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Abstract: Uterine leiomyoma (UL) is a benign tumor arising from myometrium (MM) with a high
prevalence and unclear pathology. Histone modifications are altered in tumors, particularly via
histone acetylation which is correlated with gene activation. To identify if the acetylation of H3K27
is involved in UL pathogenesis and if its reversion may be a therapeutic option, we performed
a prospective study integrating RNA-seq (n = 48) and CHIP-seq for H3K27ac (n = 19) in UL vs
MM tissue, together with qRT-PCR of SAHA-treated UL cells (n = 10). CHIP-seq showed lower
levels of H3K27ac in UL versus MM (p-value < 2.2 × 10−16). From 922 DEGs found in UL vs.
MM (FDR < 0.01), 482 presented H3K27ac. A differential acetylation (FDR < 0.05) was discov-
ered in 82 of these genes (29 hyperacetylated/upregulated, 53 hypoacetylated/downregulated).
Hyperacetylation/upregulation of oncogenes (NDP,HOXA13,COL24A1,IGFL3) and hypoacetyla-
tion/downregulation of tumor suppressor genes (CD40,GIMAP8,IL15,GPX3,DPT) altered the immune
system, the metabolism, TGFβ3 and the Wnt/β-catenin pathway. Functional enrichment analysis
revealed deregulation of proliferation, cell signaling, transport, angiogenesis and extracellular matrix.
Inhibition of histone deacetylases by SAHA increased expression of hypoacetylated/downregulated
genes in UL cells (p < 0.05). Conclusively, H3K27ac regulates genes involved in UL onset and mainte-
nance. Histone deacetylation reversion upregulates the expression of tumor suppressor genes in UL
cells, suggesting targeting histone modifications as a therapeutic approach for UL.

Keywords: histone modification; gene expression; angiogenesis; extracellular matrix; uterine leiomyoma

1. Introduction

Uterine leiomyomas (ULs) are monoclonal benign tumors arising from the myometrium
(MM) that affect up to 25–30% of women of reproductive age [1,2]. Around 30% of these
patients present symptoms, such as excessive uterine bleeding, infertility, or recurrent
abortion [3]. Although the gold standard treatment is surgery, less invasive hormonal
treatments are sometimes used to treat leiomyomas [4,5]. However, these treatments cause
side effects such as menopausal symptoms or hepatic damage [6], and, once treatment is
stopped, leiomyomas enlarge again [7]. For this reason, no effective therapy with minimal
side effects is currently available to treat UL. The lack of efficient treatment could be because
available medical options focus on the relief of symptoms and not in mechanisms impli-
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cated in UL development [8]. Therefore, identification of molecular mechanisms involved
in UL pathogenesis could allow the development of new and more efficient treatments.

Although UL pathogenesis remains incompletely understood, many factors contribute
to its development, including steroid hormones, growth factors and genetics. ULs de-
velop after menarche and regress after menopause [9,10]. Their growth is affected by the
concentrations of steroid hormones, especially estrogen and progesterone. Estrogen and
progesterone act on the tissue’s mature cells and, through them, send paracrine factors to
the stem cell population inducing its proliferation [11]. Therefore, UL and MM growth is
dependent on these hormones. For this reason, hormonal treatments based on the inhibition
of estrogen and progesterone production, such as gonadotropin releasing-hormone agonist
(aGnRH), have been used for UL treatment [5]. In addition, genetic mutations have been
described as a possible cause of UL development. In this regard, there are four established
molecular subtypes of UL per mutations on different genetic drivers: MED12 mutations
(70–75% of patients with UL [12]), HMGA2 rearrangements (20% of UL patients [13]),
biallelic inactivation of FH (10.5% of UL patients [14]), and deletions affecting COL4A5 and
COL4A6 (4% of UL patients [13]). However, factors such as race, diet, age, body mass index,
and parity are also risk factors for UL [15], suggesting potential involvement of epigenetic
mechanisms in UL development. Epigenetics include variations in the gene expression
profile not caused by changes in the DNA sequence, resulting from processes such as DNA
methylation, histone modification, and non-coding RNAs [16]. Genome-wide DNA methy-
lation studies have revealed subsets of suppressed or overexpressed genes accompanied by
aberrant promoter methylation [17–19], also evaluating DNA methylation in UL focusing
on stem cell population [20] or mutation status [21]. Furthermore, differential promoter
access resulting from altered 3D chromatin structure and histone modifications plays a role
in regulating transcription of key genes thought to be involved in leiomyoma etiology [22].
These modifications are inherited somatically and are dynamic and reversible, which make
them potential therapeutic targets.

Modification of histone proteins is a key epigenetic mechanism implied in the regula-
tion of gene expression. These modifications occur at the N-terminal tail or the globular
domains of core histones [23]. Epigenetic modifications of histone tails include acetylation,
methylation, phosphorylation, ubiquitination, and SUMOylation. Histone acetylation
is correlated with gene activation, whereas loss of acetylation (deacetylation) represses
gene expression [24]. The enzymes participating in the addition of an acetyl group to
histones are histone acetyltransferases (HATs), while histone deacetylases (HDACs) re-
move these marks [24,25]. HDACs are involved in the development of different tumors
such as ovarian and breast cancer [26–28] and UL [9,23,29]. Specifically, HDAC activity
was found to be higher in UL than in adjacent MM, suggesting that the transcription
of genes implicated in the normal function of MM may be repressed due to a decrease
in histone acetylation [9,29,30]. In addition, we previously described that inhibition of
HDACs by suberoylanilide hydroxamic acid (SAHA) inhibits cell proliferation, cell cycle,
extracellular matrix (ECM) formation and TGF-β3 signaling in human uterine leiomyoma
primary (HULP) cells, suggesting that HDAC inhibitors may present a viable therapeutic
option [29]. Aberrant status of acetylated Lysine 27 of histone 3 (H3K27ac) profile is impli-
cated in several tumors such gastric, lung and ovarian cancers [31–33]. Since HAT/HDACs
are dysregulated in UL, a holistic analysis of the interaction between gene expression and
H3K27ac profiles in UL compared to MM could provide insight into key pathways and
driver genes involved in UL pathogenesis that are under this histone modification control.
Based on this, we aimed to further study the role of histone acetylation in UL and to identify
if the histone mark H3K27ac is involved in UL development by integration of RNA-seq
and CHIP-seq data. With this study, we describe the functional implications of an aberrant
profile of the histone mark H3K27ac over gene expression in UL compared to adjacent MM.



Biomedicines 2022, 10, 1279 3 of 14

2. Materials and Methods
2.1. Data/Samples Acquisition

RNA-seq data (GSE192354 and GSE142332) and the CHIP-seq data for the histone
modification H3K27ac (GSE142332) were downloaded from the Gene Expression Om-
nibus (GEO, https://www.ncbi.nlm.nih.gov/geo/ (accessed on 10 September 2021)) of
the National Center for Biotechnology Information (NCBI). In total, gene expression
data of UL and adjacent MM of 31 Caucasian women (aged 31–48) was obtained from
GSE192354, while RNA-seq and CHIP-seq H3K27ac data of UL and adjacent MM of 21 Cau-
casian/African American and Latin women (aged 41–52) were acquired from GSE142332.
UL and MM tissue was obtained from women undergoing myomectomy or hysterectomy
due to UL, and the origin of these tissues was confirmed through hematoxylin/eosin
staining by examination of a pathologist.

2.2. CHIP-Seq Analysis

For CHIP-seq analysis of H3K27ac, the following bioinformatics analysis was per-
formed within the R/Bioconductor (version 4.1.1) computing environment. A biomaRt
package was used to bring in gene annotation data from Ensembl to R. With the data loaded
into the workspace, peaks that were within the ±2 kb region from the transcription start
sites (TSS) of a known human gene were defined as genes that present this modification.
After centering and scaling fold-enrichment of signal values corresponding to peaks pro-
vided by CHIP-seq, Principal Component Analysis (PCA) and heatmap were performed
and boxplot of H3K27ac histone mark status in UL and MM was represented with ggplot2
package. A Wilcoxon test (p < 0.05) was performed to test differences between H3K27ac
status in UL vs. MM. Two samples were filtered out after quality analysis because of a low
sequence depth.

2.3. RNA-Seq Analysis

Separate analyses were carried out for each dataset (GSE192354 and GSE142332).
Raw count matrix derived from RNA-seq data libraries from GSE192354 was processed
and subjected to statistical analysis within the R/Bioconductor (version 4.1.1) computing
environment. PCA was performed to check concordance of DNA libraries. Differentially
expressed genes (DEGs) were analysed using three different packages: DESeq2, edgeR and
limma. RNA-seq data libraries from GSE142332 were analysed as previously described [34].
DEGs were obtained using DESeq2. Common DEGs between both datasets with an FDR-
adjusted p-value < 0.01 and log2FC > 1 or <−1 were considered for the consequent analysis.

2.4. Correlation of H3K27ac and Gene Expression

Common DEGs resulting from RNA-seq analysis were integrated in each CHIP-seq
data by selecting those for which a ChIP-seq peak was detected in the regulator region
(TSS ± 2kb). A boxplot of the H3K27ac status for downregulated and upregulated genes
in each group (UL and MM) was represented with a ggplot2 package. A Wilcoxon test
(p < 0.05) was performed to test differences between H3K27ac status in the different groups.
Differential peak enrichment analysis was performed using a linear model with a limma
method. Peaks that were within the ±2 kb region from the TSS of the DEGs with FDR-
adjusted p-value < 0.01 after limma analysis were defined as the significant differential
modifications. A Venn diagram was used to identify hypoacetylated/downregulated and
hyperacetylated/upregulated after H3K27ac analysis.

2.5. Functional Enrichment Analysis

Gene ontology (GO) analysis was conducted on selected genes which were hypoacety-
lated/downregulated and hyperacetylated/upregulated after H3K27ac analysis via Shiny
Go (version 0.741) [35]. Biological processes and cellular components were considered to
be statistically significant with FDR < 0.05.

https://www.ncbi.nlm.nih.gov/geo/
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2.6. Sample Collection

For gene expression validation and in vitro culture, human UL and adjacent MM
(n = 10) tissue were collected from Caucasian premenopausal women aged 31–48 years
without any previous hormonal treatment for the last three months and who were under-
going myomectomy or hysterectomy due to symptomatic UL at Hospital Universitario
y Politécnico La Fe (Spain). This study was approved by the Clinical Ethics Committee
at Hospital Universitario y Politécnico La Fe (Spain) (2018/0097), and all participants
provided informed consent.

2.7. Validation of Gene Expression: qRT-PCR

Gene expression of selected DEG was validated in a distinct cohort of UL and adjacent
MM (n = 10) by quantitative real-time PCR (qRT-PCR). Total RNA was extracted from
tumor (UL) and normal tissues (MM) with TRIzol reagent (Fisher Scientific, Waltham, MA,
USA), and complementary cDNA was synthesized employing a PrimeScript RT reagent
kit (Takara, Kusatsu, Japan). Expression of genes NDP, HOXA13, COL24A1, IGFL3, CD40,
GIMAP8, IL15, GPX3 and DPT, was analysed by qRT-PCR with a StepOnePlus system (Ap-
plied Biosystems, Waltham, MA, USA) and PowerUp Sybr Green (ThermoFisher Scientific,
Waltham, MA, USA). GAPDH gene was employed as housekeeping for gene expression
normalisation. The ∆∆Ct method was used to calculate fold change. Primers were designed
using Primer Quest Tool (Integrated DNA Technologies, Coralville, IA, USA).

2.8. SAHA Treatment and Gene Expression Analysis in Human Uterine Leiomyoma Primary Cells

To evaluate the effect of SAHA (Abcam, Cambridge, UK) on the selected downregu-
lated and hypoacetylated genes, HULP cells were isolated from UL tissues (n = 10) from
selected women, as previously described [36] and treated with 0 µM (0.01% DMSO as a
control) or 10 µM of SAHA for 48h. Then, total RNA was extracted from HULP cells using
a Qiagen RNeasy Mini kit, and cDNA was synthesized using a Takara PrimeScript RT
reagent kit; qRT-PCR was performed to evaluate gene expression CD40, GIMAP8, IL15,
GPX3 and DPT in HULP cells treated with or without SAHA, as described above.

2.9. Statistical Analysis

Omics data analysis was performed using R (version 4.1.1). Graphics were created
using the R core package and packages gplots, ggplot2, as well as GraphPad Prism 8.0.
Gene expression validation analysis was conducted with GraphPad Prism 8.0 employing
Student’s t-test or Wilcoxon test; p < 0.05 was considered statistically significant.

3. Results
3.1. Global H3K27ac CHIP-Seq Peak Profile in Uterine Leiomyoma Tissue Compared to Adjacent
Myometrium

To determine the general H3K27 acetylation profile in human UL compared to adjacent
MM tissue, an exploratory analysis of all peak signal values was performed. Principal
component analysis (PCA) revealed a separation between UL and adjacent MM (Figure 1A).
Clustering analysis showed common patterns in UL and MM, tending to form groups, as
observed in a heatmap (Figure 1B). A boxplot of genes whose regulator region presented
H3K27ac after CHIP-seq showed a lower amount of global H3K27ac peak enrichment level
in UL compared to MM (p-value < 2.2 × 10−16), suggesting a global hypoacetylation of UL
(Figure 1C).

3.2. Selection of Relevant Differentially Expressed Genes

To identify relevant differentially expressed genes involved in UL development, we
integrated gene expression data obtained from two different studies. First, count ma-
trix of RNA obtained from GSE192354 was analysed using the three most widely used
packages for differential expression analysis: limma, DESeq2 and edgeR. The selection
of overlapping differentially expressed genes resulting from these three analyses showed
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1837 DEGs significant (FDR-adjusted p-value < 0.01) and with a high difference of expres-
sion (log2FC > 1 or < −1) in UL compared to MM (Figure 2A), with 1175 upregulated and
662 downregulated. Similarly, 1998 DEGs with an FDR-adjusted p-value < 0.01, log2FC > 1
or < −1 were obtained from GSE142332 after DESeq2 analysis, with 1106 upregulated
and 892 downregulated. After intersection of both outcomes, 922 genes were revealed
as common DEGs in UL compared to MM samples from both datasets (Figure 2A), with
559 upregulated and 363 downregulated. These genes were considered as relevant DEGs
in UL for further analysis.
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Figure 1. Global acetylation status of H3K27 in uterine leiomyoma compared to adjacent myometrium
tissues from GSE142332: (A) principal component analysis (PCA) of global H3K27ac profile in uterine
leiomyoma (UL) (pink) and adjacent myometrium (MM) (blue) (n = 19/group); (B) heatmap based on
fold-enrichment score of genes with a CHIP-seq H3K27ac peak in TSS ±2000 bp after unsupervised
clustering of UL (pink) and MM (gray) (n = 19/group); color scale ranges from red for higher
normalized fold-enrichment score to blue for lower levels; (C) boxplot representing distribution
of normalized fold-enrichment score for each peak in UL (pink) compared to adjacent MM (gray)
samples (n = 19/group), representing global H3K27ac status (p−value < 2.2 × 10−16).

3.3. Identification Differentially Expressed Genes with an Aberrant H3K27ac Mark in Uterine
Leiomyoma Tissue Compared to Adjacent Myometrium

Next, we aimed to evaluate those genes whose change of expression was associated
with a differential H3K27ac status. Among the 922 genes selected for this analysis after
RNA-seq, 482 (52.3%) presented the histone mark H3K27ac around the TSS ± 2 kb. A
PCA of CHIP-seq data of these genes showed a clear separation of tumor (UL) and control
(MM) samples (Figure 2B), indicating a different behaviour of H3K27ac profile of relevant
selected genes in UL compared to adjacent MM, as confirmed by heatmap (Figure 2C).
Additionally, a boxplot of fold-enrichment score of H3K27ac peaks representing down-
regulated and upregulated genes demonstrated that downregulated genes presented a
lower fold-enrichment score of H3K27ac peaks (p-value < 2.2 × 10−16) in UL versus MM,
while upregulated genes exhibited a higher fold-enrichment score (p-value < 2.2 × 10−16)
in UL versus MM (Figure 2D). Differential peak enrichment analysis showed that 82 DEGs



Biomedicines 2022, 10, 1279 6 of 14

presented differential acetylation (FDR < 0.05) in UL compared to MM, with 29 hyperacety-
lated/upregulated and 53 hypoacetylated/downregulated (Supplemental Table S1).
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3.4. Functional Implications of Differentially Expressed Genes Associated with Aberrant H3K27
Acetylation in Uterine Leiomyoma Tissue Compared to Adjacent Myometrium

Functional enrichment analysis of 82 DEGs associated with a different H3K27ac profile
revealed 30 biological processes significantly deregulated in human UL versus MM that
were mainly related to cell proliferation, cell signaling and cell transport and angiogenesis,
key pathways in tumor pathogenesis (Figure 3A). In addition, cellular components were
found to be significantly enriched in UL, which were all related to an alteration of the
extracellular matrix, one of the key features of UL (Figure 3B).

3.5. Validation of Hypoacetylated/Downregulated and Hyperacetylated/Upregulated Genes

To highlight the importance of the genes selected after integration of RNA-seq
and CHIP-seq studies, gene expression of 10 genes which presented a differential
H3K27ac status was validated in a different set of patients. These genes were se-
lected as key genes of the enriched functions and based on their role in tumorogenesis
after a bibliographic search among all hyperacetylated/upregulated and hypoacety-
lated/downregulated genes. The qRT-PCR corroborated the significant upregulation of
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COL24A1 (fold-change = 15.83, p = 0.003), NDP (fold-change = 26.38, p = 0.037), HOXA13
(fold-change = 1.86, p = 0.041) and IGFL3 (fold-change = 13.26, p = 0.031) in a separate
cohort of UL compared to adjacent MM (Figure 4A–D). Likewise, qRT-PCR confirmed
the downregulation of CD40 (fold-change = 0.54, p = 0.010), DPT (fold-change = 0.25,
p = 0.002), GIMAP8 (fold-change = 0.52, p = 0.015), GPX3 (fold-change = 0.30, p < 0.0001)
and IL15 (fold-change = 0.36, p = 0.005) (Figure 4E–I).
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3.6. Inhibiting Histone Deacetylases Reverses Expression of Hypoacetylated/Downregulated Genes
in Human Uterine Leiomyoma Primary Cells In Vitro

To corroborate that histone acetylation of H3K27 is really affecting the expression of
tumor suppressor genes in UL, we assessed the role of inhibition of HDACs on restoring
the expression of genes controlled by H3K27ac, by inhibition of HDACs in human uterine
leiomyoma primary (HULP) cells using SAHA treatment. Expression of the previously
selected hypoacetylated and downregulated genes in UL was evaluated by qPCR after
treatment with SAHA at 0 µM and 10 µM in HULPs. Results showed that inhibition
of deacetylation by SAHA treatment significantly upregulated expression of tumor sup-
pressor genes CD40 (fold-change = 6.78, p = 0.001), DPT (fold-change = 1.80, p = 0.033),
GIMAP8 (fold-change = 30.67, p = 0.042), GPX3 (fold-change = 22.15, p = 0.001) and IL15
(fold-change = 2.71, p = 0.018) and in HULP cells (Figure 4J–N).
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Figure 4. Validation of RNA-seq results and gene expression analysis in human uterine leiomyoma
primary cells after SAHA treatment; expression levels of: (A) COL24A1; (B) NDP; (C) HOXA13;
(D) IGFL3; (E) CD40; (F) DPT; (G) GIMAP8; (H) GPX3; and (I) IL15 in the validation set of UL
compared to adjacent MM (n = 10); gene expression levels of hypermethylated/downregulated genes:
(J) CD40; (K) DPT; (L) GIMAP8; (M) GPX; and (N) IL15 in human uterine fibroid primary (HULP)
cells treated with 0 µM (control) or 10 µM of SAHA for 48 h (n = 10). Gene expression was analyzed
by qRT-PCR, quantified by the ∆∆Ct method and expressed as fold regulation. * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001.

4. Discussion

Uterine leiomyomas are a major gynaecological disease with a great impact on
women’s health, being a main cause of infertility. Despite the personal and economic conse-
quences of this tumor, its pathology remains unclear. Recently, epigenetics has emerged as a
new mechanism that may be involved in UL formation [23,30]. The epigenomic studies per-
taining to UL pathogenesis have mainly focused on DNA methylation [20,21,37]. However,
histone modifications also have the potential to play an important function in chromatin
alterations, and therefore, it is necessary to fully explore the effect of histone acetylation on
the expression of genes involved in the pathogenesis of this disease. In a previous study, we
demonstrated that histone deacetylase inhibitors may present a viable therapeutic option
for UL [29]. Herein, we further studied the role of histone acetylation over gene expression
by identifying if the modification H3K27ac, which is altered in several tumors, is involved
in UL pathogenesis and supports the importance as a new therapeutic approach to treat
UL patients. Our results showed that H3K27ac regulates genes implicated in key processes
of UL pathogenesis such as cell proliferation, cell signaling and cell transport, angiogenesis
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and ECM formation, and histone deacetylation reversion may represent a therapeutic
approach to treat UL.

Post-translational modifications of histones hold importance in the epigenomic reg-
ulation of gene expression. Histone acetylation is correlated with gene expression, while
deacetylation leads to repression of gene transcription [24]. After analysing the general
H3K27 acetylation profile of promoter regions (TSS± 2 kb) of human genes in UL compared
to adjacent MM tissue, we found a different pattern of the histone mark H3K27ac. Specifi-
cally, a lower amount of global H3K27ac was observed in UL compared to MM, suggesting
a global hypoacetylation of H3K27 in UL. The reduced H3K27 acetylation would lead to a
decrease in the expression levels of genes that suppress tumor development. Accordingly,
previous studies have shown that a global DNA hypermethylation is related to the down-
regulation of tumor suppressor genes involved in tumor development [17,21,34]. Although
the role of histone modifications in UL is less understood compared to DNA methylation,
recent publications have emphasized the significance of H3K27ac, H3K4me3 and H2A.Z in
enhancers and promotors, finding differential features between UL subtypes based on the
mutation status [22,34,38]. Herein, an altered pattern of H3K27ac in UL compared to MM
regardless of their mutational subtype suggests its role in UL development and treatment.

The aberrant status of H3K27ac in UL can explain the altered chromatin structure,
which aids in developing the UL-specific gene dysregulation resulting in its pathogenesis.
Therefore, we selected key DEGs involved in UL development whose change of expression
was associated with the histone mark H3K27ac. Among the 922 DEGs described by
integration of RNA-seq analyses, 482 presented the histone mark H3K27ac around the
promotor, and 82 of them exhibited a differential H3K27ac status in UL compared to MM,
with 29 hyperacetylated/upregulated and 53 hypo-acetylated/downregulated.

To further analyse the new molecular targets involved in UL pathogenesis that are
associated with H3K27ac, we reviewed the literature for the 82 DEGs regulated by H3K27ac
and found that these genes present multiple functions, being potential key effecters of tumor
development and maintenance. We found hyperacetylation/upregulation of oncogenes
such as NDP, HOXA13, COL24A1 and IGFL3, with NDP and IGFL3 not previously related
to UL. NDP plays a role in the regulation of angiogenesis in the colorectal region [39]
and activates the Wnt/β-catenin pathway [40]. HOXA13, whose over-expression in UL
has previously been described [21,34], is also associated with tumor size, microvascular
invasion, angiogenesis, Wnt and TGFβ3 pathway in cancer [41–43]. COL24A1, a member of
the collagen gene family, is related with vascular invasion and is proposed as a target for UL
treatment [44]. Its overexpression in hepatocellular carcinoma leads to tumor and vascular
invasion [45]. According to our study, it plays an intermediate role between ECM and
angiogenesis in UL, being associated with a higher presence of H3K27ac in its promotor.
IGFL3 is implicated in TFGβ signaling in breast cancer [46], but was not previously linked
to UL until this study. Epigenetic regulation of IGFL3 in UL through H3K27ac could lead
to dysregulation of TGFβ3 pathway in this tumor. Inhibition of any of these genes by
directly targeting them or though histone acetylation/deacetylation treatment could lead
to a decrease in cell proliferation, angiogenesis, ECM and other pathways involved in
UL pathogenesis.

We also found hypoacetylation and downregulation of tumor suppressor genes such
as CD40, GIMAP8, IL15, GPX3 and DPT, with CD40, GIMAP8 and GPX3 associated with UL
for the first time in this study. CD40 has antiangiogenic and pro-immune properties in other
tumors [47,48]. We propose that CD40 hypoacetylation and, therefore downregulation,
would promote angiogenesis and hide tumor cells from the immune system. GIMAP8 is
a GTP-binding with a tumor suppressive role against breast cancer [49]. IL15 contributes
to excessive ECM production, tissue remodeling and leiomyoma growth [50]. It also
controls migration, invasion, metabolism and angiogenesis, decreasing the number of blood
vessels in prostate cancer [51]. Its hyperacetylation and consequent downregulation would
contribute to an increment on UL vasculature. GPX3 is a tumor suppressor that prevents
migration and invasion through the Wnt pathway in gastric cancer [52,53]. DPT inhibits
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cell proliferation, interacts with decorin for TGF-β binding and plays an important role in
cell–matrix interactions and matrix assembly [54]. Its hypoacetylation and downregulation
would disrupt the process of collagen fibrils and activate the TGF-β signaling pathway. The
recovery of gene expression of these tumor-suppressor genes could stop the development
of UL. All in all, the dysregulation of these genes confirms that key processes of UL
development are under histone acetylation control.

The interplay of H3K27ac-gene expression and cell signaling pathways can broaden
the understanding of UL development and requires more attention. Hence, functional
enrichment analysis of 82 DEGs regulated by H3K27ac was performed. This analysis re-
vealed biological processes significantly deregulated in human UL that were mainly related
to cell proliferation, cell signaling and cell transport and angiogenesis processes. Uterine
leiomyoma is characterized by an uncontrolled proliferation, which is also a main feature
of tumors [4,55,56]. In addition, cell communication and cell signaling is altered in tumors,
contributing to the aberrant response to extracellular signals and enhancing tumor develop-
ment that is characteristic of this kind of disease [56–58]. Initiation of tumor angiogenesis
is one hallmark of cancer and a requirement for tumor progression [56]. Malignant cells
require oxygen and nutrients to survive and proliferate, needing proximity to blood vessels
to access the blood circulation system. The aberrant vascularization found in UL [59] can
be triggered by a change in histone marks such as H3K27ac. Different growth factors and
vascular genes mediate the angiogenic process, which as demonstrated in this study is
regulated by epigenetic states of genes. Accordingly, hyperacetylation/upregulation of
oncogenes related with angiogenesis and vascular invasion (COL24A1, NDP and HOXA13)
and hypoacetylation/downregulation of angiogenesis-tumor suppressor genes (CD40 and
IL15) was identified in this study. In addition, we found cellular components significantly
enriched in UL, which were mainly related to an alteration of extracellular matrix forma-
tion. Excessive synthesis and deposition of ECM deposition exerts a major role in the
growth and stiffness of UL, contributing to clinical symptoms, such as abnormal bleed-
ing and abdominal pain [1,60,61]. For this reason, ECM has been considered as a crucial
target for UL therapeutics [61]. Herein, we found hyperacetylation/upregulation of ECM-
associated oncogenes, such as COL24A1 and IGFL3, and hypoacetylation/downregulation
of ECM-associated tumor suppressor genes such as IL15 and DPT.

To corroborate that histone acetylation H3K27 is really affecting the expression of
tumor suppressor genes in UL, we inhibited HDACs, enzymes who catalyse histone
deacetylation, in vitro by SAHA in HULP cells. Inhibiting HDACs upregulated the expres-
sion of hypoacetylated and downregulated tumor suppressor genes (CD40, GIMAP8, IL15,
GPX3 and DPT) in HULP cells in vitro. HDACs inhibitors are widely used as anticancer
drugs to treat many tumors in which histone acetylation is altered, increasing the accumu-
lation of acetylated core histones. As a consequence, SAHA blocks cell proliferation and
tumor growth in tumors such as hepatoid adenocarcinoma [62], myeloid leukemia [63] and
prostate cancer [64]. The impaired histone acetylation in UL shown in this study opens
insights into the role of these treatments as therapeutic options to treat this disease, as it
does in other tumors. We have previously demonstrated that SAHA treatment inhibits
cell proliferation, cell cycle, ECM, and TGF-β3 signaling in HULP cells, suggesting that
histone deacetylation may be useful to treat UL [29]. Herein, we reinforce this hypothesis by
proving that reversal of histone acetylation by SAHA in HULP cells upregulated hypoacety-
lated/downregulated tumor suppressor genes. These results together give importance to
histone acetylation as a therapeutic approach for UL patients.

Based on these findings, dysregulated pathways involved in UL pathogenesis, such as
cell proliferation, cell signaling and cell transport, angiogenesis or ECM formation, could be
targeted for future therapeutics through histone acetylation reversion. This study provides
insight into the role of histone acetylation in UL development. Further studies focused
on new treatments targeting these histone modifications will be necessary to define an
effective treatment of UL without side effects.
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5. Conclusions

In this study, we found hyperacetylation/upregulation of oncogenes (NDP, HOXA13,
COL24A1 and IGFL3) and hypoacetylation/downregulation of tumor suppressor genes
(CD40, GIMAP8, IL15, GPX3 and DPT) in UL, which are related to the immune system, angio-
genesis, invasion, altered metabolism, deposit of extracellular matrix, TGFβ3 and Wnt/β-
catenin pathway dysregulation. In conclusion, gene regulation by H3K27 acetylation is
involved in uterine leiomyoma pathogenesis through processes such as cell proliferation,
cell signaling and cell transport, angiogenesis, ECM, Wnt and TGFβ pathway, and reversal
of this acetylation could offer a therapeutic option for patients with uterine leiomyomas.
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