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As very light fermions, electrons are governed by antisymmetric
wave functions that lead to exchange integrals in the evaluation
of the energy. Here we use the localized representation of
orbitals to decompose the electronic energy in a fashion that
isolates the enigmatic exchange contributions and characterizes
their distinctive control over electron distributions. The key to
this completely general analysis is considering the electrons in
groups of three, drawing attention to the curvatures of pair
potentials, rather than just their amplitudes and slopes. We

show that a positive curvature at short distances is essential for
the mutual distancing of electrons and a negative curvature at
longer distances is essential to account for the influence of lone
pairs on bond torsion. Neither curvature is available in the
absence of the exchange contributions. Thus, although ex-
change energies are much shorter range than Coulomb
energies, their influence on molecular geometry is profound
and readily understood.

Introduction

Chemists have two very different languages for describing
molecules, and the subtitle of this paper juxtaposes the two. On
the one hand “molecular features” usually references the
arrangement of bonds and associated semi-classical electrons.
On the other hand, “electron antisymmetry” is only intelligible
in terms of electronic wave functions which are typically
delocalized across the molecule. Some rapprochement between
these two pictures has been achieved by transformations that
produce localized wave functions that can be identified with
bonding and non-bonding electrons. However, the correspond-
ence is only topological. It begs the question of what energies
drive the observed spatial arrangements. On the one hand, the
semi-classical picture invokes “valence shell electron pair
repulsion” (VSEPR), according to which like-spin electrons avoid
each other and unlike-spin electrons form pairs.[1] On the other
hand, wave mechanics invokes Coulomb and exchange inte-
grals of the kinetic and electrostatic terms in the Hamiltonian.
The purpose of this paper is to bridge these two views and, in
particular, to isolate the influences of electron antisymmetry on
molecular structures.

In the next section, we will explore the relationship between
energy and particle spacing, noting that the curvature is
decisive, independent of magnitudes and slopes. Then we will
turn to a choice of localized orbitals that allows analytical
evaluation of that relationship. Using this construct, we finally
consider which contributions to the energy are able to account
for the arrangements of electrons in molecules.

Results and Discussion

Energy Correlates of Particle Spacing

The top row of Figure 1 shows two different spacing scenarios.
In both, two identical particles (black) are already in place at a
fixed distance. The question is where the third particle will go.
In the avoiding (left, red) scenario, the third particle is situated
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Figure 1. Consequences of negative and positive curvature in pair potentials
(see text). The constructs compare U(re) (red dot) with [U(r13)+U(r23)]/2 at the
midpoint of the straight line connecting the points on the curve at r13 and
r23 (green dots).

ChemistryOpen
Research Article
doi.org/10.1002/open.202100234

1197ChemistryOpen 2021, 10, 1197–1201 © 2021 The Authors. Published by Wiley-VCH GmbH

Wiley VCH Montag, 29.11.2021

2112 / 228002 [S. 1197/1201] 1

http://orcid.org/0000-0001-8664-3995
http://orcid.org/0000-0001-5570-1056
http://orcid.org/0000-0001-9585-6458
http://orcid.org/0000-0002-5795-8127


equidistant from the original two. In the bunching (right, green)
scenario, the third particle “prefers” to be closer to one of the
original particles than to the other.

The bottom panels in Figure 1 show that which scenario is
preferred (i. e., has the lower energy) depends on the curvature
of the dependence of the interactions on distance. Suppose
that the third electron is set at an equal distance re from each of
the two original ones. In that case, the red dot represents the
average of the repulsion felt by the third electron due to each
of the two original ones. Now suppose that the third electron is
placed closer to the first electron (r13 in Figure 1) and/or farther
from the second electron (r23 in Figure 1). In that case, the
midpoint of the straight line connecting the two green dots
represents the average of the repulsion felt by the third
electron due to each of the two original ones. When the pair
potential has positive curvature (left), the avoiding scenario has
the lower energy, and when the pair potential has negative
curvature (right), the bunching scenario has the lower energy.

Before moving on to wave functions, it is useful to pause to
consider what effect classical interactions would have on
electron spacing. As illustrated in Figure 2, classical repulsions
between like-charged particles have positive curvature at all
distances. According to the above analysis, this means that
electrons under this potential would avoid each other to the
extent that attractions to nuclei allow. This result, which is
independent of spin and mitigates against electron pairing, is
the story that wave functions must improve upon.

Localized Orbitals

There are many possible transformations of wavefunctions that
leave the physics untouched: as established by the theorems of
density functional theory, all that matters (at least for the
ground state) is the distribution of the overall electron density.
While the details vary according to whether orthogonality is
imposed and the choice of the localization criteria and
algorithm,[2] localized orbitals typically have nodal surfaces. This

presents both conceptual and practical problems. Conceptually,
it is troubling that there is a swath of negligible electron density
across a functionally significant region of electron density. The
practical issue is the change of sign across the node. It means
that contributions to energy integrals, and therefore also to
their curvature, change across the node and determining which
contributions dominate needs to be delegated to computers.

Recently, Timothy Schmidt et al. have used dynamic Voronoi
Metroplis sampling to develop “wave function tiles” which are
localized orbitals with no change of sign.[3] Of course, it remains
that quantitative evaluation of integrals over these wave
functions still needs to be done by computer. However,
qualitative features can be extracted by noting that an orbital
of a single sign can be represented by a sum of floating
spherical Gaussian orbitals (FSGOs):

Si Ci exp ½-ðr-riÞ2=di2�, all Ci > 0 (1)

FSGOs have been revisited frequently[4] because they have
the advantage of providing analytical integrals over all terms of
the Hamiltonian.[5] The practical difficulty is that multiple FSGOs
are required to adequately represent molecular orbitals with
sufficient quantitative accuracy. However, that is not an impedi-
ment to the present qualitative analysis. As long as there are no
variations in sign (i. e., all Ci>0 in Equation (1)), each FSGO
contributes to a given integral with the same qualitative
dependence on the distance between centers, including
curvature. Thus, without loss of generality, we can draw
qualitative conclusions from the analytical integrals that are
available for electrons occupying single FSGOs.[5–6]

Coulomb Integrals

Since the kinetic energy operator is a single electron operator,
distance does not enter into the kinetic Coulomb integral. On
the other hand, distance does enter into the Coulomb integral
for electron-electron repulsions. Figure 3 shows that it differs
from the classical repulsion by not diverging at short distances
(where the diffuse distribution of the electron density matters).
This softened interaction has a characteristic shape, with a
negative curvature at short distances and a positive curvature
at longer distances (irrespective of electron spin). Each of these
features tells an unphysical story. Although mild, the negative
curvature at short distances favors bunching of electrons
(irrespective of spin), contrary to the observations underlying
VSEPR.

At longer, interatomic, distances, the positive curvature of
the Coulomb energy favors equal spacing of electrons. Again,
this is contrary to what is observed in molecules. Figure 4 shows
Newman projections for molecules with various numbers of
protons. Proton-proton repulsions are purely Coulombic, with
positive curvature everywhere. According to the above analysis,
this favors a proton at one end of the molecule being
equidistant from the two nearest protons at the other end of
the molecule. Thus proton-proton repulsions favor the stag-
gered conformation seen in ethane, methyl amine and meth-

Figure 2. The classical repulsion between a pair of point particles with
charge -e, U= (e2/4πɛo)(1/r). The energy is plotted in units of MJmol� 1 vs. r in
Å.
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anol (Figure 4a). Furthermore, this conformation prevails even
though the long-range proton-electron attraction has negative
curvature. The dominant influence of the proton-proton
repulsions is also indicated by the linear decrease in the torsion
barrier with the number of protons (Figure 4a). However, in
molecules with fewer than three protons on both ends, the
staggered conformation is not favored (Figure 4b), indicating
that the electron pairs (whether lone pairs or bonding pairs) at
one end of the molecule do not prefer to be equidistant from
the two nearest ones at the other end.

Exchange Integrals

We now look to the exchange energies to remedy these
problems. These energy contributions, arising from exchange
integrals over kinetic and electrostatic operators in the Hamil-
tonian, have been evaluated previously[6] and we make direct
use of those results. The integrals are zero for the exchange of
localized electrons with unlike spins (as long as the Hamiltonian
has no spin-dependent operators).[6] Figure 5 shows contribu-
tions for electrons with like spins: at short distances, the
magnitudes are 2- to 3-fold less than for the Coulomb integral
(solid line in Figure 3) and the damping is sufficiently strong
that, as physically required, the exchange interactions are local
and do not compete with Coulomb interactions at intermolec-
ular distances. In addition, since the kinetic and electrostatic
contributions to the exchange energy are of opposite sign, their
magnitudes partially cancel. However, the curvatures are what
we are after here and the exchange curvatures are generally of
the same sign at short distances, do not fully cancel at longer
distances, and are stronger than for the Coulomb interactions.

The contributions to the exchange energy from the kinetic
energy operators are positive because the antisymmetric wave
function formed by the FSGOs has greater curvature than the
corresponding symmetric wave function. Figure 5a shows that
this energy depends strongly on the ratio of the cloud sizes

Figure 3. The Coulomb integral for repulsions between two electrons
occupying FSGOs with centers separated by a distance r, U= (e2/4πɛo)
(2/π1/2) β F0(β

2r2) (solid line), is compared with the diverging repulsion
between two point charges, U= (e2/4πɛo)(1/r) (dotted line). The energies are
plotted in units of MJmol� 1 vs. r in Å, for β2=2/(di

2+dj
2)=1 Å� 2. The Boys

function F0(x
2)= (π1/2/2)(erf(x)/x).[5]

Figure 4. Newman projections of small molecules.[7] (a) For molecules with
lone pairs on only one end, there are three torsion barriers of equal
magnitude corresponding to conformations where protons at each end of
the molecule are eclipsed. (b) In N2H4 and H2O2, there are two different
torsion barriers, a major one at the eclipsed conformation and a lesser one
at the staggered conformation, such that the minimum energy structure is
skewed. In the stable conformation of H2O2, electron pairs at the two ends of
the molecule are almost eclipsed, while the two protons still avoid each
other.

Figure 5. Exchange energies for electrons occupying FSGOs.[6] (a) Contribu-
tion to the exchange energy from the kinetic energy operator. U= (�h2/2me)
β2 [3(γ2-1)+β2r2]/[γ3exp(β2r2)-1] is plotted in units of MJmol� 1 vs. r in Å, for
β2=2/(di

2+dj
2)=1 Å� 2. γ= [(di/dj)+ (dj/di)]/2 and the solid lines, from left to

right, are for γ=1.001, 1.005, and 1.02, while the dashed line is for γ=2. (b)
Contribution to the exchange energy from repulsion between the two
exchanged electrons. U= (-e2/2π3/2ɛo) β [γ-F0(β2r2)]/[γ3exp(β2r2)-1], plotted in
units of MJmol� 1 vs. r in Å, for β2=2/(di

2+dj
2)=1 Å� 2. The Boys function

F0(x
2)= (π1/2/2)(erf(x)/x).[5] γ= [(di/dj)+ (dj/di)]/2 and the solid lines, from

bottom to top, are for γ=1.0 and 1.05, while the dashed line is for γ=2.
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(i. e., the Gaussian decay lengths, di and dj) for the exchanged
electrons. However, unless the difference in cloud sizes is
extreme, there is a broad region at short range with strong
positive curvature (see solid lines). This contribution will there-
fore favor even distributions of electrons of like spin. Mean-
while, the absence of this contribution for electrons of unlike
spin facilitates the formation of electron pairs. The exceptional
case in Figure 5a, of negative curvature over the short range
(dotted line), is also physically meaningful, allowing electrons of
like spin to pile on top of each other if their cloud sizes are
sufficiently different. This applies, for example, to the first spin-
excited state of two-electron ions in which electrons of like-spin
occupy the 1s and 2s orbitals.

The most straightforward electrostatic contribution to the
exchange energy, coming from the exchange integral over the
operator for the repulsion between the two exchanged
electrons, is negative because the antisymmetric wave function
formed by the FSGOs has depleted density between the two
centers which reduces repulsions. Therefore, this is the
exchange contribution that stabilizes high spin states in the
Aufbau of ground state electron configurations.[6,8] Figure 5b
shows that this energy is not strongly dependent on the relative
sizes of the electron clouds, and contributes positive curvature
at short range and negative curvature at longer-range. Thus, it
contributes to an even spread of like-spin electrons at short
range, and promotes skew from staggered dihedral conforma-
tions at longer range.

Discussion

According to these results, the implications of exchange
energies go beyond typical concerns about the accuracies of
calculated molecular energies to the control of fundamental
features of molecular structure. This insight, enabled by using
FSGOs to represent well-localized molecular orbitals, is obtained
with no loss of generality because different shapes of nodeless
orbitals can be represented by different sums of FSGOs with the
same sorts of energy contributions.

In contrast, conventional, one-off calculations, for different
molecules using different methods, do not lend themselves to
such generalization. This is especially so for density functional
calculations, given the many variations of the exchange and
correlation functionals. On the other hand, ab initio results are
not friendly to energy decomposition, with varying definitions
of such putative structure drivers as “steric interactions” and
“Pauli exchange”. However, valence bond studies have shown
that delocalization is necessary for reproducing torsion barriers
at the staggered conformations of N2H4 and H2O2,

[9] and studies
of basis set dependence with conventional molecular orbitals
have found that torsion barriers are sensitive to the inclusion of
polarization and diffuse function.[7,10] These observations agree
with our conclusions to the extent that extended orbitals
enhance the orbital overlap that is required for the exchange
integrals.

Further confirmation of the present attribution of distinct
molecular features to exchange energies comes from recent

work on sub-atomistic force fields. Sub-atomistic force fields
seek to devise potentials for the interactions of semi-classical
electrons.[11] The approach is similar to classical molecular
mechanics except that electrons are made explicit and
independently mobile, with the advantage that polarizability
and bond making/breaking are described in a natural, self-
consistent and orbital-free manner, without assignment of atom
types. In earlier work, we focused on the importance of
exchange for stabilizing high spin states, such as the triplet
ground states of the oxygen atom and dioxygen.[8] In hindsight,
hints of the additional importance of exchange for the
distribution of electrons around atoms were present when the
heuristically chosen exchange potential had negative curvature
at short range: while this potential could account for the
ionization and spin excitation energies of monatomic and
diatomic species of the 2p elements, overall it produced a very
rough potential energy surface with deep local minima for
various uneven electron distributions.[8c] Preliminary calculations
show that replacing these exchange potentials with ones that
have positive curvature at short range provides a smoother
potential energy surface. In other work with sub-atomistic force
fields, preliminary calculations show that using exchange
potentials with negative curvature at interatomic range can
predict a torsion barrier at the staggered conformation of N2H4.

Conclusion

The VSEPR concept embodies an apparent contradiction: on the
one hand, despite “repulsions”, electrons are expected to form
“pairs“, on the other hand “repulsions” cause these “pairs” to
distance themselves from one another. The analysis presented
in this paper highlights two keys to unraveling this contra-
diction. One is that what matters for electron spacing is the
curvature of the dependence of electron-electron interactions
on distance. Thus, while the uniformly positive curvature of
repulsions between point particles of like charge disfavors
pairing at all distances, the mildly negative curvature of
repulsions between diffuse clouds of like charge at short
distances allows for pairing. This is true irrespective of spin. The
second key to understanding the VSEPR phenomenon is the
antisymmetry required of fermion wave functions. The resulting
exchange integrals are zero for electrons of unlike spin, but
make large contributions to the curvatures of the potentials for
electrons of like spin. The attendant positive curvature for
electrons of like spin at short distances drives them to even
spacing around kernels. On the other hand, at longer distances,
the exchange integrals contribute negative curvature that
modulates torsion around single bonds.

In sum, our analysis provides readily accessible insights into
the important ways that a rather enigmatic feature of the wave
properties of electrons manifests in molecular structures. While
our thesis is unusually qualitative for a computational chemistry
contribution, it is precisely that qualitative nature that affords
such general conclusions. We are not aware of any other
approach that has been able to develop as broad and yet
specific a picture of the influences of the electron exchange
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energy on molecular structure and we expect that these
insights will influence interpretations of computational
chemistry results across methods.
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