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Abstract: (1) Cerebral arteriolar vasomotor function is vital for brain health and has been examined
through CO2 inhalation or breath-holding, which are both challenging for patients. We have devel-
oped a non-invasive method to evaluate this function with magnetic resonance imaging (MRI) by
utilizing respiration-induced natural changes in partial pressure of arterial CO2 (PaCO2). In this study,
we applied this method for 20s to evaluate the chronic effect of a few years smoking on the cerebral
arteriolar vasomotor function. (2) A single slice (five slice thicknesses: 15 mm to 7 mm) perpendicular
to the superior sagittal sinus of was imaged successively for 45 s using spin-echo echo-planar imaging
by 3T MRI for ten smokers (24.5 ± 1.6 years) and ten non-smokers (24.3 ± 1.4 years), respectively.
The venous oxygenation fluctuation (∆Yr) caused by the respiration-induced changes of PaCO2,
which reflects the arteriolar vasomotor function, was calculated from the time series MR signal
changes of superior sagittal sinus. (3) The ∆Yr values of the smokers (0.7 ± 0.6) were significantly
lower than those of the non-smokers (1.3 ± 0.8) (p = 0.04). (4) Degeneration of the cerebral arteriolar
vasomotor function due to chronic smoking (even after 20s) was demonstrated by our non-invasive
MRI-based method.
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1. Introduction

Arterioles are small arteries that diverge into the capillary bed. They play a major role
in resisting the flow of blood in blood vessels, providing approximately 80% of the total
resistance to blood circulation and greatly affecting the blood flow and blood pressure [1].
Regulation of blood flow and intravascular pressure is especially crucial in the brain, and
the cerebral arterioles regulate them by vasodilation or vasoconstriction due to changes
such as in the partial pressure of arterial carbon dioxide (PaCO2), or in mediators such
as nitric oxide during high metabolic activities of the parenchyma [1,2]. This capability
of vasodilation and vasoconstriction is known as cerebral arteriolar vasomotor function,
and it degenerates owing to vasculitis or arteriolosclerosis [1], causing hypoperfusion [3],
cerebral ischemia, and augmentation of amyloid-β accumulation, which is a neurotoxic
factor [4,5]. In particular, cerebral amyloid angiopathy due to accumulation of amyloid-β
results in forms of dementia such as Alzheimer’s disease [6,7]. Therefore, deterioration of
the arteriolar vasomotor function is expected to be an early biomarker of dementia [8–10].
Cerebral arteriolar vasomotor function is important for brain health and would be useful
in diagnosing dementia, as well as predicting the possibility of its occurrence.
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The arteriolar vasomotor function has been evaluated by measuring the cerebrovas-
cular reactivity (CVR), such as blood flow changes due to forced PaCO2 modulation. The
PaCO2 level, which is monitored by end-tidal partial pressure of CO2 (PetCO2) measure-
ment [11], is normally changed by CO2 inhalation (CO2 administration) or breath-holding.
The changes in blood flow velocity due to CO2 inhalation were measured using transcra-
nial Doppler ultrasonography (TCD) in the middle cerebral artery, and a decrease in the
CVR was observed in patients with severe intracranial hemorrhage [12]. Near-infrared
spectroscopy (NIRS), which observes the changes in the concentration of oxyhemoglobin
and deoxyhemoglobin in blood, is also sensitive to PaCO2 changes caused by CO2 in-
halation [13]. By setting NIRS probes on the forehead of patients with stenotic disease,
oxyhemoglobin was observed to decrease with the severity of stenosis [14]. Although the
TCD method measures the blood flow velocity in the middle cerebral artery to evaluate
the CVR, whereas the NIRS method can evaluate the local CVR such as in the forebrain,
measurement errors that occur due to the contamination of extracranial circulation need to
be addressed [14]. To map the arteriolar vasomotor function, positron emission tomography
(PET) was used to successfully evaluate the CVR due to CO2 inhalation by mapping the
changes in cerebral blood flow (CBF) [15]. Furthermore, a radiation-free mapping technique
for CVR was developed using magnetic resonance imaging (MRI) with CO2 inhalation [16].
Alternatively, breath-holding without CO2 inhalation has also been used to change PaCO2,
and the breath-holding index (BHI) has been introduced. The increase in the blood flow
velocity from the resting baseline value due to breath-holding is measured and its per-
centile increase is divided by the breath-holding time to obtain the BHI [17]. Breath-holding
methods have been successfully applied to CVR mapping [18]. Additionally, the visually
evoked CBF response, which represents the CBF changes induced by visual stimulation,
has been successfully measured using TCD [19].

The abovementioned methods have been used to study the effect of smoking on the
arteriolar vasomotor function. Right after smoking, cerebral blood flow velocity in the
middle cerebral artery increased but BHI decreased, indicating a decrease in CO2-driven
vasomotor reactivity [20]. The same tendency was also confirmed by TCD measurement
of the middle cerebral artery and NIRS measurement on the forehead with CO2 inhala-
tion [21]. These phenomena are understood by pharmacological effect of smoking that
dilates arterioles [22], resulting in a decrease of their expandability and hence a decrease of
CO2-driven vasomotor reactivity [21]. This acute effect of smoking ceased approximately
30 min after smoking. Chronic smoking also affects the arteriolar vasomotor function.
It has been reported that CBF decreased gradually at age from 20s to 90s and CBF in
smokers was significantly lower than that in non-smokers at all ages [23]. Even in the
late young-age smokers (around 30 years old), CBF [24], BHI [25], and visually evoked
CBF response [19,26] were lower than those in non-smokers, showing a degeneration of
arteriolar vasomotor function due to chronic smoking of approximately 10 years.

Although the aforementioned methods evaluate the arteriolar vasomotor function,
there remain a few issues to be addressed for further investigation. First, the methods of
CO2 administration are invasive and challenging for patients. Second, the breath-holding
based methods may have low reproducibility and high variability of BHI values since
some patients may be unable to perform breath-holding [27], or the breath-holding activity
may be performed inaccurately [28]. Third, the method employing the visually evoked
CBF response is based on neurovascular coupling, the decrease in visually evoked CBF
response could be caused by either an impaired interaction between neurons/glial cells
and endothelium or by an impaired vasodilator ability [26]. A method to measure the
arteriolar vasomotor function non-invasively and directly is needed for not only patients
but also healthy volunteers. Such a method has the potential to be widely adopted in
studies involving a broad range of volunteers.

We focused on the respiratory fluctuation of PaCO2 and developed a non-invasive
method to evaluate the arteriolar vasomotor function using an MRI without CO2 inhalation
or breath-holding [29]. Changes in PaCO2 causes the vasodilation or vasoconstriction of
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the arterioles, and hence the respiratory fluctuation of PaCO2 varies the cerebral blood flow
leading to the fluctuation in oxygenation level in cerebral venous blood. The amplitude
of this fluctuation of venous oxygenation at respiratory frequency represents the arteri-
olar vasomotor function. By analyzing the spontaneous changes in the MR time series
signals of the cerebral venous blood, the venous oxygenation fluctuation caused by the
respiration-induced fluctuation of PaCO2, which reflects the arteriolar vasomotor function,
was calculated. In this study, we applied this method to the young population (middle
20s) to evaluate the chronic effect of a few years of smoking on the arteriolar vasomotor
function. This method is easy to apply and can be conveniently adopted in large-scale MRI
based studies.

2. Materials and Methods
2.1. Subjescts

Ten smokers (male; 24.5 ± 1.6 years; smoking history 4.6 ± 1.3 years; number of
cigarettes per day 11 ± 2) and ten male non-smokers (male; 24.3 ± 1.4 years) participated
in this study. All volunteers were in good health. The details of the smoking habits of the
smokers are presented in Table 1. The smokers abstained from smoking for more than
8 h before the data acquisition to avoid the influence of carbon monoxide (CO), which
is also a vasodilator; 8-h abstention is needed to remove CO from the blood [30]. This
study was conducted in accordance with the Declaration of Helsinki and approved by our
institutional review board, and informed consent was obtained from all of the volunteers.

Table 1. Status of smokers.

Smokers Number of Cigarettes Per Day Duration of Smoking [Years] Brinkman Index

1 10 4 40
2 10 4 40
3 10 6 60
4 10 7 70
5 9 3 27
6 15 3.5 52.5
7 11.5 5 57.5
8 10 6 60
9 10 4 40
10 12.5 3 37.5

Mean ± SD 10.8 ± 1.7 4.6 ± 1.3 48.5 ± 12.7
Brinkman index = number of cigarettes per day × duration of smoking. SD, standard deviation. See Table S2 in
Supplementary Materials for further details.

2.2. Data Acquisition (Tang 2017)

We used a 3T MRI scanner (Magnetom Prisma, Siemens Healthcare, Erlangen, Ger-
many) with a 64-channel head coil. A single sagittal slice (slice thickness = 10 mm, field of
view [FOV] = 240 mm × 240 mm, matrix size = 256 × 256), which included the superior
sagittal sinus, was imaged using 2-dimensional (2D) fast low-angle shot (FLASH) phase
contrast (PC) imaging synchronized with cardiac pulsation, which was monitored using a
built-in fingertip pulse monitor. The cardiac cycle was divided into 20 phases, and the PC
image at each phase was obtained. The velocity encoding was set to 400 mm/s. The scan
time of this 2D FLASH PC imaging was approximately 5 min, depending on the individual
heart rate. The systolic blood velocity of the superior sagittal sinus was mapped and the
blood flow continuity along the sagittal sinus was assessed from the mapping.

To obtain the MR time series data of venous blood in the superior sagittal sinus, a single
slice perpendicular to the superior sagittal sinus was imaged successively for 45 s using
spin-echo echo-planar imaging (SE-EPI) (echo time [TE] = 30 ms, matrix size = 128 × 128,
FOV = 170 mm × 170 mm) with 170-ms repetition time (TR) [29]. The slice position with
a small change in the blood flow velocity was selected on the blood velocity mapping to
make sure so that there was no turbulence of blood flow due to arachnoid granulation that
deteriorates the measurement accuracy. The amplitude of MR signal fluctuation due to
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blood flow change does not depend on the slice thickness in spin-echo imaging whenever
the flow void effect does not occur, while that due to oxygenation change increases with an
increase in slice thickness. To extract the fluctuation due to blood oxygenation change, the
successive imaging was repeated five times by changing the slice thickness by 2 mm from
15 mm to 7 mm. All obtained images were confirmed that there was no flow void effect,
which reflects narrow blood vessel and rapid blood flow. During the imaging, the volunteer
breathed at 15 breaths per min by synchronizing with a digital metronome displayed on an
MRI-compatible screen visible to the volunteer via a mirror on the head coil. Based on this
constant rhythm of breathing, the respiratory component of the time series data appeared
at 0.25 Hz on the spectrum. However, the heart rate varied individually and its harmonics
in the spectrum crossed the Nyquist frequency (NF), which was determined based on the
TR of the time series imaging: NF = 1/(2TR). Therefore, some harmonics of the cardiac
pulsation component of the time series data folded back on the respiratory frequency
range of 0.2–0.3 Hz. To avoid this contamination caused by the harmonics of the cardiac
pulsation component folding back into the respiratory component, we set the TR to 170 ms
(NF = 2.94 Hz) so that the uppermost fourth harmonic of the cardiac pulsation component
folded back above the upper bound of the respiratory frequency range (0.3 Hz). This TR
was determined from the folding frequency of the fourth harmonic of the cardiac pulsation
component of the standard higher heart rate (84 min−1) obtained from the higher one
standard deviation of the average heart rate in the supine position (69.1 ± 13.6 min−1) [31].
Note that the influence of the fifth and higher harmonics was ignored since their spectral
intensity levels were equal to or lower than that of noise.

The imaging procedure was performed on each volunteer. Additionally, heart rate,
mean arterial pressure (MAP), and PetCO2 were measured using an electronic sphyg-
momanometer (ES-H55, Terumo, Tokyo, Japan) and capnography (WEC-7301, NIHON
KOHDEN) before and after the scan by laying the volunteer down on a stretcher outside
the scanner room while maintaining a 0.25 Hz respiratory rate.

2.3. Data Analysis (Tang 2017)

The initial twelve temporal images were excluded from further analysis to allow time
for stabilization of the MR signal. The time series of the MR signal images (256 images)
was analyzed using MATLAB (R2014b, MathWorks, Inc., Natick, MA, USA). The average
signal of 11 pixels with the highest signal intensity (19.4 mm2) in the superior sagittal sinus
was obtained to represent the MR signal of the superior sagittal sinus on each temporal
image (Figure 1). After subtracting the temporal average signal intensity (S), the time series
of the changes in the MR signal of the superior sagittal sinus was Fourier-transformed
by applying the Hamming window to purify the respiratory component (0.2–0.3 Hz)
from the contamination by lower frequency components, which are mainly induced by
the default network of the brain function [32]. To confirm the effect of the Hamming
window, the values of the power spectral intensity (PSI) at the lowest and highest frequency
points of the respiratory component were measured for all spectra of 10 volunteers (five
non-smokers and smokers, respectively), and their absolute difference values with and
without the Hamming window were compared. The respiratory peak at 0.25 Hz was
confirmed to make sure that all volunteers performed the respiratory rhythm correctly
following the displayed metronome. The spectral fluctuation intensity at the respiratory
frequency (SFIr) was obtained, and its value was multiplied by 1.59, a correction factor of
the Hamming window [33].
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Figure 1. Enlarged view of the superior sagittal sinus of a SE-EPI image. The black dotted line
represents the ROI (11 pixels) for the signal measurement in the superior sagittal sinus.

The graph for SFIr versus S was plotted. The slope of the regression line of this plot is
expressed by the following equation [29]:

SFIr

S
= 2C·(1 − Y)·TE·∆Yr (1)

where C is a constant determined by the magnetic field strength and hematocrit fraction [34],
Y is the venous blood oxygenation, and ∆Yr is the change in Y at the respiratory frequency.
In this calculation, we used Y = 0.66, which is the average venous blood oxygenation in
healthy human volunteers [34], and C = 59 based on the normal hematocrit (0.46) [35]. The
values of ∆Yr for non-smokers and smokers were obtained from Equation (1) and the slopes
of the regression lines (SFIr/S) of all data sets. Welch’s t-test was performed to compare
the values of ∆Yr and the physiological parameters (MAP, PetCO2, heart rate) between
two groups. The ∆Yr of smokers versus the Brinkman index (the product of the number of
cigarettes per day and duration of smoking) was also plotted.

3. Results

The application of the Hamming window clearly reduced the contamination of the
respiratory component by the low-frequency component, as shown in Figure 2; the PSI at
the lowest respiratory frequency approached the axis. The absolute difference in the PSI
between the lowest and highest frequency points of the respiratory component significantly
decreased by approximately half when the Hamming window was applied (p = 0.005). The
purified respiratory components, which were free of contamination by the low-frequency
components, were observed (as shown in Figure 3a–e of all slice results of a non-smoker).
These results showed clear linearity of the SFIr versus S plot (Figure 3f). The ∆Yr values of
the smokers were significantly lower than those of non-smokers (p = 0.04) (Figure 4). The
Brinkman index did not correlate with the ∆Yr values of the smokers (r = 0.25). The physio-
logical parameters of the volunteers are summarized in Table 2. There was no significant
difference in PetCO2 (p = 0.32), MAP (p = 0.47) and heart rate (p = 0.10) between non-
smokers and smokers. The heart rate of all volunteers was less than the criterion (84 min−1)
for avoiding the folding of the fourth harmonic of the cardiac pulsation component in the
respiratory frequency range. The maximum heart rate was 78 min−1.
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Figure 2. Power spectral intensity (PSI) of the time series MR signal of the superior sagittal sinus of a
non-smoker volunteer (a) before and (b) after application of the Hamming window. The PSI values
in (b) were multiplied by the square of the correction factor (1.59) of the Hamming window. Both MR
signals were obtained through imaging with 15 mm slice thickness. Black thick bars represent the
respiratory frequency range. The open circles represent the data in the respiratory frequency range
(0.2–0.3 Hz).
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Figure 3. Power spectral intensity (PSI) of the time series MR signal of the superior sagittal sinus
from imaging with slice thicknesses of (a) 7 mm, (b) 9 mm, (c) 11 mm, (d) 13 mm, and (e) 15 mm of
a non-smoker volunteer; (f) spectral fluctuation intensity at the respiratory frequency (SFIr) versus
average signal intensity of the same volunteer. Black thick bars in (a–e) represent the respiratory
frequency range. Dashed line in (f) represents the regression line. The data of this volunteer showed
the highest coefficient of determination of the regression line (R2 = 0.90).
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Figure 4. Respiratory changes in venous blood oxygenation (∆Yr) of non-smokers and smokers. The
error bars indicate the standard deviation. *: p < 0.05. See Supplementary Material for further details.

Table 2. Results of physiological parameters.

Physiological Parameters Non-Smokers Smokers

PetCO2 [mmHg] 32.7 ± 5.0 33.8 ± 4.5
MAP [mmHg] 81 ± 4 81 ± 9

Heart rate [min−1] 67 ± 8 61 ± 10
Mean ± SD. PetCO2: end-tidal partial pressure of CO2. MAP: mean arterial pressure. See Tables S1 and S2 in
Supplementary Materials for further details.

4. Discussion

In this study, we analyzed the spontaneous changes in the MR time series signal of
cerebral venous blood and elucidated respiration-induced venous oxygenation fluctuation,
which reflects the arteriolar vasomotor function [29], for non-smokers and smokers after
preparatory abstention from smoking. Although there was contamination of the respiratory
components by the low-frequency components in the spectra of the MR signal fluctuation,
this contamination was reduced by applying the Hamming window (Figure 2). The
effectiveness of the Hamming window was quantified and confirmed by the significant
reduction in the difference in PSI between the lowest and highest values of the respiratory
frequency range. As the heart rates of all volunteers were less than 84 min−1, the setting
of TR = 170 ms prevented the contamination from the harmonics of the cardiac pulsation
component. Applying the Hamming window and increasing the Nyquist frequency by
using a TR of 170 ms improved the accuracy of ∆Yr.

The values of ∆Yr for smokers were significantly (p = 0.04) lower than those of non-
smokers (Figure 4), demonstrating a degeneration of the arteriolar vasomotor function
due to chronic smoking in young smokers, even after a few years of smoking. This result
agrees with those of previous studies based on BHI and visually evoked CBF response; the
BHI [25] and visually evoked CBF [19,26] decreased in young smokers when compared
with non-smokers. ∆Yr obtained from our spectral analysis of the MR time series signals of
cerebral venous blood reflects the arteriolar vasomotor function, and its degeneration due
to chronic smoking in young smokers was successfully demonstrated.

Chronic smoking increases the number of damaged endothelial cells in the blood
circulatory system, resulting in morphological and functional changes within the endothe-
lium [36–38] and causing higher risk of arteriosclerosis [39]. When the arteriolar vasomotor
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function is damaged, vasodilation and vasoconstriction response to blood CO2 changes dur-
ing the respiration cycle decreases, leading to a decrease in ∆Yr. No significant differences
in the MAP and heart rate between non-smokers and smokers were observed, indicating a
comparable cardiac output for each group (Table 2). Note that individual changes in the
heart rate do not influence the spectral analysis of the venous blood MR signal whenever
the heart rate is lower than the value determined by the Nyquist frequency (1/(2TR)) used
in the analysis (84 min−1 in this study). The Brinkman index, which is calculated as the
product of the number of cigarettes per day and the number of years of smoking, was
not correlated with the values of ∆Yr of smokers (r = 0.25). The amount of nicotine in a
cigarette is not considered in the Brinkman index (although it may also influence the effect
of chronic smoking on the arteriolar vasomotor function).

This study has some limitations. Reproducibility of the test results must be clarified.
There are two hypotheses in our study, namely constant respiratory rhythm (15 per minute)
and constant respiratory PaCO2 level changes. Changes in the rhythm and depth of
breathing affect the results. The practice of breathing by monitoring the rhythm and
PetCO2 may help improve the reproducibility. Although acute smoking decreases Y due
to the increase in carboxyhemoglobin (HbCO) [40], we used the same Y value (0.66) in
Equation (1) for both non-smokers and smokers. Since the amount of HbCO is normally
in the range of 4–6% for smokers and 1–2% for non-smokers [40], Y would be lower in
smokers. Lowering Y decreases ∆Yr in Equation (1). Therefore, ∆Yr of smokers would
further be lower than that of non-smokers. Hct would also influence the results since C in
Equation (1) increases with an increase in Hct [35]. Therefore, evidence that Hct in smokers
is larger than that in non-smokers at the ages in 20 to 32 [41] indicates a further decrease
in ∆Yr for smokers. Both a Y decrease and an Hct increase in smokers lead to further
lowering of ∆Yr, and hence the influence of Y and Hct does not jeopardize our conclusion.
Furthermore, Y decreases with aging (decrease 0.014 in a decade) and gender difference
of Y exists (0.021 higher in females) [42]. Our subjects were in their 20s, however, and we
used the value of Y (0.66) from the previous study whose subjects (three females and nine
males) were at the age of 33 ± 6 [34]; the age difference is roughly a decade. Even taking
account into this age difference and the subjects’ gender difference, average Y would be
almost the same value (0.67) as we used. Y (0.66 ± 0.03, n = 12) and Hct (0.45 ± 0.02, n = 18),
hence C in Equation (1), varies individually, and this variation leads to 10 % variation
in ∆Yr estimated by using the law of propagation of error; the obtained ∆Yr variation
(57% for non-smokers, 77% for smokers, n = 10, respectively) in our study is quite larger
than the estimated variation due to individual Y and Hct. To improve the measurement
accuracy of ∆Yr, monitoring breath depth (PetCO2) may help it. Since our method is based
on the ideal laminar-like blood flow through the imaging length (maximal slice thickness:
15 mm) of the superior sagittal sinus, the measurement method should also be improved
addressing non-ideal cases that may happen. The temporal measurement method of Y
in superior sagittal sinus using MRI [43] may be promising for the measurement of ∆Yr.
However, countermeasures against the harmonics of the cardiac pulsation component as in
our method are needed.

In this study, we analyzed the spontaneous changes in the MR time series signals
of cerebral venous blood and calculated the respiration-induced venous oxygenation
fluctuation, which reflects the arteriolar vasomotor function. A significant decrease in the
value was clearly observed in young smokers when compared with that of non-smokers,
demonstrating degeneration in the arteriolar vasomotor function due to chronic smoking.

5. Conclusions

By analyzing the spontaneous changes in the MR time series signals of cerebral
venous blood, a significant decrease in the values of respiration-induced venous oxy-
genation fluctuation in young smokers when compared with non-smokers was observed,
demonstrating degeneration in the arteriolar vasomotor function due to chronic smok-
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ing. This non-invasive method represents a new MRI technique to evaluate the arteriolar
vasomotor function.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/tomography8020055/s1. Table S1: Data of non-smokers; Table S2:
Data of smokers.
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