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Abstract

Gene–phenotype associations play an important role in understanding the disease

mechanisms which is a requirement for treatment development. A portion of gene–
phenotype associations are observed mainly experimentally and made publicly available

through several standard resources such as MGI. However, there is still a vast amount

of gene–phenotype associations buried in the biomedical literature. Given the large

amount of literature data, we need automated text mining tools to alleviate the burden

in manual curation of gene–phenotype associations and to develop comprehensive

resources. In this study, we present an ontology-based approach in combination with

statistical methods to text mine gene–phenotype associations from the literature. Our

method achieved AUC values of 0.90 and 0.75 in recovering known gene–phenotype

associations from HPO and MGI respectively. We posit that candidate genes and their

relevant diseases should be expressed with similar phenotypes in publications. Thus,

we demonstrate the utility of our approach by predicting disease candidate genes based

on the semantic similarities of phenotypes associated with genes and diseases. To the

best of our knowledge, this is the first study using an ontology based approach to extract

gene–phenotype associations from the literature. We evaluated our disease candidate

prediction model on the gene–disease associations from MGI. Our model achieved AUC

values of 0.90 and 0.87 on OMIM (human) and MGI (mouse) datasets of gene–disease

associations respectively. Our manual analysis on the text mined data revealed that

our method can accurately extract gene–phenotype associations which are not currently

covered by the existing public gene–phenotype resources. Overall, results indicate that

our method can precisely extract known as well as new gene–phenotype associations

from literature. All the data and methods are available at https://github.com/bio-ontology-
research-group/genepheno.
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Introduction

Phenotypes are the observable characteristics of an
organism resulting from its genotype and response to envi-
ronment. Associations of genotypes and phenotypes shed
light on our understanding of disease mechanisms as they
provide a way of observing the indirect consequences of
multi-scale physiological interactions occurring within an
organism.

Phenotypes are recorded in the context of human
genetics as well as in animal model experiments, and are
made available in clinical databases such as ClinVar (1),
Online Mendelian Inheritance in Men (OMIM) (2), or the
Human Phenotype Ontology (HPO) (3).

The diversity of phenotypes makes it challenging to
represent them in a way that is comparable within and
across databases. In response to this challenge, phenotype
ontologies have been developed that formally represent
phenotypes in several species and enable their integra-
tion and comparison (4). While the majority of phenotype
ontologies was species-specific and limited to one – or a few
related – species, there has been significant effort in integrat-
ing phenotype ontologies recently so that phenotypes across
species can be compared and jointly analyzed (5–7).

One of the successful applications of computational rep-
resentation and integration of phenotypes across species is
the prioritization of candidate genes for disease (7, 8) as well
as identification of causative variants in personal genome
sequences (9–11). These applications rely on a database of
associations between a gene and a set of phenotypes coming
either from human clinical observations, or from model
organisms such as the Mouse Genome Informatics (MGI)
database (12), and comparing disease or patient phenotypes
to this database of gene–phenotype associations.

While high-throughput phenotyping studies such as
those performed by the International Mouse Phenotyping
Consortium (IMPC) (13) can automatically generate
formal, ontology-based phenotype descriptions and deposit
them in public databases, a large number of phenotyping
experiments are primarily reported in literature. Conse-
quently, literature curation remains as one of the main
sources of phenotype information and is widely applied
in model organism databases such as the MGI database.
With an increasing number of experimental results and
publications, literature curation alone is faced with
challenges in providing accurate and recent data.

Here, we describe a text mining system to extract
associations between human and mouse genes and their
phenotypes. Our text mining method relies on identifying
mentions of genes or proteins and mentions of phenotypes
from HPO and the Mammalian Phenotype Ontology (MP)
(14) ontologies in text. We further utilize these ontologies as
background knowledge during text mining to increase the

coverage of annotations that are not explicitly mentioned
in text but rather implied based on the semantics in the
ontologies. We then use normalized pointwise mutual
information (NPMI) (15, 16) on this enriched information
to measure the strength of gene–phenotype associations.
We evaluate the phenotypes by comparing them to known
gene–phenotype associations available from reference
databases and we demonstrate that the gene–phenotype
associations we extract can improve prioritization of
disease genes based on phenotype similarity between genes
and diseases.

Results

Ontology-based mining of gene–phenotype

associations

We developed a method to mine gene–phenotype associa-
tions from the literature, using the knowledge contained
in the phenotype ontologies as background knowledge.
We use the WhatIzIt (17) named entity recognition and
normalization tool to recognize gene or protein mentions
and normalize them to the UniProt/Swiss-Prot database
(18), and we identify phenotype mentions and normalize
them to two phenotype ontologies, MP and HPO. While
recognition of gene and protein names in literature is a
well-established task for which several mature methods
exist (19, 20), and for which WhatIzIt is known to per-
form competitively (21), recognizing phenotype mentions
in literature is challenging because their descriptions are
both syntactically and semantically complex due to the high
heterogeneity of phenotypes (4). Furthermore, phenotypes
are organized in ontologies in a class hierarchy that is
generated based on axioms used to constrain phenotype
classes (22). While the use of the axiomatic information
in ontologies as background knowledge has the potential
to improve the performance and robustness of text mining
approaches (23), it also increases the complexity of the task.

We use a phenotype ontology as background knowl-
edge when determining which phenotype is mentioned in
a particular location in literature. Specifically, we assume
that, if P1 is a subclass of P2 in a phenotype ontology
O, then all mentions of P1 are also mentions of P2 (with
respect to O). For example, Central Nervous System (CNS)
inflammation (MP:0006082) has the subclass Brain inflam-
mation (MP:0001847) in MP; Brain inflammation is fur-
ther inferred to be equivalent to the class Encephalitis
(HP:0002383) in the PhenomeNET ontology (7). We use
these axioms to construct the set of terms that refer to CNS
inflammation as the set consisting of ‘CNS inflammation’,
‘Brain inflammation’, and ‘Encephalitis’.

The aim of using the axioms of the ontology as back-
ground knowledge is to propagate information about which
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terms may be used to refer to a phenotype over the ontology
hierarchy, thereby extend the set of strings that refer to
a phenotype and make our text mining approach more
robust. Furthermore, the propagation of information over
the ontology hierarchy allows us to test for significant
association between a gene and phenotype on all levels of
the phenotype ontology, therefore improving robustness of
our statistical approach.

To determine whether a gene or protein and a pheno-
type are associated, and to determine the strength of the
association, we first measure co-occurrence of gene and
phenotype mentions in sentences within a corpus, and we
then use a statistical measure that determines the strength
of a co-occurrence. The measure assumes that significantly
co-mentioned genes and phenotypes stand in a biological
relation.

We apply our method to all of the full text articles in
the PubMed Central corpus of Open Access articles. The
corpus consists of 1 596 360 full text articles. Within this
corpus, we identified a total number of 571 980 articles
which contain both the mention of a gene/protein and a
phenotype within a sentence. These contain 4 665 170
co-mentions between 16 860 genes (15 928 of them have
reference to both MGI and the Entrez Gene Database while
the remaining 932 have reference only to the Entrez Gene
Database) and 11 097 phenotype of which 5182 and 5915
are from MP and HP classes.

We do not distinguish between gene and protein
mentions due to well-known difficulties in disambiguating
between them (24). Furthermore, we do not distinguish
between different species in which a gene or protein is
found. Therefore, we combine the human and mouse
gene/protein names and identify proteins by either their
human or mouse gene identifier in the Entrez Gene
Database (treating human–mouse orthologs as equivalent).

We score each association between a gene and pheno-
type using the NPMI (15, 16) measure. While NPMI is
commonly a measure of co-occurrence strength between
two terms, we extend NPMI to measure the co-occurrence
strength between a class of genes or proteins and a class
from a phenotype ontology O, considering the background
knowledge in O. For this purpose, we identify, for every
class, the set of labels and synonyms associated with the
class (Labels(C) denotes the set of labels and synonyms of
C). We then define Terms(C) as the set of all terms that can
be used to refer to C: Terms(C): = { x|x ∈ Labels(S)∧S � C }
i.e., we consider all terms referring to either C or any of C’s
subclasses as referring to C. Then, we calculate the NPMI
between a gene G and a class D as

npmi(G, D) =
log

nG,D·ntot
nG·nD

−log
nG,D
ntot

(1)

where ntot is the total number of sentences in our corpus,
nG,D is the number of sentences in which both a mention
of G and a term from Terms(D) co-occur, nG is the number
of sentences in which a mention of G occurs, and nD is the
number of sentences in which a term from Terms(D) occurs.

Determining rank threshold

Each of the gene–phenotype associations is scored by an
NPMI value that measures the strength of the association.
Using this NPMI value, we rank phenotypes for each gene.
The next step in our method is to determine a threshold
for a significant association, and for this purpose we deter-
mine the similarity between our text-mined phenotypes and
experimentally determined and manually curated pheno-
type annotations. Specifically, we change the threshold rank
for considering phenotypes as associated with a gene (i.e.,
we consider only the top n ranked phenotypes for each gene
as associated, with varying n), and we optimize the predic-
tive performance when using these phenotypes in finding
manually annotated genes in two different databases of
gene–phenotype associations; the underlying assumption of
this test is that the text-mined phenotypes should be as
close as possible to the manually curated phenotypes. We
used two datasets for comparison, one of human gene–
phenotype associations observed in a clinical context and
represented in the HPO database (3), and another of mouse
gene–phenotype associations coming from mouse model
studies and represented in the Mouse Genome Informatics
(MGI) (12) database. We used Resnik’s semantic simi-
larity measure (25) for comparison which is one of the
most widely used semantic similarity measurements in life
sciences (26, 27), and we combine the pairwise phenotype–
phenotype similarity using the Best Match Average (BMA)
strategy to measure the phenotypic similarities of genes. We
use the PhenomeNET ontology (7) to compute semantic
similarity as it integrates the MP and HPO ontologies (28)
and therefore enables computation of phenotype similarity
irrespective of which ontology is used to characterize a phe-
notype or in which species (human or mouse) a phenotype
has been observed.

Figure 1 shows the results of this test for different
NPMI ranks. The performance of retrieving the same
genes by phenotype similarity is higher when using human
phenotypes compared to mouse phenotypes, indicating
that the phenotypes extracted from the literature are
more similar to human gene phenotypes rather than the
mouse gene phenotypes. Our method achieves the best
performance at the rank of 50 and 75 for the HPO
and MGI datasets measured using the area under the
receiver operating characteristic curve (AUC) (29), with
AUC values of 0.91 and 0.77, respectively. However,
for our analysis we use the threshold of 25 with AUC
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Figure 1. Phenotype-based gene–gene similarity with different NPMI ranks.

Table 1. Distribution of gene-phenotype associations in text mined and reference datasets

Dataset Number of gene-phenotype associations

literature (HPO + MGI) 295 971
literature (HPO) 206 156
literature (MGI) 189 815
Reference (HPO + MGI) 300 345
Reference (HPO) 99 333
Reference (MGI) 211 012
Intersection between literature and Reference (HPO + MGI) 11 473
Intersection between literature (HPO) and Reference (HPO) 5650
Intersection between literature (MGI) and Reference (MGI) 5821

values of 0.90 and 0.75 for HPO and MGI to have a
smaller set of phenotypes with less potential for false
positives.

Table 1 shows the statistics of the number of gene–
phenotype associations we obtain through text mining at
the rank threshold of 25. There are a total of 395 971
and 300 345 gene–phenotype associations in the litera-
ture and reference datasets (MGI and HPO combined).
Further analysis on the two sets shows that only 11 473
(1.7% of whole set) of the gene–phenotype associations
directly overlap (i.e., without considering inheritance using
the ontology structure). Combined with the high similarity
to known associations, this analysis shows that the text-
mined phenotypes are often related but more or less specific
than the phenotypes included in curated databases; in most
cases, we will associate a more general class while literature
curation can identify more specific classes, due to our statis-
tical approach in which we propagate information over the
ontology structure and therefore often find more general
associations. Furthermore, our literature-based approach

also identifies novel associations that are not yet included
in the curated databases.

Text-mined phenotypes recover disease genes

As external evaluation of our text mining method, we utilize
our text mined gene-phenotype associations and disease-
phenotype associations gathered from HPO and predict
gene–disease associations based on the semantic similarity
of phenotypes linked to genes and diseases. We used the
PhenomeNET ontology (7) as reference ontology for simi-
larity computation as it allows integration and comparison
of phenotypes in multiple species, and we evaluate the
predictions on clinical gene–disease associations from the
OMIM database as well as a set of mouse models of human
disease from MGI.

The MGI and HPO contain a total of 12 063 and
3738 genes which have phenotype associations, respec-
tively. Through our text mining approach we associate a
total of 16 808 human genes with phenotypes and can
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Figure 2. Gene-disease association prediction performances on OMIM.

Figure 3. Gene-disease association prediction performances on MGI.

use them for phenotype-based prediction of gene–disease
associations. Figure 2 and Figure 3 show our gene–disease
association prediction performances on OMIM and MGI
respectively. Using text mined gene–phenotype associations
to predict gene–disease associations results in an AUC of
0.90 using human gene–disease associations from OMIM
and 0.87 when identifying mouse models of human disease
from MGI. On the other hand, use of the curated gene–
phenotype associations from MGI to predict gene–disease
associations yields an AUC of 0.77 for OMIM and 0.91
for mouse models of human disease. When text-mined and
experimentally validated gene–phenotypes are combined,
the prediction performance further increases to 0.91 and
0.94 on OMIM and MGI, respectively, demonstrating that

text-mined and experimentally validated phenotypes con-
tain complementary information.

Discussion

To the best of our knowledge, we present the first ontology-
based text mining system for extracting gene–phenotype
associations from the literature, in particular for human
and mouse. Previously, several text-mining systems for
extracting gene–phenotype associations were developed
(30–33). One approach is based on unsupervised learning
that combines text mining with comparative genome
analysis to associate genes and their phenotypic char-
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acteristics (30). In this approach, first they annotate
terms reflecting phenotypic similarities of species in
text and then they identify gene–phenotype associations
systematically based on the similarity of their phyletic
distribution; they do not use controlled vocabularies
or ontologies in their work. Another approach relies
on machine learning methods to extract the gene–
phenotype associations from text (31). This study focuses
on a small number (ten) disease concepts from the
Medical Subjects Headings (MeSH) (34) terminology
as phenotypes. Khordad and Mercer proposes a semi-
supervised learning method to identify genotype–phenotype
relationships from biomedical text (32). The method
starts with semi-automatically creating a seed set of
labeled data from an unlabeled genotype–phenotype
dataset and applying named entity recognition tools
to annotate the dataset, manually curate it, and then
training a machine learning model using the seed data
to identify gene–phenotype relations in text. Xing et.
al is using unsupervised machine learning methods to
extract gene–phenotype relations from text and apply the
methods to plant phenotypes (33). This system relies on a
combination of rule-based and lexical methods to identify
plant gene names, and an unsupervised representation
learning approach to identify plant phenotypes in text.
While all these approaches also target the extraction of
gene–phenotype associations from literature, there are
several shared differences to our approach. First, none
of the previous approaches are evaluated with respect
to their utility for predicting gene–disease associations,
while our main focus is to identify the associations
that can predict these associations based on comparison
with experiment data contained in model organism
databases. Second, none of the previous approaches
utilize ontologies as background knowledge during the
text mining. Third, we focus specifically on extraction
of phenotypes that are associated with human and
mouse genes while other approaches target different
organisms. Finally, while we consider all the pheno-
type classes from the HP and MP ontologies, most
studies do not consider ontology-based representations
of phenotypes but rather use terminologies such as
MeSH (31).

The methods as well as the data presented in this study
can be further utilized in data and text mining workflows,
and our method is generic and can be applied to extract
associations between other biomedical entities from the
literature when entities use ontology classes (35).

Currently, there are gene–phenotype associations for
around 50% of protein-coding genes in the mouse (there
are 12 063 protein-coding genes out of 24 408 in MGI
with phenotype associations). Many of these phenotype

associations come from high-throughput phenotyping
experiments such as those performed as part of the
International Mouse Phenotyping Consortium (IMPC)
(13) while others are based on literature curation (12).
Our approach is mainly aimed at helping curators
to identify phenotype associations for inclusion in a
phenotype database as well as to provide a large set of
computationally generated gene–phenotype associations
that are not yet included in MGI or similar databases
and which can be used for computational analyses. While
our approach cannot match the accuracy and depth
of annotation that can be achieved by a curator, the
computationally generated gene–phenotype associations
can nevertheless be of use for computational studies. We
have demonstrated their utility by applying them to recover
gene–disease associations based on phenotype similarity,
and demonstrate that our approach can improve predictive
performance.

Importantly, our approach can also suggest phenotype
associations for genes which have no associated pheno-
types in a phenotype database yet. For example, we
identify an association between the Icam5 (MGI:109430,
ENTREZ:7087) gene and Encephalitis (HP:0002383)
based on our method, while there are no phenotypes associ-
ated with Icam5 in the HPO database. Similarly, the associa-
tion between Pnma2 (MGI:2444129, ENTREZ:10687) and
encephalitis (HP:0002383) is not included in either MGI or
the HPO database although recent evidence suggests such
an involvement (PMID:27003254) (36).

Our approach has some limitations given that text min-
ing results often contain both false positives (samples which
are wrongly annotated as positive class) and false negatives
(missed annotations). In our extracts, we observed some
false negatives due to failure to recognize and normal-
ize gene or phenotype names in text, in part due to our
reliance on dictionary-based matching (17). For example,
in an article (PMID:26937036), our method misses the
association between the miR-19b-3p gene and encephalitis
because this gene is not currently covered by UniProt/Swiss-
Prot and thus was not retained into our gene name dic-
tionary. On the other hand, in this specific article, we
can see that the authors implicitly mention on encephalitis
as ‘Japanese Encephalitis Virus-Mediated Inflammation’
which indicates that authors do not always follow pheno-
type (or gene) name nomenclature while describing biomed-
ical entities in their publications. In the future, we may
consider machine learning approaches to overcome this
limitation (33); however, the challenge is to use the back-
ground knowledge in ontologies as part of machine learn-
ing models (37). We observed false positive associations
introduced by the abbreviations which are ambiguous with
the gene names. For example, the term ‘GCL’ is used as
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an abbreviation for ‘granular cell layer’ as well as for
Glutamate Cysteine Ligase. Furthermore, our approach
relies on statistically significant associations between a gene
and phenotype class, and the type of association is not
considered; for example, whether a gene has a protective or
causative relation to a phenotype cannot be detected by our
method and can lead to further false positive associations.

We do not detect or consider negation that occurs in
sentences; consequently, false positives may also be caused
by considering co-occurrences between gene and phenotype
mentions in sentences that express a negation. However, in
our method we apply the NPMI measure to a large corpus;
as long as co-occurrences between a gene and phenotype
appear in negated form only in few sentences relative to
how often they appear in non-negated sentences, they will
not result in a significant co-occurrence.

While the statistical approach we use leads to more
robust and generalized association results, it also has the
limitation that our associations are extracted from an entire
corpus and it is not easily possible to identify the specific
sentence, abstract, or article that leads to an associations.
We can, however, identify the set of all sentences in which
a gene name and phenotype mention co-occur. Our results
also indicate that the top-ranking associations resulting
from our text-mining method can often be asserted directly
as a gene–phenotype association, and most sentences that
are used to generate the association can be used as evidence.
In the future, we may further apply clustering to these
sentences to reduce their number and make them more
accessible.

Conclusions

We developed a method that identifies gene–phenotype
associations from the biomedical literature. Our method
utilizes the semantics and structure of ontologies as back-
ground knowledge and performs a statistical analysis of
co-occurrence relations between terms and phrases within
a large text corpus. The impact of our method is
twofold: first, we extracted and made available a set of
candidate gene–phenotype associations that can serve as a
foundation to improve manual curation of gene–phenotype
associations, for example by suggestion candidate gene–
phenotype pairs or suggesting associations that may have
been missed; second, we have demonstrated that our
associations can already improve computational analysis of
phenotypes when investigating Mendelian diseases, and our
results can therefore provide a set of electronically inferred
annotations to include in certain types of computational
analysis.

Our results are freely available (38) and will be updated
frequently.

Materials and Methods

Ontologies and Resources used

We used the Open Access full text articles (http://
europepmc.org/ftp/archive/v.2017.06/) (1.6 Million) from
the Europe PMC database (39) as literature source. We
used two comprehensive phenotype resources, HPO (3)
(downloaded on 30/06/2017) and MP (14) (downloaded
on 30/06/2017), and UniProt/Swiss-Prot (18) (downloaded
on 1/May/2017) to identify phenotypes and gene classes
in full text. We generated two dictionaries from the labels
and synonyms in the resources for genes and phenotypes.
We refined the dictionaries by filtering out terms which have
less than three characters and terms that are ambiguous
with common English words (e.g., ‘she’ is a gene name)
before applying text mining. Use of unrefined dictionaries
would introduce potentially high numbers of false positives
and therefore would reduce the system’s performance by
affecting precision. Our final phenotype and gene dictio-
naries consisted of a total number of 48 122 (29 794 terms
from MP, and 18 328 terms from HPO) and 142 310
distinct terms, respectively.

We used the gene–phenotype associations from HPO
and MGI (downloaded on 30/07/2018) to analyze the
overlapping associations between the two reference sets
and the text mined extracts. Our dataset from HPO covers
99 333 gene–phenotype pairs while the dataset derived
from MGI covers 211 012 gene–phenotype associations.

We used the PhenomeNET (7) ontology which includes
the phenotypes from HPO and MGI to compute the
semantic similarity between the genes and the diseases
based on phenotypes.

We gathered disease–phenotype associations from the
HPO database (downloaded on 30/07/2018). This dataset
contains 88 103 disease–phenotype associations belonging
to 7226 distinct diseases from OMIM.

We used gene–disease associations from OMIM and
MGI in our experiments on recovering disease candidate
genes (downloaded on 30/07/2018). The OMIM dataset
covers 12 855 human gene–disease associations while the
MGI dataset covers 8201 mouse gene–disease associations.

Text mining gene–phenotype associations

We used WhatIzIt (17), a dictionary based named entity
recognition tool, to annotate phenotype and gene mentions
in full text articles. We used UniProt/Swiss-Prot (human and
mouse genes only) to annotate gene names while we used
MP and HPO to annotate phenotype names in publications.

We extracted gene–phenotype pairs based on their co-
occurrences within sentences and use this information to
determine whether there is a statistical association between

http://europepmc.org/ftp/archive/v.2017.06
http://europepmc.org/ftp/archive/v.2017.06
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a given gene and phenotype mention. We propagated the
co-occurrence statistics through the phenotype ontologies
(MP and HPO).

Semantic Similarity

We used Resnik’s semantic similarity (25) to measure the
similarities of phenotypes linked to genes and diseases. The
similarity of two classes is formally defined as:

sim(c1, c2) = max
c∈S(c1, c2)

−[log p(c)] (2)

where p(c) is the frequency with which c occurs within a
set of entities (genes or diseases) annotated with classes
from the same ontology. We used the Best Match Average
(BMA) strategy to calculate the similarity between two sets
of phenotypes:

simBMA(g1, g2) =
∑m

i=1 max1 ≤ j ≤n sim(c1i, c2j) + ∑n
j=1 max1 ≤ i ≤n sim(c1i, c2j)

m + n
(3)
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