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Abstract

For CASP14, we developed deep learning-based methods for predicting homo-oligomeric

and hetero-oligomeric contacts and used them for oligomer modeling. To build structure

models, we developed an oligomer structure generation method that utilizes predicted

interchain contacts to guide iterative restrained minimization from random backbone

structures. We supplemented this gradient-based fold-and-dock method with template-

based and ab initio docking approaches using deep learning-based subunit predictions on

29 assembly targets. These methods produced oligomer models with summed Z-scores

5.5 units higher than the next best group, with the fold-and-dock method having the best

relative performance. Over the eight targets for which this method was used, the best of

the five submitted models had average oligomer TM-score of 0.71 (average oligomer

TM-score of the next best group: 0.64), and explicit modeling of inter-subunit interactions

improved modeling of six out of 40 individual domains (ΔGDT-TS > 2.0).
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1 | INTRODUCTION

Hetero and homo-oligomeric states of proteins are critical to their

function.1-3 Many computational methods have been developed to

predict oligomer structures,4-9 but good performance has required

matching oligomer template structures or utilization of experimental

data, and accurate subunit structures.10,11 Protein interchain contact

predictions have been utilized for oligomer modeling,12-14 but accu-

racy has been limited due to the limited predicted contact accuracy

and the lack of efficient modeling methods.

In this CASP, we aimed to improve oligomer modeling perfor-

mance by (1) developing deep learning-based interchain contact pre-

diction methods for both homo-oligomeric and hetero-oligomeric

complexes, (2) modeling entire complex structures from scratch

guided by predicted intrachain distances and interchain contacts when

available, and (3) taking advantage of the recent progress in tertiary

structure modeling15-18 for oligomer template search.

2 | METHODS

2.1 | Overall pipeline

We used three different approaches to generate oligomer structures

depending on the available information as depicted in Figure 1. We

first generated multiple sequence alignments (MSA) by HHblits19

searches against UniRef3020 and metagenomic databases provided by

JGI21 (step 0). Interchain contacts were predicted using GREMLIN22,23

or deep learning techniques based on MSAs (step 1, details are

described in the next section). We also searched for oligomer
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templates based on sequence similarity using HHsearch19 and struc-

ture similarity using TM-align24 (step 2).

Based on these results, oligomer models were generated using

one of three approaches: template-based modeling (step 3-1),

gradient-based fold-and-dock (step 3-2), or ab initio docking (step

3-3). The approaches taken for each target are summarized in Table 1.

Details for steps 1-3 are provided in the following sections.

2.2 | Step 1: interchain contact prediction using
trRosetta-homo and trRosetta-discont

For homo-oligomer targets, we developed a deep learning-based

homo-oligomer contact prediction method called trRosetta-homo to

predict interchain contacts from MSAs generated by searching

sequence databases. trRosetta-homo (Figure 2A) is based on a 2D

residual convolution network having the same architecture as the

original trRosetta16 except for the last layer. It was trained to predict

not only intrachain distances and orientations but also interchain con-

tacts at a 12 Å Cβ-Cβ distance threshold so that the network could dis-

tinguish interchain coevolution signals from intrachain signals. The

input features for the network are derived from MSAs, including

(1) one-hot-encoded amino acid sequence of the query protein,

(2) position-specific frequency matrix, (3) positional entropy, and

(4) coevolution couplings derived from the inverse of the shrunk

covariance matrix. The network was trained on 6932 homo-oligomer

structures from the original trRosetta training set.16 High-probability

GREMLIN contacts which were not made within the monomer were

also treated as potential interchain contacts. The predicted interchain

contacts for homo-oligomers were converted to the Rosetta bounded

restraints (contact probability >0.95) or sigmoidal restraints

(0.5 < contact probability <0.95)25 (shapes shown in Figure 2A) and

were used to guide the overall sampling process and to select final

models. For homo-oligomers having more than two subunits, dis-

tances were evaluated for the relevant residue pair over all pairs of

chains, and the constraint score was taken for the one best matching

the restraint.

For hetero-oligomer targets, we developed a modified version of

trRosetta called trRosetta-discont to predict oligomer structures

based on paired alignments (Figure 2B). To extract coevolutionary sig-

nals between two proteins forming a hetero complex, the sequences

from the corresponding MSAs must be properly paired.12 For H1047

and H1065, which are protein complexes present in bacteria, we

deployed a simple sequence pairing strategy relying on the fact that

genes encoding interacting proteins tend to be co-located on the

same operon in the prokaryotic genome. First, we collected MSAs for

both proteins forming a complex by performing sequence searches

against UniProtKB/TrEMBL26 and metagenomic and meta-

transcriptomic sets from JGI.21 Next, assuming that UniProt Accession

IDs and JGI's IMG/M IDs are serially assigned in the genome or a con-

tig, we paired all sequences from the two MSAs satisfying ΔID≤10

into one. The resulting paired alignments were cleaned at 95%

sequence identity and 75% coverage cutoffs. For both H1047 and

H1065 the majority of the sequences in the final MSA came from JGI.

This approach could only be applied to these two targets.

During training of trRosetta-discont, long proteins over 300 resi-

dues in length were trimmed by randomly selecting two non-

intersecting sequence fragments; input MSAs and target distance and

orientation maps were cropped accordingly. The discontinuity in the

resulting sequence was communicated to the network through

the sequence separation feature which was first calculated from the

nontrimmed sequence and then cropped in the same way as other

network inputs and outputs. Despite the network being trained on

single protein chains, we deployed its ability to make inferences on

discontinuous sequence fragments to the target H1065. We treated

each of the proteins in the hetero-complex as an individual sequence

F IGURE 1 The oligomer structure modeling procedure used by the BAKER-experimental group
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fragment and increased the sequence separation feature by adding

500 to approximate a chain break (this number was not optimized) to

the interchain regions of this feature map. Predicted residue-residue

distances and orientations were then used to recreate the 3D struc-

ture model of the complex.

2.3 | Step 2: oligomer template search based on
sequence and structure similarity

HHsearch19,27 and TM-align24 were used to detect oligomer tem-

plates from the PDB100 database based on not only sequence

similarity but also structure similarity to the subunit structures

predicted by BAKER or BAKER-ROSETTASERVER group. For homo-

oligomers, using HHsearch, up to five oligomer templates in the given

oligomer state were selected according to their ranks among the

top100 HHsearch hits. In addition to the sequence-based oligomer

templates, up to five oligomer templates were chosen purely based on

the structural similarity to the given subunit models using TM-align.

Among the selected hits from both sequence- and structure-based

searches, those having similar subunit structures to the given model

(TM-score > 0.5) were chosen as final oligomer templates to build

complex structures. For hetero-oligomers, we identified HHsearch

hits having the same PDB ID for both subunits of the target and

TABLE 1 Summary of modeling strategies and performances

Target Difficulty Interchain contact Modeling method

Model 1 Best out of 5 (based on Z-score)

Z-scorea ICS TM-score (oligo) Z-scoreb ICS TM-score (oligo)

H1036c Medium No Template 0.84 0.68 0.70 1.17 0.72 0.71

H1036v0c Medium No Template 0.93 0.27 0.69 0.92 0.27 0.69

H1045 Medium No Template 1.05 0.71 0.87 1.35 0.77 0.87

H1047 Hard Yes (G) ab initio 1.35 0.04 0.39 1.54 0.04 0.38

H1060v1 Medium No ab initio 0.94 0.06 0.31 1.09 0.08 0.31

H1060v2 Medium No Template 0.38 0.09 0.86 0.34 0.10 0.88

H1060v3 Medium No Template 0.43 0.01 0.75 0.85 0.12 0.84

H1060v4 Medium No Template 0.74 0.22 0.75 0.93 0.21 0.73

H1060v5 Medium Yes (G) Template 1.52 0.48 0.95 1.67 0.50 0.95

H1065 Hard Yes (DL) Fold-and-dock 1.74 0.40 0.79 1.82 0.40 0.79

H1072 Medium Yes (DL) Fold-and-dock 0.10 0.04 0.34 0.28 0.03 0.37

H1081v0 Medium No ab initio 1.46 0.35 0.97 1.59 0.35 0.97

H1097 Medium Yes (T) Fold-and-dock 2.13 0.44 0.73 1.99 0.44 0.74

T1032 Easy No Template 1.08 0.38 0.69 1.10 0.40 0.68

T1034 Medium No Template �0.81 0.00 0.17 �0.38 0.00 0.23

T1038 Hard No ab initio �0.58 0.00 0.17 0.36 0.01 0.20

T1048 Medium Yes (DL) Fold-and-dock 3.09 0.50 0.59 4.29 0.58 0.83

T1052 Easy No Template 0.63 0.51 0.69 0.72 0.51 0.69

T1054 Hard No ab initio 0.13 0.00 0.44 0.81 0.00 0.52

T1061 Hard No Template 1.85 0.15 0.64 1.97 0.17 0.69

T1070 Hard No Template 0.94 0.06 0.31 2.10 0.10 0.37

T1078 Medium No ab initio 0.19 0.00 0.54 2.50 0.25 0.67

T1080 Hard Yes (DL) Fold-and-dock 1.92 0.12 0.55 2.60 0.13 0.61

T1083 Medium Yes (DL) Fold-and-dock 1.48 0.23 0.63 1.60 0.23 0.63

T1084 Medium Yes (DL) Fold-and-dock 2.17 0.81 0.92 2.20 0.84 0.91

T1087 Medium Yes (DL) Fold-and-dock 2.27 0.36 0.79 2.86 0.36 0.79

T1099v0 Medium No Template �0.23 0.03 0.24 0.22 0.02 0.45

T1099v1 Medium No Template 0.15 0.00 0.55 0.27 0.00 0.55

T1099v2 Medium No Template 0.75 0.13 0.60 0.89 0.16 0.60

Abbreviations: DL, Deep learning-based methods; G, GREMLIN; T, Partial templates.
aCalculated on model 1 submissions.
bCalculated on all model submissions.
cHaving a completely wrong prediction for the antigen-antibody interface.
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ranked these based on the HHsearch ranking and structural similarity

to the subunit (TM-score > 0.5).

2.4 | Step 3-1: template-based complex modeling

The Rosetta hybridization protocol28 was used to refine oligomer

models starting from initial complex structures generated by super-

posing subunit structures to one of the detected templates. During

the hybridization process, local regions were rebuilt by recombining

the secondary structure segments with detected templates and

inserting fragments in the centroid representation. The overall struc-

tures were further optimized by relaxing full-atom structures using

Rosetta FastRelax.29 The intrachain restraints derived from the

trRosetta16 prediction were applied during the entire model building

process, and interchain restraints were also applied if there were

predicted interchain contacts from either GREMLIN or deep learning-

based methods. The whole process was symmetry-aware for homo-

oligomers. Total 500 structures were sampled by running the indepen-

dent template-based modeling protocol, and five models having the

lowest Rosetta REF2015 energy30 (with interchain contact restraints

if applicable) were selected after clustering.

2.5 | Step 3-2: Gradient-based fold-and-dock

Even with reasonable subunit structures and interchain contact pre-

dictions to guide overall conformational search, small local

inaccuracies at the interface can hinder generating correct oligomer

structures with ab initio docking.31 Moreover, as proteins interact with

other proteins, their lowest free-energy backbone conformations can

shift in response to their partners, complicating typical docking after

folding approaches. A “fold-and-dock” method32 was developed to

overcome this limitation, but it is quite computationally expensive as

it employs Monte Carlo fragment assembly trajectories.

For CASP14, we developed a fold-and-dock approach using

gradient-based energy minimization to sample structures instead of

fragment assemblies. As depicted in Figure 3A, this approach has two

stages. In the first low-resolution stage with the Rosetta centroid level

representation, oligomer conformations are sampled by alternating

gradient-based folding and low-resolution docking starting from a

conformation with random backbone torsion angles. Gradient-based

folding employs L-BFGS (Limited memory Broyden–Fletcher–

Goldfarb–Shanno algorithm) minimization against the Rosetta cen-

troid energy function supplemented with intrachain restraints derived

from trRosetta predictions and interchain restraints derived from

predicted contacts using either GREMLIN, trRosetta variants

(trRosetta-homo or trRosetta-discont depending on complex type), or

partial oligomer templates. To optimize orientation between subunits,

low-resolution docking was used with a centroid level scoring func-

tion consisting of Motif Dock Score,9 clash terms (quadratic penalties

for overlaps),33 and interchain restraints.

In the second stage, side chains are built into the backbone con-

formations, and the overall structures are relaxed in torsion space

using Rosetta FastRelax.29 High-resolution docking followed by full-

atom relaxation in Cartesian space is then performed to refine overall

F IGURE 2 Deep learning-based residue pairwise interaction prediction for (A) homo-oligomers (trRosetta-homo) and (B) hetero-oligomers
(trRosetta-discont)
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complex structures further. A total of 150 structures were generated

in independent trajectories, and five models having the lowest Rosetta

energy with interchain restraints were selected after clustering. For

homo-oligomer targets, symmetry was considered during the entire

process.

We used this gradient-based fold-and-dock approach when there

were no oligomer templates, but interchain contacts were predicted

with high confidence based on MSAs. We also utilized this method to

predict complex structures when subunits were highly intertwined

with each other and detected templates had many insertions and

F IGURE 3 Performance of the gradient-based fold-and-dock method. (A) Schematic outline of the fold-and-dock procedure consisting of two
stages: repetitive folding and docking in centroid representation followed by full-atom docking and relaxation. (B) Correlation between the quality
of predicted interchain contacts and that of modeled interfaces. (C,D) Examples of successful predictions using gradient-based fold-and-dock
methods with predicted interchain contacts. Predicted intrachain distances and interchain contacts are shown in the upper diagonal (colored in
red) of 2D maps while those from native structures are shown in the lower diagonal (colored in blue). The correctly predicted interchain contacts
are shown as blue lines in the model structures. Both native and model structures are colored by chains. (E) Native and the best prediction
submitted as model 4 for H1097
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deletions that made it hard to predict oligomer structures using the

template-based approach. The codes for the gradient-based fold-and-

dock method are available at https://github.com/RosettaCommons/

trRosetta2. It requires about an hour per oligomer model having

500 residues using a single CPU core.

2.6 | Step 3-3: Ab Initio docking-based approach

When there were neither oligomer templates nor predicted contacts

with high confidence for the target protein, oligomer structures were

predicted using ab initio docking with subunit structures predicted by

BAKER-ROSETTASERVER or BAKER group. SymDock28 was

employed to predict symmetric homo-oligomer structures, while

ZDOCK7 and RosettaDock9 were used to predict hetero-oligomers.

For the targets having symmetric subunits, the symmetry axes of

homo-oligomer subunits were aligned during the docking process.

Rotations along the symmetry axes were sampled with 3� angular

spacing, and translations, in 0.5 Å intervals along the aligned axis.

Among the sampled conformations, the top 50 samples having the

best centroid level energy combined with Motif Dock Score were sub-

jected to full-atom relaxation, and five models having the lowest

energy were selected after clustering.

3 | RESULTS

3.1 | Overall performance

The modeling strategies we used for 29 CASP14 assembly targets are

summarized in Table 1. 15 out of 29 targets were modeled using the

template-based approach, eight targets using the gradient-based fold-

and-dock approach, and six targets with the ab initio docking

approach. The quality of the predicted multimeric structures was

assessed in terms of Interface Patch Similarity (IPS) score, Interface

Contact Similarity (ICS) score,10 oligomer lDDT,34 and oligomer TM-

score measured by MM-align.35 The modified Z-score was calculated

based on CASP conventions (recalculating Z-score without outliers

having Z-score < �2.0) for each of the evaluation metrics. The aver-

age Z-score is reported in Table 1 as well as raw ICS and oligomer

TM-score. For 16 targets, we failed to submit the best model as model

1. For H1045, H1060v3, T1048, and T1078, the differences in ICS

score between model 1 and the best model are larger than 0.05

points. This scoring failure might be overcome by a better model accu-

racy estimation method for complex structures in the future.

The best relative performance was with the gradient-based fold-

and-dock protocol (Figure 4A) with an average Z-score > 2.0; there

were no oligomeric templates for most of these targets. We also gen-

erated relatively good models by (1) generating complex structures

with ab initio docking for two medium difficulty targets and (2) finding

distant homologs based on structural template search for one hard

and two medium difficulty targets. These examples will be discussed

in the following sections.

3.2 | Improvements in subunit modeling led to
better template detection for oligomer modeling

Improvements in our tertiary structure prediction method combined

with structure-based template search made it easier to find distant

oligomer templates that was hard to detect using sequence-based

search. For example, for T1061 (Figure 4B), our tertiary structure

modeling protocol with metagenome sequence database (BAKER

group) predicted reasonable subunit structures (subunit TM-score to

native: 0.67). Using these structures, we were able to find distant olig-

omer templates (PDB ID: 3CDD) with TM-align and generated com-

plex structures using the template-based approach. The resulting

model submitted as model 2 showed a reasonable global arrangement

of each subunit (complex TM-score: 0.69) but failed to recapitulate

accurate interfaces (ICS score: 0.17) because it was too large to refine

(2847 residues in total) starting from the medium quality of initial sub-

unit structure (Figure S1). In addition, C-terminal domains were not

covered by detected oligomer templates resulting in huge errors

(interface RMSD: 20.76 Å). For H1060v2, H1060v3, H1060v4, and

H1060v5, we were able to find oligomer templates through either

sequence-based or structure-based search (PDB ID: 5NGJ for

H1060v2 and H1060v3, 6V8I for H1060v4, and 4V96 for H1060v5).

Based on these templates, we generated oligomer structures having

reasonable global subunit arrangements (oligomer TM-score: 0.88,

0.84, 0.73, and 0.95, respectively) but again failed to accurately model

the interfaces (ICS score: 0.10, 0.12, 0.21, and 0.50, respectively) in

part due to the large sizes of the proteins (1392 residues, 894 residues,

1680 residues, and 1224 residues for each target).

3.3 | Interchain contact predictions enabled to
generate oligomer structures from scratch

As shown in Figure 4A, the predictions that most stood out from those

of other groups were made primarily with the gradient-based fold-and-

dock protocol that models oligomer structures starting from scratch

based on interchain contacts predicted by deep learning-based methods

or derived from partial templates. For the eight targets for which we

used the gradient-based fold-and-dock approach, the resulting models

were better than those produced using traditional template-based or

ab initio docking approaches, with summed Z-scores 5.4 units higher

than the next best group. For H1065, T1048, T1083, T1084, and T1087,

reasonable interchain contacts were predicted using our deep learning-

based methods resulting in better oligomer models with Z-score > 1.5 in

all cases. Four cases (T1048, T1083, T1084, and T1087) are helical bun-

dles; this simplicity in topology likely makes it easier to predict interchain

contacts and to generate accurate models based on the gradient-based

fold-and-dock method.

The quality of the predicted oligomer structures is correlated with

the predicted interchain contact quality measured by F1-score as

shown in Figure 3B. When interchain contacts were predicted accu-

rately (T1048 and T1084, both having F1-score > 30.0), we were able

to predict high accuracy oligomer structures not only having good
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global arrangements (oligomer TM-score: 0.83 and 0.91, respectively)

but also having accurate interface structures (ICS: 0.58 and 0.84,

respectively). For T1048, we were the only group predicting the cor-

rect oligomer structure, exceeding the next best group by 0.4 in ICS

score and by 0.5 in oligomer TM-score; accurate oligomer structure

modeling was made possible by accurate prediction of both intrachain

and interchain contacts (Figure 3C). For T1080, which forms a highly

intertwined homo-trimer structure (Figure 3D), we generated a rela-

tively better model (Z-score: 2.6) based on accurate predicted

interchain contacts for the intertwined interactions at the C-terminal

part of the target, but we failed to capture intertwining patterns at

the N-terminal part resulting in a less accurate overall oligomer struc-

ture (ICS: 0.13, oligomer TM-score: 0.61).

For H1097 (Figure 3E), we identified 121 quite divergent oligo-

mer templates from the PDB100 database. These contained many

insertions and deletions, and it was expected to form highly inter-

twined oligomer structures from the templates. To generate

intertwined models, we used the gradient-based fold-and-dock proto-

col guided by interchain pairwise distance and orientation distribu-

tions from 121 detected oligomer templates. With interchain

restraints derived from templates together with intrachain restraints

derived from trRosetta outputs, the gradient-based fold-and-dock

protocol built a reasonable quality model (ICS: 0.44, oligomer TM-

score: 0.75) that ranked first. The oligomer model of the next best

group (likely using a template-based approach) has an ICS score of

0.31 and oligomer TM-score of 0.68.

3.4 | Ab initio docking approach was successful
only for a few cases

With ab initio docking, we were able to predict structures having oligo-

mer TM-score higher than 0.6 only for two targets: H1081 and T1078.

For H1081 (Figure 4C), we were asked to build a homo 20-mer structure

by combining two homo-decamer subunits. The homo-decamer subunit

structure was first predicted by RosettaCM28 based on two close tem-

plates (PDB ID: 2VYC and 5XX1) having sequence identity over 70%.

Homo-20-mer structures were generated by sampling the rigid body

degrees of freedom (rotation and translation along the common symme-

try axis) as described in the method section. Because decamer subunits

were quite accurate and the system symmetry reduces six rigid-body

degrees of freedom to just two, a reasonable quality complex structure

F IGURE 4 Oligomer modeling performance of BAKER-experimental group. (A) The relative performance in terms of average Z-score for the
best out of five submissions for each target difficulty and modeling strategy we used. (B) A successful example (T1061) of template-based
approach by detecting a distant oligomer template based on structural similarity. Left; The subunit structure (colored in rainbow) used to search
oligomer templates and the detected template (colored in gray, PDB ID: 3CDD) are shown. Right; The predicted structure (submitted as model 2)
is shown with the native structure colored in gray. (C) A successful example (H1081) of ab initio docking with a constraint to match symmetry
axes of two subunits. The native structure is colored in gray. (D) A failed example (T1054) to generate a correct binding pose by ab initio docking
with the subunit structure (colored in rainbow colors from the N-terminus in blue to the C-terminus in red) having high GDT-TS. The problematic
N-terminal helix is highlighted by an orange arrow. The correct binding pose is colored in pink while the predicted one is colored in dark gray
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(ICS: 0.35, oligomer TM-score: 0.97) was generated. The errors in trans-

lational and rotational degrees of freedom are 4 Å and 5�, respectively.

For T1078, we modeled a complex structure by symmetric docking with

the subunit structure submitted as model 1 for the BAKER group in the

TS category. As the N-terminal of the subunit was predicted to have low

accuracy by DeepAccNet36 (Figure S2A), our accuracy prediction

method, we trimmed the N-terminal part (residue 1-13) for docking and

reconstructed it after selecting the final five models to submit. We gen-

erated a roughly correct oligomer structure (ICS: 0.25, oligomer TM-

score: 0.67, Figure S2B) reflecting the quality of the subunit structure

used for docking (GDT-TS: 66.7).

For H1060v1 and T1054, we failed to predict correct binding

poses despite having subunit models with the right fold (subunit TM-

score > 0.7), primarily due to local inaccuracies at the interface. For

example, for T1054, the subunit has 80.7 GDT-TS to the experimental

structure, but the N-terminal helix (which is missing in the crystal

structure) was mislocated to the interface region as shown in

Figure 4D. It hindered generating correct binding pose during docking,

resulting in a complex structure having the wrong interface.

3.5 | Assembly modeling can improve subunit
quality when it provides correct interface information

To see the effects of considering binding partners on the subunit

modeling for oligomer targets, we compared the GDT-TS values of

model 1 structures from BAKER-experimental to those of the subunit

structures modeled as monomers (Figure 5A). To eliminate differences

coming from the quality of MSAs used to model the structures, we

re-modeled subunit structures using our CASP14 tertiary structure

modeling method (BAKER-ROSETTASERVER) with the same MSA

used for oligomer modeling. The evaluation unit definition posted

on the CASP14 web page (https://predictioncenter.org/casp14/

domains_summary.cgi) was used for analysis.

The cases where modeling in oligomer contexts generated better

subunit structures tended to have flexible regions at the interface

(52% of interface residues did not have regular secondary structures),

and we were able to predict interface contacts correctly using deep

learning-based methods or templates. For T1065s1-D1 (Figure 5B),

two beta hairpins (residues 87-92 and 111-118 highlighted by orange

arrows) interact with an adjacent subunit. By modeling the entire

complex together using the gradient-based fold-and-dock method,

those hairpins moved to more correct positions to have better inter-

actions with the binding partner resulting in overall rearrangement of

secondary structure components with a 14.7 GDT-TS improvement.

For T1095-D1 (one of the subunits for H1097, Figure 5C), the orien-

tations of C-terminal helices are stabilized by interactions with neigh-

boring subunits, making models without considering binding partners

less accurate than models generated for the holo-complex. In some

cases like T1034-D1, the subunit quality modeled as complex was

worse than that modeled as monomer because our oligomer models

were generated based on the wrong oligomer template (Figure S3).

4 | CONCLUSION

We used a new gradient-based fold-and-dock approach incorporating

predicted intra- and interchain contacts to build reasonably accurate

F IGURE 5 Comparison of subunit structures modeled as complexes to those modeled as monomers. (A) Head-to-head comparison of the
subunit qualities in terms of the evaluation unit-wise GDT-TS score. Dots are colored by the ICS score of predicted complex structures. (B and C)
Two successful examples (T1065s1-D1 and T1095-D1) where modeling in oligomer contexts generated better subunit structures. The native
structure of the target subunit and its binding partners are shown in green and gray, respectively. The subunit structures predicted as a monomer
are shown in cyan (left), while those predicted in oligomer contexts are colored in magenta (right)

BAEK ET AL. 1831

https://predictioncenter.org/casp14/domains_summary.cgi
https://predictioncenter.org/casp14/domains_summary.cgi


models of protein assemblies in CASP14. This new gradient-based

fold-and-dock approach outperformed the other more traditional

template-based or ab initio docking approaches. Moreover, the inclu-

sion of binding partners during the folding/docking process led to

improvements in subunit modeling in regions at oligomer interfaces.

We also obtained good results with a template-based approach, using

subunit structures generated by deep learning-based structure predic-

tion methods to find distant templates based on structural similarity

search.

There is still considerable room for improvement in the model-

ing of higher-order assemblies. The performance of the fold-and-

dock approach highly depended on the quality of predicted

interchain contacts, and advances in deep learning-based interchain

contact or distance prediction methods could considerably improve

this approach. Predicting high accuracy complex structures based

on distant templates remains challenging, as they only provide clues

to the overall structure but not detailed interaction information on

the interface. Moving forward, deep learning methods that utilize

both MSA and template information, either to predict residue

pairwise interactions for use in fold-and-dock protocols or to pre-

dict complex structure coordinates directly, are likely to become

increasingly powerful.

5 | AVAILABILITY

Deep learning models (trRosetta-homo, trRosetta-discont) and a pyR-

osetta37 script for gradient-based fold-and-dock are available at

https://github.com/RosettaCommons/trRosetta2 under the MIT

license.
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