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Abstract: Recent studies have demonstrated that fat accumulation in bone cells is detrimental to
bone mass. Both adipocytes and osteoblasts are derived from common multipotent mesenchymal
stem cells (MSCs) and hence the presence of fat may increase adipocyte proliferation, differentiation
and fat accumulation while inhibiting osteoblast differentiation and bone formation. Lipids are
common constituents in supramolecular vesicles (e.g., micelles or liposomes) that serve as drug
delivery systems. Liposomal formulations such as Meriva® were proven to decrease joint pain
and improve joint function in osteoarthritis (OA) patients. In this study, we evaluated how lipid
types and liposomal formulations affect osteoblast behavior including cell viability, differentiation,
mineralization and inflammation. Various liposomal formulations were prepared using different
types of lipids, including phosphatidylcholine (PC), 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine
(DOPE), cholesterol (Chol), 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol hydrochloride
(DC-cholesterol HCl), and 1,2-dioleoyl-3-trimethylammonium-propane chloride salt (DOTAP) to
investigate the impact on osteoblast differentiation and inflammation. The results indicated that cationic
lipids, DC-cholesterol and DOTAP, presented higher dose-dependent cytotoxicity and caused high
level of inflammatory responses. Due to the natural properties of lipids, all the lipids can induce
lipid droplet formation in osteoblasts but the level of lipid droplet accumulation was different.
In comparison with cationic lipids, neutral lipids induced less adiposity, and maintained high
osteoblast mineralization. Similar to previous researches, we also confirmed an inverse relationship
between lipid droplet formation and osteoblast mineralization in 7F2 mouse osteoblasts. Importantly,
PC containing liposomes (PC only and PC/DOTAP) suppressed IL-1β-induced gene expression of
COX-2 and MMP-3 but not Chol/DOTAP liposomes or DC-Chol/DOPE liposomes. Taken together,
we suggested that PC contained liposomes could provide the best liposomal formulation for the
treatment of bone diseases.
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1. Introduction

Osteoblast progenitors have the potential to differentiate into osteoblasts or adipocytes.
The commitment and differentiation of osteoblast progenitors towards an adipogenic or osteogenic
cell fate depend on a variety of signaling and transcription factors. Increased evidence suggests
that an inverse correlation exists between adipogenesis and osteogenesis in mesenchymal stem
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cells (MSCs) [1]. Previous studies have demonstrated that the disruption of the balance between
osteogenesis and adipogenesis could lead to bone diseases such as osteoarthritis (OA) and
osteoporosis [2]. Van de Vyver et al. mentioned that chronic administration of the insulin-sensitising
drugs, thiazolidinediones, results in low bone mineral density and fatty bones because MSC may
differentiate towards adipogenesis rather than osteogenesis [3]. Thus, balanced osteoblastic and
adipogenic differentiation is critical for the maintenance of healthy bone and lean body composition [4].

The presence of fat may increase adipocyte proliferation, differentiation and lipid droplet
accumulation associated with a decrease in osteoblast differentiation and bone formation. In the
clinical study, more adipogenesis than osteogenesis in marrow is deleterious to bone as the symptoms
like osteoporosis, diabetes mellitus, and OA [5]. However, most of the interest has focused on the
potential of human MSCs to differentiate into osteoblasts or adipocytes. The role of adiposity in
osteoblasts or osteoblast progenitors is still unclear. Our previous study found that liposome treatment
can suppress osteoblast mineralization through the lipid droplet formation [6]. Therefore, we aim to
further investigate the impact of lipid types and liposomal formulations on lipogenesis, osteogenesis
and inflammation responses in 7F2 osteoblasts.

OA is a progressive degenerative joint disease, characterized by the breakdown of joint cartilage.
Several risk factors for OA have been previously identified, including genetic predisposition, mechanical
stress, obesity, bone deformities, previous injury, and aging. There is a growing evidence indicating
that the progression of OA is correlated with an upregulation of inflammatory processes [7]. The most
common symptoms of osteoarthritis are joint pain, stiffness, swelling and bone deforming. There are
a number of treatments are available to relieve the symptoms such as lifestyle modifications (exercise or
diet controlling), medication (glucosamine supplement or hyaluronic acid injection), physical therapy
and surgery. Liposomal formulation is a new medication for osteoarthritis treatment. Previous studies
demonstrated that lipid drug carriers such as Meriva can reduce inflammatory response, joint swelling,
and bone erosion in the patients with osteoarthritis [8]. Hence, the anti-inflammatory activities of various
liposomal formulations were measured in 7F2 osteoblasts for inflammatory bone disorders.

Lipids are common constituents of various supramolecular vesicles (e.g., micelles or liposomes)
that serve as drug delivery systems. In this study, we selected 5 different types of lipids
including phosphatidylcholine (PC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), cholesterol
(Chol), 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol hydrochloride (DC-Cholesterol),
and 1,2-dioleoyl-3-trimethylammonium-propane chloride salt (DOTAP), which have been applied
for liposomal formulations in clinical use, to investigate the effect on lipid droplet formation and
mineralization in 7F2 osteoblasts. PC, DOPE and DOTAP are the model of long chain lipids. Additionally,
PC and DOPE are zwitterionic neutral lipid whereas DOTAP is a cationic lipid. It is worth noting that
DOPE is a helper lipid in cationic liposomes because the incursion of DOPE into cationic liposomes can
facilitate membrane fusion and exhibit low cytotoxicity and good transfection efficiency [9]. Similar to
DOPE, the incursion of cholesterol into the liposomal formulations can increase liposome membrane
rigidity and that may improve in vivo and in vitro stability of the liposomes [10]. Besides, a cationic
cholesterol derivative, DC-Cholesterol was commercially available liposome reagent and DC-Chol/DOPE
cationic liposomes have been successfully used as a vector in clinical trials for treating melanoma and cystic
fibrosis [11]. Therefore, the first objective of this study is to evaluate the potential of lipids (PC, DOPE,
Chol, DC-Chol, and DOTAP) as liposomal delivery system in the treatment of bone diseases.

Liposome is an artificially-prepared spherical vesicle composed of a lamellar phase phospholipid
bilayer. The researches have showed that the increase of liposome stability in vitro and in vivo
is based on lipid compositions and ratio [12]. Generally, the main components of liposomes are
phospholipids such as PC and DOPE but some are incorporated with Chol [13–15]. PC-containing
liposomes previously were found to have the highest incorporation of drug in comparison with
other lipids [16]. DOTAP, a double chain monovalent quaternary ammonium lipid, is widely used
as an in vitro transfection agent by forming cationic liposomes for gene delivery [17]. In the study
reported by Baczynska et al., PC/DOTAP showed a significant high liposome uptake efficiency
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in human colon cancer cells (CX-1.1) compared to that of liposomes containing pure egg-PC [16].
Moreover, the incorporation of Chol into DOTAP liposomes can improve transfection efficiency
through the decrease of the membrane fluidity, the reduction of particle charge density and improving
resistance of liposome carriers to aggregation [18]. On the other hand, DC-Chol/DOPE liposomes
also showed good efficient transfection in gene delivery and hence DC-Chol/DOPE liposomes have
been classified as one of the most efficient gene delivery systems [19]. Goyal and Huang reported
that DC-Chol/DOPE cationic liposomes have several attractive characters such as low cytotoxicity,
less immunogenicity, ease of utilization and high stability [11]. In this study, we formulated PC,
PC/DOTAP, Chol/DOTAP and DC-CHol/DOPE liposomes to investigate their impacts in osteoblast
behavior including viability, differentiation, mineralization and inflammation.

2. Results

2.1. The Effect of Lipid Types on Cell Viability of 7F2 Osteoblasts

In order to investigate the cytotoxicity of lipids on 7F2 mouase osteoblasts, the cells were incubated
with the increasing concentrations of lipids (PC, DOPE, Chol, DC-Chol, and DOTAP) from 0 to
20 µg/mL for 24 h and measured by MTT assay. Due to poor aqueous solubility, all the lipids were
dissolved in ethanol (EtOH) for experimental studies. Ethanol is edible and have been used as the
solvent for liposome preparation.

Akopian et al. and Kim et al. also used ethanol as solvent for cholesterol, phosphatidylcholine
and polyene phosphatidylcholine to evaluate their effects in vitro and in vivo [20,21]. PC and DOPE
showed no cytotoxicity in 7F2 osteoblasts and cell number was slightly increased (Figure 1A,B),
while Chol, DC-Cholesterol and DOTAP exhibited dose-dependent cytotoxicity (Figure 1C–E). Similar
to DC-Chol (Figure 1D), the cytotoxicity activity of DOTAP started at the concentration of 5 µg/mL
(less than 80% cell viability, Figure 1E). Therefore, we selected 2 µg/mL as the lipid concentration for
the following experiments.
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Figure 1. The effect of different concentrations of lipids on osteoblast growth. 7F2 osteoblasts
were incubated with different concentrations of lipids ((A) PC; (B) DOPE; (C) Chol; (D) DC-CHol;
(E) DOTAP) for 24 h and then examined by MTT assay. Data are expressed by the mean of percent
cell viability compared to control after exposured for 24 h ± standard deviation (n = 3–6). * p < 0.01,
relative to the untreated (0 µg/mL) cells.
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2.2. The Influence of Lipid Types on the Lipid Droplet Formation of 7F2 Osteoblasts

Although lipid droplet accumulation has been indicated in many cell types such as 3T3 fibroblasts,
hepatic stellate cells and smooth muscle cells, there has been little evidence that osteoblasts possess
this characteristic [21–23]. In here, 7F2 osteoblasts were incubated with adipogenic differentiation
medium (ADM) for 7 days to induce adipogenesis. Representative bright field images demonstrated
that ADM stimulated massive lipid droplet formation in 7F2 osteoblasts as indicated by Oil Red O
staining (Figure 2A).
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Figure 2. The influence of lipid content on osteoblast adipogenesis. (A) Histochemical staining of lipid
accumulation. 7F2 osteoblasts were treated with various lipids in the presence of ADM for 7 days to
induce adipogenesis and visualized by Oil Red O Staining (×100 magnification, n = 3). Photographs
show representative adipocyte cultures under bright field. The red spot represents oil droplet stained
by Oil Red O; (B) The quantitation of lipid accumulation; The red staining was extracted with 100%
isopropanol and quantified as described in Materials and methods; (C,D) The expression of adipogenic
markers, FAS and FABP4. The mRNA expressions of FAS and FABP4 were measured by real-time PCR
analysis after 7 days incubation with ADM. The data are presented as the means ± standard deviation.
* p < 0.01, relative to control, # p < 0.01, relative to EtOH-treated cells.

In contrast to ethanol treated cells, lipids stimulated more lipid droplet accumulation in 7F2
osteoblasts, particularly Chol, DC-Chol, and DOTAP. Moreover, cationic lipids, DC-Chol and DOTAP
induced more lipid accumulation in 7F2 osteoblasts than neutral lipids, Chol and PC (p < 0.01,
Figure 2B). Fatty acid synthase (FAS) is a multi-enzyme protein that catalyzes the formation of
long-chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH and has been used as the adipogenic
marker [24]. The fatty acid binding protein 4 (FABP4), commonly known as adipocyte protein 2 (aP2),
has been extensively used as a marker for differentiated adipocytes. FABP4 is a carrier protein for fatty
acids that is primarily expressed in adipocytes and macrophages [25]. 7F2 osteoblasts were cultured
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with different types of lipids in the presence of ADM for 7 days and operated by real-time RT-PCR
to determine the impact of lipid content on the gene expressions of FAS and FABP4. Compared with
control, ADM treatment individually induced 2.5 and 10 fold higher expressions of FAS and FABP4
(Figure 2C,D). In addition, lipids such as Chol, DC-Chol, and DOTAP stimulated higher expression
level of FAS and FABP4 and hence Chol, DC-Chol, and DOTAP had the abilities to promote lipogenesis
in 7F2 osteoblasts, while PC and DOPE showed less impact on lipid droplet formation.

2.3. The Impact of Lipid Types on Osteogenesis in 7F2 Osteoblasts

In order to investigate the potential of lipid types on osteogenesis, 7F2 osteoblasts were cultured
with mineralization medium (MM) for 10 days to measure alkaline phosphatase (ALP) activities.
Under MM condition, ALP activity was around 4 times higher than control. In comparison with ethanol
treated cells, cationic lipids (DC-Chol and DOTAP) reduced the level of ALP activities but not PC,
DOPE, and Chol (Figure 3A). To further study the impact of lipid types on 7F2 osteoblast mineralization,
Alizarin Red S (ARS) staining was used to evaluate calcium deposits after 14 days of incubation with
MM which contained 50 µg/mL ascorbic acid and 5 mM β-glycerophosphate (Figure 3B). Incubation
with MM could stimulate the mineralization level of 7F2 osteoblasts around 9 times higher than
control. In contrast to ethanol treated cells, most types of lipids suppressed osteoblast mineralization
significantly in 7F2 cells, except PC. Moreover, DC-Chol and DOTAP demonstrated 54% and 45%
reductions of osteoblast mineralization to the cells treated with Chol and PC, respectively. As expected,
the impact of lipids on osteogenesis is opposite to lipogenesis in 7F2 osteoblasts on matter with
what kind of lipids. Similar to previous results, neutral lipids, especially PC, maintained better
osteoblast mineralization than cationic lipids (Figure 3C). Receptor activator of nuclear factor κβ ligand
(RANKL), a member of tumor necrosis factor (TNF) family, can activate nuclear factor-κβ (NF-κβ)
through RANK-RANKL specific binding to stimulate the survival, differentiation and activation
of osteoclasts [26]. Because osteoprotegerin (OPG) interfere the interaction between RANKL and
RANK and hence the ratio of OPG/RANKL is correlated with a significant inhibition of the resorptive
activity [27]. Although MM and EtOH showed the lower level of OPG/RANKL ratio than control,
the ratio of OPG/RANKL was decreased even more by Chol, DC-Chol and DOTAP. Our results suggest
that lipids, particularly Chol, DC-Chol and DOTAP, may stimulate osteoclastogenesis through the
inhibition of osteoblast mineralization and the suppression of OPG/RANKL ratio (Figure 3D).

2.4. The Impact of Lipid Types on the Inflammatory Response of IL-1β-stimulated 7F2 Osteoblasts

Towle et al. have detected IL-1α and Il-1β cytokines in the chondrocytes of mildly osteoarthritic
human cartilage and which may play a role in the pathological joint destruction in osteoarthritis [28].
Cytokines such as IL-1 produced by activated synoviocytes, mononuclear cells or by articular cartilage
itself significantly up-regulate the gene expressions of pro-inflammatory mediators, cyclooxygenase
2 (COX-2) and metalloproteinase (MMP)-3 [29]. In here, we used IL-1β to induce inflammation
responses on 7F2 osteoblasts for investigate the impact of lipid types on the expressions of
inflammatory cytokines.
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Figure 3. The impact of lipid types on osteoblasts differentiation and mineralization. 7F2 osteoblasts
were treated with MM (50 µg/mL ascorbic acid and 5 mM β-glycerophosphate) to induce osteoblast
differentiation and mineralization. (A) The ALP activity of 7F2 osteoblasts in the absence and
presence of MM with various types of lipids; (B) Histochemical staining of mineralization deposition.
7F2 osteoblasts were cultured in absence or presence of MM with different types of lipids for 14 days
and calcium ion deposition was visualized by Alizarin Red S staining (×100 magnification, n = 3).
Red staining represents mineral deposition. Photographs represent osteoblast cultures under bright
field; (C) The quantification of osteoblast mineralization. Alizarin Red S was extracted with 10%
cetylpyridinium chloride and quantified as described in Materials and methods; (D) The effect of lipid
types on the OPG/RANKL ratio of 7F2 osteoblasts. Cells were incubated in the absence or presence
of MM with various types of lipids for 3 days and analyzed by real-time RT-PCR to investigate gene
expression of OPG and RANKL (relative to GADPH). The data are presented as the means ± S.E.
* p < 0.01, relative to control, # p < 0.01, relative to EtOH-treated cells.

The gene expressions of COX-2 and MMP-3 in IL-1β-stimulated 7F2 osteoblasts are around 3
and 6 fold higher than control (Figure 4A,B). In comparison with ethanol-treated cells, cationic lipids
including DC-Chol, and DOTAP appeared to stimulate more gene expression of COX-2 and MMP-3
expressions in IL-1β-stimulated 7F2 osteoblasts but not neutral lipids, PC and DOPE. Therefore,
cationic lipids may stimulate inflammatory responses in osteoblasts to cause ECM degradation and
bone loss.
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Figure 4. The effect of lipid types on the expression of COX-2 and MMP-3 of 7F2 osteoblasts in the
presence or absence of 10 ng/mL IL-1β stimulation. (A,B) COX-2 and MMP-3 mRNA expressions of
7F2 osteoblasts. Real-time PCR analysis was operated in 7F2 osteoblasts after 4 h treatment of IL-1β.
Gene expression level of COX-2 and MMP-3 demonstrated similar results. Chol, DC-Chol, and DOTAP
amplified inflammatory responses on IL-1β-stimulated 7F2 osteoblasts, and DC-Chol showed the
strongest inflammatory responses. On the other hand, PC exhibited the minor effect on inflammation
of 7F2 osteoblasts. The data are presented as the means ± S.E. * p < 0.01, relative to control, # p < 0.01,
relative to EtOH-treated cells.

2.5. The Effect of Liposomal Formulations on Particle Size and Stability and Cell Viability of 7F2 Osteoblasts

PC, DOPE, Chol, DC-Chol, and DOTAP are common lipid components in liposomal formulations
of clinically used products and ongoing clinical trials [11,13]. Based on the previous liposomal
formulations, four types of liposomal formulations were prepared: (1) liposomes prepared with PC
only (PC liposomes) (2) liposomes prepared by 1:1 ratio of PC and DOTAP (PC/DOTAP liposomes)
(3) liposomes prepared by 1:1 ratio of cholesterol and DOTAP (Chol/DOTAP liposomes) (4) liposomes
prepared by 1:1 ratio of DC-Cholesterol and DOPE (DC-Chol/DOPE liposomes) for the following
experiments [6,16,30–32]. After rehydration, liposomes were characterized with a mean diameter
greater than 2000 nm and a very large size distribution. In order to obtain liposomes with smaller
and uniform size distributions, the lipid extrusion with polycarbonate filters was carried out.
This procedure provided small multilamellar vesicles with mean diameters ranging from 160–180 nm.
In our evaluation study for particle size, DOTAP were found to be a very useful reducing agent in
liposomal formulation (PC/DOTAP liposomes and Chol/DOTAP liposomes), whereas PC liposomes
and DC-Chol/DOPE liposomes tended to produce slightly larger particles (Table 1). Therefore,
the presence of DOTAP in liposomal formulations may reduce the particle size but not DC-Chol.
The mean size of a drug carrier is an important requisite that can influence the delivery device’s
biological effectiveness. In order to see the change of particle size of various liposomal formulations
over time, a particle stability study of prepared liposomal suspensions was carried out at a temperature
of 4 ◦C for a period of up to 2 weeks. At expected, all the liposomal formulations were stable for
at least 2 weeks because there were less than l0% variation in particle size at day 14. (Figure 5A).
Moreover, there was no significant cytotoxicity determined with all the liposomal formulations at the
concentration of 2.5 µg/mL and which would be the concentration of liposomes used for the following
experimental studies (Figure 5B).

Table 1. Physical parameters of the liposomal formulations after extrusion.

Liposome Type PC PC/DOTAP Chol/DOTAP DC-Chol/DOPE

Particle size (nm) 174.9 ± 4.7 162.4 ± 3.5 164.3 ± 4.0 174.8 ± 6.0
PDI 0.056 ± 0.019 0.133 ± 0.029 0.093 ± 0.025 0.122 ± 0.020

Zeta Potential −5.09 ± 1.3 +37.4 ± 2.3 +50.9 ± 2.7 +34.2 ± 2.5
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Figure 5. The effect of liposomal formulations on liposomal stability and 7F2 osteoblast viability.
(A) The stability of liposomes prepared with different lipid compositions at 4 ◦C for 14 days; (B) The cell
growth of 7F2 osteoblasts after 24 h treatment with 2.5 µg/mL liposomal formulations. Data are
expressed by the mean of percent cell viability compared to control after exposured for 24 h ± standard
deviation (n = 3–6).

2.6. The Impact of Liposomal Formulations on the Lipid Droplet Formation in 7F2 Osteoblasts

Similar to Figure 2A, Oil Red O staining was used to detect lipid accumulation in cells treated
with various liposomal formulations (Figure 6A). The quantitation of Oil Red O staining exhibited
that PC, Chol/DOTAP and DC-Chol/DOPE liposomes slightly increased lipid droplet formation
in comparison with ADM-treated cells but not in statistical significance (Figure 6B). Moreover,
PC/DOTAP liposomes induced lipid accumulation in 7F2 osteoblasts 1.5 fold higher than ADM-treated
cells. Next, we examined the influence of liposomal formulations on gene expressions of FAS and
FABP4. PC/DOTAP liposomes had 1.4 and 1.5 fold increase in gene expressions of FAS and FABP4
in contrast to ADM-treated cells. In addition, Chol/DOTAP liposomes showed a similar increase in
in gene expressions of FAS and FABP4, while PC liposomes and DC-Chol/DOPE liposomes had no
or only minor stimulating effect. As expected, the increase in lipid accumulation level is positively
correlated with the gene expressions of FAS and FABP4 (Figure 6C,D). Overall, PC/DOTAP liposomes
have more potential to induce adiposity in 7F2 osteoblasts than other liposomal formulations.
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Figure 6. The influence of liposomal formulations on adipogenic differentiation of 7F2 osteoblasts.
(A) Histochemical staining of lipid accumulation. 7F2 osteoblasts were visualized by Oil Red O
Staining (×100 magnification, n = 3). The red spot is oil droplet stained by Oil Red O. Photographs
show representative adipocyte cultures under bright field; (B) The quantitation of lipid accumulation;
(C,D) The gene expressions of adipogenic markers, FAS and FABP4. The data are presented as the
means ± S.E. * p < 0.01 relative to Control, # p < 0.01 relative to ADM-treated cells.

2.7. The Impact of Liposomal Formulations on Osteogenesis in 7F2 Osteoblasts

In order to investigate the impact of liposomal formulations on osteogenesis, 7F2 cells were
incubated in MM with various liposomal formulations for 10 days to determine ALP activities.
In contrast to control, MM induced ALP activity around four times higher. Moreover, all the liposomal
formulations can enhance ALP activities in 7F2 osteoblasts and that were 1.3 to 1.6 fold higher
than ADM-treated cells (Figure 7A). Under MM condition, the calcium deposition level of 7F2 cells
were around 8-fold higher than control (Figure 7B). Interestingly, the cells treated with liposomal
formulations all exhibited similar calcium deposition level to MM-treated cells. Therefore, liposomal
formulations have minor inhibitory effect on osteoblast mineralization no matter which types of lipids
used for liposomal formulations (Figure 7C). Next, we evaluated the ratio of OPG/RANKL in cells
incubated with various liposomal formulations. All the liposomal formulations reduced the ratio
of OPG/RANKL but in different levels. PC and DC-Chol/DOPE liposomes demonstrated higher
ratio of OPG/RANKL than other liposomes. Although there was no significant difference in calcium
deposition levels in7F2 osteoblasts, the increase in ALP activity was positive correlated with the
ratio of OPG/RANKL without considering the effect of MM. Among all the liposomal formulations,
PC/DOTAP liposomes has the worst impact on osteogenesis of 7F2 cells (Figure 7D).
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Figure 7. The impact of liposomal formulations on osteogenesis of 7F2 osteoblasts. 7F2 osteoblasts were
treated with MM to induce osteoblast differentiation and mineralization. (A) The ALP activity of 7F2
osteoblasts in the absence and presence of MM with different liposomal formulations; (B) Histochemical
staining of mineralization deposition. 7F2 osteoblasts were cultured in MM with different liposomal
formulations for 14 days and calcium ion deposition was visualized by Alizarin Red S staining
(×100 magnification, n = 3). Red staining represents mineral deposition. Photographs represent
osteoblast cultures under bright field; (C) The quantification of osteoblast mineralization. Alizarin
Red S was extracted with 10% cetylpyridinium chloride and quantified as described in Materials
and methods; (D) The effect of liposomal formulations on the OPG/RANKL ratio of 7F2 osteoblasts.
In order to determine gene expression of OPG and RANKL, 7F2 osteoblasts were incubated in MM
with various liposomal formulations for 3 days and analyzed by real-time RT-PCR (relative to GADPH).
The data are presented as the means ± S.E. * p < 0.01 relative to Control, # p < 0.01, relative to
MM-treated cells.

2.8. The Inflammatory Responses of IL-1β-stimulated Osteoblasts after Treatment with Various
Liposomal Formulations

In comparison with control, 7F2 osteoblasts showed around 3 and 6-fold higher gene expression
of COX-2 and MMP-3 after 4 h of IL-1β treatment (Figure 8A,B). In addition, PC liposomes showed
51% and 59% reduction on IL-1β-induced expressions of COX-2 and MMP-3, while Chol/DOTAP and
DC-Chol/DOPE liposomes had no or a minor inhibitory effect on COX-2 and MMP-3 expressions.
Interestingly, PC/DOTAP liposomes showed the same inhibition pattern on IL-1β-stimulated
inflammatory responses in 7F2 osteoblasts as that of PC liposomes. Therefore, PC-contained liposomes
may perform the inhibitory potential on the inflammatory responses of 7F2 osteoblasts but not
lipid alone.
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the means ± S.E. * p < 0.01 relative to Control, # p < 0.01 relative to IL-1β-stimulated cells.

3. Discussion

Recently, liposomal formulation become one of the interesting medications for osteoarthritis
treatment because liposomal formulation can minimize the adverse effects and cytotoxicity of drugs
and is able to carry hydrophilic and hydrophobic drugs on the same carriers. Oliveira et al. prepared
small cationic liposomes such as DOTAP/DOPE or DOTAP/Chol liposomes in the mole ratio of
1:1 and that showed no significant cytotoxicity and good transfection activities in osteoblast-like
cells, MG-63 and MC3T3-E1 cells [33]. Moreover, van der Geest et al. used long-circulating
liposomes containing distearoyl-phosphatidylethanolamine-methyl-polyethylene glycol to encapsulate
prednisolone to improve joint targeting and anti-inflammatory efficacy for the treatment of rheumatoid
arthritis [34]. However, our previous study found that liposome treatment can slightly suppress
osteoblast mineralization through the lipid accumulation [6]. Therefore, we prepared 4 different
liposomal formulations at the same molar ratio but with different lipid compositions (PC, PC/DOTAP,
Chol/DOTAP and DC-Chol/DOPE) to investigate the impact of lipid types and liposomal formulations
on osteogenesis and lipid droplet formation in 7F2 osteoblasts. All the lipids used in this study are
selected from liposome or lipid-based drug formulations which have been approved for human
use [13,30]. Due to poor aqueous solubility, all the lipids were dissolved in ethanol for the cell culture
studies. Ethanol is edible and have been used as the solvent for liposome preparation. By the way,
the study reported by Kc et al. suggested that chronic alcohol exposure may increase susceptibility
to the development and/or progression of OA [7]. The in vivo model of chronic alcohol treatment
demonstrated that chronic alcohol consumption increased proteoglycan loss in both knee and shoulder
joints of mice, and stimulated multiple inflammatory mediators involved in cartilage. Chen et al. also
indicated that ethanol significantly increased lipid accumulation and up-regulated gene expressions of
aP2 and PPARγ in mesenchymal stem cell line C3H10T1/2 [35]. Similar to previous studies, our results
also showed that ethanol slightly stimulated intracellular lipid droplet formation and while suppressed
calcium deposits in 7F2 osteoblasts but not in statistic difference.

Importantly, Rezq et al. indicated that mice fed a diet containing olive oil, butter or animal
fat had significant increase in bone density, while those fed diets containing soybean oil, corn oil,
sunflower oil or margarine had significant decreases in femur bone density [36]. Therefore, the type
of lipid has an important effect on bone health. The present study indicated that cationic lipids,
DC-Chol, and DOTAP, could significantly increase lipid droplet formation and up-regulate the
expressions of FAS and FABP4 in 7F2 osteoblasts and while suppress ALP activity and osteoblast
mineralization. In addition, DC-Chol, and DOTAP could stimulate the gene expressions of COX-2
and MMP-3 in IL-1β-induced 7F2 osteoblasts and hence these cationic lipids can cause boss loss
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through the up-regulation of inflammatory responses. Except of cationic lipids (DC-Chol and
DOTAP), Chol promoted more lipid droplet formation and FAS and FABP4 expressions than PC
and DOPE. Our results are consistent with those of Soazig et al. who reported that Chol could
induce lipid droplet formation in 3T3-L1 adipocytes [37]. Interestingly, Manickam et al. mentioned
that eicosapentaenoic acid (EPA)-treated adipocytes, with reduced lipid droplet size and total lipid
accumulation, have improved inflammatory response [38]. In the cellular model of endothelial
inflammation, i.e., HMEC-1 cells exposed to TNF-α, Czamara et al. revealed that the formation of
lipid droplets can be directly correlated with the increase production of prostacyclins-endogenous
inflammation mediators [39]. Correspndingly, Asterholm et al. demonstrated that the degree of
high fat diet-induced obesity could be reduced in a mouse model with dominant-negative TNF-α
expression and hence obesity could be responsible for the induction of inflammatory responses [40].
Here, DC-Chol and DOTAP with increased lipid droplet formation, had higher inflammatory responses.
Compared with cationic lipids (DC-Chol and DOTAP), neutral lipids (PC and DOPE) exhibited
lower cytotoxicity, less inflammatory responses, reduced lipid accumulation, and lower inhibition
of osteoblast differentiation and mineralization. Hence, Chol, DC-Chol and DOTAP may reduce
bone mineral density through the increase of inflammatory responses and intracellular lipid droplet
formation. Among the lipids, DC-Chol showed the most intensive induction of adipogenesis, while PC
is considered to be the best lipid due to relatively minor effect on osteoblast differentiation and
mineralization. Therefore, the behavior of osteoblasts under different lipid conditions can be arranged
in the following rank order PC > DOPE > Chol > DOTAP > DC-Chol.

Similar to lipids, all the liposomal formulations stimulated lipid droplet formation but the level
of lipid droplet formation was different. Among these liposomal formulations, DOTAP containing
liposomes (PC/DOTAP and Chol/DPTAP) stimulated more lipid droplet formation and adipogenic
marker expressions than others. On the other hand, all the liposomal formulations trend to
increase ALP activity and there is no significant adverse effect observed on osteoblast mineralization.
Although DC-chol induced high lipid droplet formation and intensive expressions of FAS and
FABP4, incorporation of DC-chol into liposomes (DC-chol/DOPE liposomes) showed a similar
osteoblast behavior to PC liposomes. Therefore, incorporation of DC-chol or Chol into liposomes
may have a minor effect on osteoblast differentiation. Interestingly, PC containing liposomes
(PC only and PC/DOTAP) suppressed IL-1β-induced gene expression of COX-2 and MMP-3 but
not Chol/DOTAP liposomes or DC-Chol/DOPE liposomes. It is worth to note that PC liposomes
were the only neutral liposomes in four formulations and PC/DOTAP and DC-chol/DOPE liposomes
had similar surface charges. However, PC/DOTAP and DC-CHol/DOPE liposomes showed different
characteristic features in adipogenic differentiation, osteogenesis and anti-inflammation. Therefore,
liposomal charge and lipid composition both play important roles in 7F2 osteoblast differentiation and
inflammation. In consistent with our previous studies, we found PC containing liposomes show good
anti-inflammatory activities [6]. In the human intestinal epithelial cell line Caco-2, PC down-regulated
TNF-α-induced gene expressions of pro-inflammatory cytokines such as ICAM-1, MCP-1, IL-8 and
IP-10 through the inhibition of NFκB activation and hence lipid based therapy with PC may have
benefits for ulcerative colitis, through anti-inflammatory effect [41,42]. Taken together, the behavior of
osteoblasts under the stimuli of different liposomal formulations can be arranged in the following rank
order PC liposomes > DC-Chol/DOPE liposomes > PC/DOTAP liposomes = Chol/DOTAP liposomes.

It is important to identify how lipid types and liposomal formulations can affect osteoblast
behaviors such as cell viability, differentiation, mineralization and inflammatory responses. Similar to
other researches, our results also demonstrated a reciprocal and inverse relationship between lipid
droplet formation and osteoblast mineralization in 7F2 osteoblasts [1]. Hence, lipids or liposomal
formulations may reduce bone mineral density through the increase of inflammatory responses and
intracellular lipid droplet formation. As mentioned previously, OA patients treated with Meriva,
a curcumin-PC complex, showed significant reduction in pain, stiffness and physical functions in
comparison with the patients who were managed using the best available treatment. Furthermore,
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OA patients treated with Meriva® had reduced levels of inflammatory markers (IL-1β, IL-6, sVCAM-1
and ESR) in blood [8]. Though the increase of drug bioavailability, Ibrahim et al. demonstrated that
Meriva suppressed the expression of MMP-9 and lung metastasis more effectively than free curcumin
in the animal model of mammary gland adenocarcinoma [43]. Therefore, PC containing liposomes
might exert a potent therapeutic efficacy in bone diseases.

4. Materials and Methods

4.1. Materials and Cell Culture

Phospholipon 90G (phosphatidylcholine 90%) is purified PC from soybean lecithin provided
by American Lecithin Company (Oxford, CT, USA). DOPE, DC-Chol, and DOTAP were acquired
from Avanti (Alabaster, AL, USA). Oil Red O Staining kit was obtained from Lifeline (Frederick,
MD, USA). Chol and Alkaline Phosphatase Colorimetric Assay kit were purchased from Sigma-Aldrich
(St Louis, MO, USA). All cell culture materials including Dulbecco’s modified eagle’s medium (DMEM),
fetal bovine serum (FBS), L-glutamine, adipocyte differentiation medium (ADM) were purchased
from Gibco (Grand Island, NY, USA). All solvents used for analytical grade are obtained from J.T.
Baker (Center Valley, PA, USA), and cytokines were purchased from ProSpec (Saint Louis, MO, USA).
Mouse osteoblast-like cells (7F2) were acquired from food industry research and development institute,
Taiwan. Cell lines 7F2 were cultured in DMEM supplemented with 10% v/v FBS, 100 units/mL
penicillin and 100 µg/mL of streptomycin. Cells were maintained at 37 ◦C with 5% CO2 in
a humidified incubator.

4.2. MTT Cell Growth Assay

7F2 osteoblasts were seeded at a density of 104 cells/well in 96-well plates to determine cell
viability. Culture media were replaced with the media containing test samples (lipids or liposomal
formulations) at various concentrations. After 1 day of incubation at 37 ◦C in a 5% CO2 atmosphere,
all cell supernatants were removed and 200 µL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) reagent (100 µg/mL) was added to each well for another 4 h incubation. 100 µL
DMSO was added to each well to dissolve formazan crystals and the absorbance was measured at
570 nm using the ELISA reader (Infinite M200, Tecan, Männedorf, Switzerland). All experiments were
performed in quadruplicate, and the relative cell growth (%) was expressed as a percentage relative to
the untreated control cells.

4.3. Liposomal Formulation

Liposomes with different compositions (PC only, PC/DOTAP, Chol/DOTAP, and DC-Chol/DOPE
at 1:1 molar ratio) were prepared by the modified thin-film hydration method [6]. Different lipids
were dissolved in the mixture of ethanol and chloroform. After lipids were completely dissolved
in a round-bottom flask, the solvent was evaporated by rotary evaporator (Eyela, N-1000, Tokyo,
Japan) at 45 ◦C and vacuum dried to form a dry lipid film. The lipid film was then hydrated with
2 mL PBS. The hydrated solution was downsized by sequence passing through 400 nm and 100 nm
polycarbonate membranes using an extruder (Avanti Mini Extruder, Alabaster, AL, USA) to obtain
uniformly-sized liposomes.

4.4. Particle Characterization

The particle size distribution of liposomes was determined using a dynamic light scattering
instrument (LB-550, Horiba Ltd., Kyoto, Japan). Liposomal dispersions were diluted with
double-distilled water to ensure the light scattering intensity in the instrument’s sensitivity range.
The stability of the liposomal formulations was evaluated after storage at 4 ◦C for 1, 7 and 14 days.
All measurements were taken in triplicate.



Molecules 2018, 23, 95 14 of 17

4.5. Oil Red O Staining

7F2 osteoblasts were cultured at a density of 5 × 104 cells/well in 6-well plates in DMEM
containing 10% FBS and 10% ADM with different types of lipids or liposomal formulations at 37 ◦C
in a 5% CO2 atmosphere. After 7 days of incubation, the supernatants were removed and cells were
washed with PBS and fixed with 1 mL of 4% paraformaldehyde fixative solution for 20 min at room
temperature. After the reaction, cells were rinsed with PBS and treated with 1 mL of 1,2-propanediol
dehydration solution for 5 min. Then, 1 mL of Oil Red O stain solution was added and incubated at
37 ◦C for 30 min of adipocyte staining. Later, cells were treated with 1 mL of 1,2-propanediol stain
differential solution for adipogenic differentiation. The images of cell morphology were taken by
microscope (Eclipse Ti-E, Nikon Corporation, Tokyo, Japan) and CCD camera system (SPOT RT3,
Diagnostic instruments Inc., Sterling Heights, MI, USA). Finally, 1 mL of isopropanol was added to
each well and shaken for 10 min to dissolve the dye, then the absorbance was measured by an ELISA
reader at a wavelength of 520 nm. Each experiment was taken in triplicate.

4.6. Alkaline Phosphatase (ALP) Activity Analysis

7F2 cells were seeded at a density of 104 cells/well in 24-well plates. Mineralization medium
(DMEM containing 10% FBS, 5 mM β-glycerophosphate, and 50 µg/mL ascorbic acid) with different
types of lipids or liposomal formulations was added to each well and incubated for 10 days at 37 ◦C
in a 5% CO2 atmosphere. The supernatants were removed and washed by PBS. Cells were lysed
with 150 µL of assay buffer, shaken for 10 min, and centrifuged at 12,000× g for 10 min at 4 ◦C.
After centrifugation, the supernatant was collected and transferred to a clean tube. 2–80 µL of the
testing samples was added to each well and the volume was adjusted to 80 µL/well with assay
buffer. 50 µL of 5 mM p-nitrophenyl phosphate (pNPP) solution was added to each testing sample
and background control. The samples were well mixed and incubated in the dark condition at 25 ◦C
for 60 min. Alkaline phosphatase will convert the substrate, pNPP, to an equal amount of colored
p-nitrophenol (pNP). The absorbance was measured by an ELISA reader at a wavelength of 405 nm.
The measurements were taken in triplicate.

4.7. Alizarin red S Staining for Osteoblast Mineralization

7F2 osteoblasts were seeded at a density of 104 cells/well in 24-well and cultured in 2 mL
mineralization medium (MM) with different types of lipids or liposomal formulations for 14 days.
After incubation, the samples were washed with PBS, fixed with 75% v/v ethanol and dried at room
temperature. After complete drying, the fixed cells were stained with 200 µL of 1% Alizarin Red
S for an hour. Cell morphology was imaged by microscope (Nikon TI-E) and CCD camera system
(SPOT RT3). 400 µL of 10% w/v cetylpyridinium chloride solution was added to each well and
shaken for 10 min to dissolve calcium. Finally, the absorbance was measured by an ELISA reader at
a wavelength of 560 nm. The measurements were taken in triplicate.

4.8. Quantitative Real-Time PCR

7F2 osteoblasts were seeded in 6 cm dishes for 24 h of incubation. Then, 7F2 cells were
incubated with ADM for 7 days to induce adipogenesis or with MM for osteoblast differentiation.
For inflammation evaluation, 7F2 osteoblasts were stimulated with IL-1β (10 ng/mL) to induce
inflammatory responses. After treatment, total RNA was extracted using the Trizol reagent (Protech
Technology, Taipei, Taiwan) following the protocol to the manufacturer’s instructions. RNA (2 µg)
was reverse transcribed using TProfessional Basic (Biometra GmbH, Göttingen, Germany). The cDNA
(equivalent to 20 ng) was used in an StepOnePlus™ Real-Time PCR System using FastStart DNA
Master-PLUS SYBR Green I (Applied Biosystems, Foster City, CA, USA). The designed primers were
shown in Table 2 and all primers using nucleotide sequences present in the PrimerBank database.
Each sample was corrected using the mean cycle threshold (CT) value for GAPDH. Relative gene



Molecules 2018, 23, 95 15 of 17

expression was analyzed using the ∆CT method and expressed as fold change (2−∆CCT) T relative to
the expression values in non-stimulated cells.

Table 2. Sequences of primers used in real-time PCR experiment.

Target Forward (5′~3′) Reverse (5′~3′)

GAPDH CATGAGAAGTATGACAACAGCCT AGTCCTTCCACGATACCAAACT
FAS CCACTGAAGAGCCTGGAAGA GTAGTCAGCACCCAAGTCCT

FABP4 AGTGAAAACTTCGATGATTACATGAA GCCTGCCACTTTCCTTGTG
OPG CCTTGCCCTGACCACTCTTAT CACACACTCGGTTGTGGGT

RANKL CGCTCTGTTCCTGTACTTTCG GAGTCCTGCAAATCTGCGTT
COX-2 CAGCCAGGCAGCAAATCC ACATTCCCCACGGTTTTGAC
MMp-3 GGCCTGGAACAGTCTTGGC TGTCCATCGTTCATCATCGTCA

4.9. Statistical Analysis

The experiments were repeated at least twice with similar results, and the values were expressed
as means ± standard deviations. The data were analyzed by the Dunn’s post-test using SPSS Version
12 (IBN, New York, NY, USA) and Sigma Plot (San Jose, CA, USA). Differences were considered to be
statistically significant at p < 0.05.

Acknowledgments: This work was supported by research grants from Veterans Affairs Commission, Executive
Yuan (Taiwan) (RVHCY104001 and RVHCY105001) and the Ministry of Science and Technology, Taiwan
(MOST 106-2314-B-182A-010-MY).

Author Contributions: S.-F.C. designed and performed the experiments, analysed the data. C.-C.Y. wrote the
manuscript and contributed to data analysis. P.-J.C. performed the experiments. H.-I.C. supervised the project,
contributed to data analysis and the writing of the manuscript.

Conflicts of Interest: The authors report no conflicts of interest in this work.

References

1. James, A.W. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation.
Scientifica (Cairo) 2013, 2013, 684736. [CrossRef] [PubMed]
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