA, methicillin-sensitive Staphylococcus aureus.

Antibiotic-resistant infections can lead to increased mor-
bidity and mortality and lengthened hospital stays (1, 2)
because of inadequate initial therapy and, in some cases,
increased virulence. Resistance to first- or even second-line
antibiotics forces the use of more expensive second- or
third-line antibiotics. These individual-level effects com-
pound at the population level because of transmission; com-
pared with effective treatment and pathogen clearance,
treatment failure increases transmission and thereby the total
number of cases, the total number of drug prescriptions, and
associated morbidity and mortality. In the European Union,
the annual cost associated with antibiotic-resistant infections
is estimated to be €1.5 billion (based on 2007 euros) (3),
while in the United States the value is estimated to be greater
than $16 billion (based on 2000 dollars) (4, 5).

Mathematical modeling has played an integral role in
improving our understanding of antibiotic resistance (6).
These models provide a platform for in silico experiments that
help us better understand mechanistic sources of uncertainty,
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generate refined hypotheses, and interpret empirical obser-
vations. Models make empirical experimentation more effi-
cient, and in silico experiments can be conducted at reduced
cost and avoid ethical dilemmas. Within-host models have
focused on: 1) emergence of antibiotic resistance (7), 2) micro-
bial fitness and selection for antibiotic-resistant strains com-
pared with antibiotic-sensitive strains (8, 9), and 3) antibiotic
tolerance (10). Population-level models have been used to bet-
ter understand and predict the effects of treatment protocols
such as antibiotic cycling (11).

Published models of the emergence and spread of anti-
biotic resistance have progressed from resistance models of
abstract agents in abstract settings (12, 13) to resistance
models of specific agents such as Mycobacterium tuberculo-
sis (14), Streptococcus pneumoniae (15), Staphylococcus
aureus (16), and Enterococcus (17) in more specified set-
tings, such as transmission between hospitals (18), within
hospitals and intensive care units (19), and within day-care
centers (20). These studies include a multitude of model
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structures that vary in complexity and inherent assumptions.
However, all models of antibiotic resistance include compe-
tition between antibiotic-sensitive and antibiotic-resistant
strains. To model this competition, a wide array of model
structures have been used, each reflecting distinct biological
mechanisms of competition, but model structure is rarely
justified. One exception to this is a study of S. pneumoniae
that extensively compared the effect of using different
model structures (21). In general, however, most articles on
antibiotic-resistance modeling have provided little justification
for the model structure chosen, nor have they considered
how alternative model structures affect their investigations’
inferences.

To examine the implications of this, we reviewed the
peer-reviewed literature on antibiotic-resistance modeling
published from 1993 to 2011. PubMed searches were car-
ried out using the search terms “(determinist* or stochast*
or compartment* or mathematic* or simulat*) and model*
and resist*.” We excluded all exclusively within-host mod-
els, pharmacodynamic-pharmacokinetic models, and reviews
that did not present novel work. We then grouped these arti-
cles into 6 categories based on common features of their
structures. This allowed us to create a unifying framework
composed of generic model structures that make explicit the
variety of model assumptions used with regard to within-
host and population-level competition between antibiotic-
sensitive and -resistant strains. We used this framework to
categorize all published articles into 1 or more of the 6
generic model structures. We also summarized how often
each model structure category was used in the literature and
each category’s threshold properties. We show that choice
of model structure affects the nature of inferences that can
be drawn in terms of population coexistence and dieout of
antibiotic-sensitive and -resistant strains.

FRAMEWORK DEVELOPMENT

This review focuses exclusively on articles that modeled
between-host dynamics. These studies all model the spread
of antibiotic-resistant and -sensitive bacterial strains from
one host to another. Often a distinction is made between
infection, defined as rapid bacterial overgrowth leading to
disease symptoms, and colonization, where there is stable
bacterial presence without disease symptoms. In this context,
colonization may sometimes lead to infection. In this paper
we are less concerned with these differences, focusing rather
on person-to-person spread of agents that either colonize or
cause infection. Because of this, we use the term infection
when either colonization or infection may apply.

Figure 1 shows how between-host models are categorized
on the basis of properties of within-host dynamics. Within a
host, resistant and sensitive strains can coexist either at equal
levels or where one strain predominates over the other. In
contrast, a host may be infected exclusively by a resistant or
sensitive strain if coexistence is not permitted. Within-host
competition can have differing results; if a host is infected
with 1 strain, there is potential for a novel strain to replace
the resident strain. If a host is superinfected with both sensi-
tive and resistant strains, a predominant strain may convert
from sensitive to resistant or vice versa. Based on these
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definitions, our model categories are determined by 1) the
extent of strain coexistence allowed within a host, 2) the
potential for replacement infection when a novel strain chal-
lenges a resident strain within a host, and 3) strain conver-
sion when a predominantly antibiotic-sensitive infection
converts to being predominantly resistant due to within-host
selection.

The extent of within-host strain coexistence can be char-
acterized by 3 possibilities. The top cluster in Figure 1 repre-
sents coexistence occurring within a host with strains at even
levels. This encompasses both the single-strain and superin-
fection model structures. Neither of these structures allows
replacement infection or strain conversion. These structures
differ in terms of reduced contagiousness when both strains
are present in a host; the single-strain model assumes no
such reduction, while the superinfection model does reduce
contagiousness when a host is superinfected. The middle
cluster in Figure 1 represents model structures that do not
allow within-host coexistence, encompassing the exclusive
infection and replacement infection model structures. These
structures also do not allow strain conversion. These 2 struc-
tures differ when a novel strain challenges an infected host;
in the exclusive infection model, the novel strain may not
infect and replace the resident strain, while in the replace-
ment infection model it may. Finally, the bottom cluster in
Figure 1 represents model structures for which within-host
coexistence occurs at uneven levels encompassing both the
unidirectional and bidirectional conversion models. In these
model structures, there is an implicit majority-minority rela-
tionship between the frequency of coexisting sensitive and
resistant strains within a host. Neither of these structures
allows for replacement infection, while both allow for strain
conversion. This conversion can be in 1 direction (unidirec-
tional), usually conversion of sensitive to resistant, or 2
directions (bidirectional), where predominantly sensitive
infections may convert to resistant and vice versa.

State transitions and the parameters involved

We constructed and analyzed the most generic forms of
the model structures presented in Figure 1. To ensure code
integrity, we used both Python 2.7.3 (www.python.org) and
Mathematica 8 (http:/www.wolfram.com/mathematica/) in
this process. The first and second columns of Figure 2
provide a description of each model structure as well as a
schematic. In these models, hosts belong in one of 4 states:
susceptible (S); infectious with antibiotic-sensitive bacteria
(Iw); infectious with antibiotic-resistant bacteria (I); and
superinfected, dually infected with both sensitive and resis-
tant strains (Iyz). These models characterize the transition
between the 4 possible states using differential equations.
The third column of Figure 2 lists the transitions between
states for each structure. The final column of Figure 2 lists
the published articles from the literature that used each
model structure. Each model structure is composed of 2 or
more of the 10 types of state transitions described below.
The section of the Web Appendix (available at http:/aje.
oxfordjournals.org/) entitled “Differential equation formula-
tions™ has greater detail on each model structure.
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Figure 1. Categorization of the antibiotic-resistant model structures found in an exhaustive literature review of between-host resistance models
published from 1993 through 2011. Model category was determined by: 1) the level of coexistence allowed within a host, 2) the potential for
replacement infection when a novel strain challenges a resident strain within a host, and 3) strain conversion when a predominantly antibiotic-
sensitive infection converts to a predominantly antibiotic-resistant infection due to selection within a host.

Sensitive infection (S to I,y). Transmission of antibiotic-
sensitive bacteria results from a mass-action process, the
product of the densities of people in the S and Iy, states and
the transmission parameter f,,, assumed to be specific to the
sensitive strain.

Resistant infection (S to I>). Transmission of antibiotic-
resistant bacteria results from a mass-action process, the
product of the densities of people in the S and I states and
the transmission parameter 3,, assumed to be specific to the
resistant strain. In subsequent analyses, we assume that 3, is
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Figure 2. Structures of antibiotic-resistance transmission models used in the literature on between-host antibiotic-resistance modeling, 1993—
2011. Each category is defined by its assumptions related to within-host strain coexistence, replacement infection, and strain conversion. Shown
are model schematics, the state transitions for each model structure, and the reference numbers of the published articles that used each model
structure.
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smaller than B, as one way to show that the resistant strain is
less fit than the sensitive strain in the absence of antibiotics.
Our analysis also considers the condition where 3, and B,,
are equal.

Sensitive recovery (ly to S). Recovery from infection
with the antibiotic-sensitive strain occurs at a constant rate
and is modified by the population antibiotic treatment level.
Thus, if there is no antibiotic treatment in a population,
recovery occurs at the innate recovery rate y. If the entire
population is receiving antibiotic treatment, recovery occurs
at a faster rate defined by y'. When some fraction of the pop-
ulation is taking antibiotics at one time, we assume that the
recovery rate from Iy is a function of v, y’, and the propor-
tion of the population receiving antibiotic treatment, €:

Y(1 —¢) +7e.

Resistant recovery (I to S). Recovery from infection
with the antibiotic-resistant strain occurs at a constant rate, vy,
that is not modified by antibiotic treatment.

Resistant superinfection (I to lyz). Superinfection tran-
sitioning from Iy, to Iy results from a mass-action process,
with the following force of infection:

B.(Iz + qlwz),

where g determines the contagiousness of a superinfected
host. If ¢ = 0.5, each strain in a superinfected host is excreted
at half the rate of that in hosts who are infected with only 1
strain (Iy or I). If ¢ =1, the contagiousness of each of the
strains from a superinfected host is identical to the conta-
giousness of monoinfected hosts; however, this superin-
fected host is in effect excreting for 2 people and therefore
would be twice as contagious as a monoinfected host.

One biological interpretation of g is the site-specificity of
each strain. If the sensitive and resistant strains each infect
completely distinct sites, we would expect the value of g to
be at or near 1. In this case, the presence of one strain would
not use up potential sites for the other; because of this, shed-
ding of both strains would not be altered from the situation
where only 1 of the strains is present. If the strains colonize
and infect identical sites while still coexisting, the value of g
would be at or near 0.5. In this case, the presence of one
strain uses up sites that the other would have potentially
used; if each strain uses roughly half of the sites (i.e., if there
is no fitness advantage of one over the other at this level),
we would expect the shedding resulting from each strain to
be halved compared with the situation where there is only 1
strain present. If there is somehow antagonism resulting in
decreased shedding when both strains are present, the value
of ¢ would be less than 0.5.

Sensitive superinfection (Iz to lyz). Superinfection tran-
sitioning from I, to Iy, results from a mass-action process,
the product of B,, and (I + glwy).

Superinfection recovery (lyz to Iy or I7). Recovery from
superinfection occurs with loss of one strain at a time (either
sensitive or resistant), at rates identical to recovery from
each strain alone, determined by v, y', and €.

Replacement infection (I> to ). Replacement infection
results from a mass-action process, the product of the densi-
ties of people in the Iy, and I states and either B,,, if Iy is
replacing I, or B, if I, is replacing Iy. If replacement in
both directions is allowed, some replacement will be can-
celed out by replacement in the opposite direction. The net
flow (i.e., the difference between the two) reduces to

(B, — B)Iwlz.

In this example, where replacement is allowed in both
directions, the strain with the greater B determines the
replacement direction. If we assume that the sensitive strain
has a higher transmission rate, it may replace the resistant
strain.

Sensitive-to-resistant conversion (I to Iz). Strain con-
version from sensitive to resistant depends on population
antibiotic treatment € and the rate at which resistant strains
out-compete sensitive strains in the presence of antibiotics,
the amplification rate p. Underlying this is an assumed mixed
infection, composed predominantly of sensitive strains but
with a small minority of resistant strains. Under the presence
of antibiotics, the resistant minority of bacteria within the host
take over at rate p as a function of the resistant strain replica-
tion rate, the reduced sensitive strain replication rate, and the
death rate of sensitive bacteria from antibiotic exposure. This
mixed infection could result from either 1) reinfection with 1
or more strains; 2) initial infection with a heterogeneous bac-
terial population, some with and some without the resistance
trait, rather than a homogeneously sensitive population; or
3) de novo within-host resistance acquisition via either muta-
tion or plasmid transfer. In our work, we assume that a mixed
infection is already present when strain conversion operates.

One example of resistant conversion is the antibiotic treat-
ment failure of M. rtuberculosis (22). Conversion occurs
within a host through selection for preexisting resistant agents.
A ripe context for resistant conversion is set through poor
adherence to treatment protocol, combined with the slow
replication rate of the agent; this can effectively expose hosts
to no therapy when they are receiving monotherapy or, more
importantly for multidrug resistance, to monotherapy when
receiving multidrug therapy.

Resistant-to-sensitive conversion (I> to ). Strain con-
version from resistant to sensitive occurs in a fashion com-
plimentary to conversion from sensitive to resistant. This
rate is determined by the product of the proportion of the
population not receiving antibiotic treatment, (1 —€), and
the rate parameter ¢. ¢ is interpreted similarly to p: Assum-
ing that there is a mixed infection composed predominantly
of resistant bacteria with a minority of sensitive bacteria, the
absence of antibiotic treatment results in the sensitive bacte-
ria’s out-competing the resistant bacteria until they become
the predominant strain at rate ¢. Here ¢ is a function of dif-
ferential replication rates between antibiotic-resistant and
-sensitive bacteria, given the absence of antibiotic exposure.
The mechanism underlying loss of resistance may operate
either through backwards mutation or plasmid loss; again,
we leave the modeling of this mechanism to others and
assume that when there is sensitive conversion, there is a
preexisting mixed infection.
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The reverse-mutation rate is slower than the compensatory
mutation rate that improves the fitness of a resistant agent in
the absence of antibiotics (9). This leads many to argue that
emergence of sensitivity from a population that is homoge-
neously resistant is unlikely. However, this argument only
pertains to the emergence of a sensitive strain; the conver-
sion models we use assume that there is always a sensitive
minority strain in a majority-resistant infection, and that
therefore conversion is still possible.

Replacement Infection,
Unidirectional
Conversion,
Superinfection
1
2
0
0
0

RESULTS

Choice of model structure varies in the literature

Replacement
Infection,
Bidirectional
Conversion
0
0
0
0
1

In our analysis, although model structure choice was clus-
tered into a few structures across all articles, the degree of
consensus varied by the agent studied (Table 1). The major-
ity of articles (11 of 13) modeling M. tuberculosis resistance
used unidirectional conversion models (11, 14, 23-31)
allowing for de novo mutation to arise and confer resistance,
subsequently outcompeting sensitive strains. Seven of these
11 articles, in addition to strain conversion, also incorpo-
rated replacement infection (14, 23-28), allowing a latent
sensitive or resistant tuberculosis strain to be replaced by a
novel strain. Articles modeling S. pneumoniae often (8 of
13) used unidirectional conversion models, relating to the
agent’s incremental acquisition of penicillin resistance (15,
32-37); this can be thought of as an extension of the uni-
directional conversion resistance acquisition mechanism of
M. tuberculosis, where multiple mutations lead to greater
resistance, rather than a dichotomous status of sensitive or
resistant. Resistance to penicillin, therefore, was modeled as
an incremental point mutation process that increases the
minimum inhibitory concentration of the resulting strain.
Most articles modeling Enterococcus or S. aureus resistance
(17 of 23) used single-strain models (7, 18, 19, 38-51),
ignoring all competition and assuming independence between
sensitive and resistant strains, focusing on transmission of
either vancomycin-resistant enterococci or methicillin-resistant
S. aureus (MRSA) in isolation.

Replacement
Infection,
Unidirectional
Conversion
6
0
0
0
0

Bidirectional
Conversion
0
1
0
2
1

Model Structure

Unidirectional
Conversion
4
6
0
0
0

Replacement
Infection
0
0
1
1
1

Choice of model structure infers types of competition

Exclusive
Infection
1
2
2
1
3

Both within- and between-host competition affects the
resulting possibility of coexistence of both strains or persis-
tence of only one strain or the other. Figure 3 represents the
global properties of the models as a function of strain-
specific Ry’s. These Ry’s are a function of all transmission
parameters (Table 2), including the treatment prevalence, ¢.
Population-level strain coexistence is not possible when
there is no within-host coexistence. In 2 model structures
(exclusive infection, replacement infection) there is no
within-host coexistence, and thus there is no possibility for
population-level coexistence. In 4 model structures (single-
strain, superinfection, unidirectional conversion, and bi-
directional conversion), there is some degree of within-host
strain coexistence that allows for the potential for population-
level coexistence. Both of these cases are the dynamic conse-
quence of within-host competition mechanisms. This section
provides an understanding of these dynamic phenomena

Superinfection
0
1
1
0
0

Strain

Characteristics of Articles on Modeling of Between-host Antibiotic Resistance Published From 1993 Through 2011, by Agent Studied and Model Structure Used
Single-

Agent
aureus (MRSA)

pneumoniae
Enterococcus

tuberculosis
Staphyloccus
(VRE)
nosocomial
agents

Unnamed
Abbreviations: MRSA, methicillin-resistant Staphylococcus aureus; VRE, vancomycin-resistant Enterococcus.

Mycobacterium
Streptococcus

Table 1.
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Figure 3. Bifurcation diagrams of competition between antibiotic-sensitive (/,4) and antibiotic-resistant (/;) bacterial strains for 6 model
structures. Each axis represents a strain-specific Ry, calculated in the absence of the competing strain (see Web Appendix). Model structure alters
the result of competition between sensitive and resistant strains across strain-specific transmission strengths.

through a discussion of strain competition in each model
structure.

Equilibrium prevalence across model structures

To compare equilibrium prevalence across model struc-
tures, we calculated the equilibrium prevalence of sensitive
and resistant strains across a range of population antibiotic
treatment levels (0 < € < 0.15) (Figure 4), otherwise using
identical parameter values. At € = 0.05 there is strain coexis-
tence in the single-strain, superinfection, and bidirectional

conversion models, persistence of the resistant strain only in
the exclusive infection and replacement infection models,
and persistence of the resistant strain only in the unidirec-
tional model. Thus, even if all parameter values are correctly
estimated, inferences may be incorrect because of incorrect
selection of model structure. Even when there is the same
general inference (e.g., coexistence of sensitive and resistant
strains), the equilibrium prevalence of each strain may differ
between model structures.

For additional detail discussing these results for each
model structure, see the Web Appendix.
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Table 2. Parameter Symbols and Values Used to Calculate the
Equilibrium Prevalence of Antibiotic-sensitive and Antibiotic-resistant
Strains of Bacteria for Each Model Structure lllustrated in Figure 4

. Default .
Parameter Explanation Value Unit
€ Percentage of the population ~ Varied %
using antibiotics from
0% to
15%
Bu Transmission rate of the 0.04 ¢t
sensitive Iy strain
B Transmission rate of the 0.015 t!
resistant [ strain
Y Innate recovery rate 0.01
Y Recovery rate from /y, 0.1 t!
assuming that antibiotics
are being used
p Conversion rate from Iy, to I, 0.5 t!
assuming that antibiotics
are being used
) Conversion rate from I> to I, 0.05 t=!
assuming that antibiotics
are not being used
q Contagiousness of each 0.5 Proportion
strain in superinfected
hosts

Agent features and choice of model structure

Constructing an antibiotic-resistance model that appropri-
ately describes competition between antibiotic-sensitive and
-resistant strains for a specific agent requires knowing
whether within-host strain coexistence occurs, replacement
infection is possible, and strain conversion is possible.
Coexistence has been demonstrated for S. pneumoniae (52—
54), M. tuberculosis (55-57), and S. aureus (58). In each of
these examples, the coexistence of sensitive and resistant
strains may occur at either even levels or uneven levels. As
Balmer and Tanner explained (59), within-host competition
can fall into one of 3 categories: competition for coloniza-
tion sites or resources, apparent competition caused by a com-
mon predator to the strains as mediated by the host immune
system, and direct interference in which strains excrete sub-
stances to harm one another. In our superinfection model,
we model the within-host competition for resources with the
parameter g. When ¢ = 1, there is no competition between the
strains, and the superinfection model becomes the single-
strain model. When ¢ =0, the superinfection model becomes
the exclusive infection model. The superinfection model, there-
fore, is only required when 0 < g < 1.

In contrast to coexistence, there is limited evidence to
support replacement infection. Lipsitch et al. (54) found evi-
dence counter to replacement infection for S. pneumoniae,
since resident strain levels within a host were not affected by
infection with a challenging strain. Although models com-
monly assume that replacement infection is possible for
M. tuberculosis, it is not clear whether a strain latently infect-
ing a host is pushed out by a challenging strain. In addition to
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replacement infection, where the challenging strain pushes
out the original resident strain, reinfection can occur when
1) both strains coexist at similar levels in the host (single-
strain and superinfection models) or 2) the challenging
strain persists only as a small minority. The unidirectional
and bidirectional conversion models may reflect this last cat-
egory, but here we have not modeled the actual reinfection
process that leads to this kind of mixed infection, although
others have (21).

Better data exist for characterizing strain conversion. The
emergence of penicillin resistance in S. pneumoniae results
from repeated point mutations conferring incremental
increases in resistance and gradual subsequent strain conver-
sion (60). For M. tuberculosis, treatment failure of a sensi-
tive infection can result in resistance emergence through de
novo chromosomal mutation and subsequent within-host
strain conversion (61).

Strain conversion requires a mixed infection resulting
from mutation, plasmid acquisition or loss, or reinfection;
this mixed infection can have strains either at even levels or
in a majority-minority relationship. The group of articles on
S. pneumoniae models published by Temime et al. (15, 32,
33) and Opatowski et al. (35, 36) presents one example of
strain conversion, in which a sensitive strain gradually
becomes more resistant as a result of repeated point muta-
tions. The M. tuberculosis models of Blower et al. (14, 29,
31), among other articles, similarly show conversion of a
sensitive strain to a resistant strain resulting from antibiotic
treatment failure. Additionally, one must assess the likeli-
hood of resistance loss (conversion in the opposite direc-
tion). There is growing empirical evidence (62) suggesting
that reversibility is unlikely, possibly because of resistant
strains’ acquiring additional compensatory mechanisms
(perhaps through de novo mutation) to increase and bring
even their within-host fitness with antibiotic-sensitive strains
in the absence of antibiotic pressure (9).

An additional consideration when choosing a model
structure is whether the pathogen is obligate or opportunis-
tic. Most interventions that focus on obligate pathogens (e.g.,
tuberculosis, salmonella, etc.) decrease the circulation of all
pathogen strains associated with particular agents, including
antibiotic-resistant and -sensitive strains. When applying
antibiotic treatment, however, strain differences become
apparent because of the differential effectiveness of antibiot-
ics across resistant and sensitive strains. When antibiotic use
is not the focus, single-strain models can make sense for
obligate pathogens. On the other hand, it may be important
for strain conversion, particularly for tuberculosis, to account
for the possibility of treatment failure.

Opportunistic agents such as S. pneumoniae, S. aureus,
and Escherichia coli do not always cause disease when there
is colonization. For E. coli, it may even be helpful to the
host to keep sensitive strains around. When opportunistic
agents cause disease, effective antibiotic treatment is nec-
essary. Thus, it may be advantageous to minimize the prev-
alence of resistance while remaining indifferent to or
protecting sensitive strains. Under these circumstances, using
multistrain models to inform strain-specific interventions is
important if we are interested in preserving levels of sensitive
agents.
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While we focused here on competition between agents of
the same bacterial species, this work could be expanded to
model competition or synergism between multiple species.
For example, using the superinfection model, we have
shown that when g = 1, two species would be assumed to be
independent of one another within a host, and when ¢ < 1,
they would antagonistically interact, reducing contagiousness;
additionally, the two species could interact synergistically,

each making the other more contagious within a host, by
setting ¢ > 1. Polymicrobial interactions have recently been
implicated in the emergence of vancomycin-resistant S.
aureus through biofilm interaction with Candida albicans
(63, 64). These agents not only affect each other’s resistance
status but also may affect growth and excretion of one
another synergistically, as suggested by synergistic mortality
increases in mice (65-67).
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CONCLUSION

Models provide insight into the effect of interventions
given a set of underlying mechanistic assumptions. Different
biological mechanisms of within-host competition allow for
different intervention targets and considerations. For exam-
ple, a primary assumption of single-strain MRSA models is
that MRSA emergence occurs outside a hospital, entering
the hospital via importation. Only a model with competing
strains can provide mechanisms of MRSA emergence.
These multistrain models also provide mechanisms in which
antibiotic use affects the prevalence of MRSA, relative to
methicillin-sensitive S. aureus (MSSA). When developing
strategies to control MRSA based on a single-strain model,
the assumption is that there is no competition between
MRSA and MSSA. Intervention strategies assuming this
model structure therefore focus on reducing transmission
from persons infected with MRSA through nonpharmaceuti-
cal interventions such as hand hygiene, surface decontami-
nation, and isolation that affect resistant and sensitive strains
equally. Intervention in an exclusive infection model, on the
other hand, allows for the possibility of MSSA to be used
against MRSA. Thus, in addition to dampening MRSA trans-
mission through nonpharmaceutical interventions, more
judicious use of antibiotics can help promote MSSA trans-
mission, forcing MRSA into extinction in a hospital. Inter-
vention in a unidirectional conversion model not only takes
into account transmission from MRSA-infected hosts but
also accounts for hosts who convert from MSSA to MRSA;
thus, control efforts would have to be broadened not only to
persons with MRSA infection but also to those with MSSA.

The presence of strain coexistence, replacement infection,
and strain conversion affects the choice of model structure.
Some may argue that not having sufficient data to parameter-
ize a mechanistic model is a reason to ignore such a mecha-
nism in a model analysis. However, excluding a potentially
important mechanism for the purpose of making a conserva-
tive inference has the opposite effect; it hides uncertainty
through omission, rather than showing the uncertainty up
front as would happen if the mechanism were included.
With increasing concern about the spread of antibiotic resis-
tance and increasing use of mathematical models to better
understand the mechanisms behind this spread, it is timely
to put forth a framework that can help guide model choice
for future analyses.
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