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A B S T R A C T   

The COVID-19 pandemic caused by the SARS-CoV-2 virus has significantly disrupted and burdened the diag
nostic workup and delivery of care, including transfusion, to cancer patients across the globe. Furthermore, 
cancer patients suffering from solid tumors or hematologic malignancies were more prone to the infection and 
had higher morbidity and mortality than the rest of the population. Major signaling pathways have been iden
tified at the intersection of SARS-CoV-2 and cancer cells, often leading to tumor progression or alteration of the 
tumor response to therapy. The reactivation of oncogenic viruses has also been alluded to in the context and 
following COVID-19. Paradoxically, certain tumors responded better following the profound infection-induced 
immune modulation. Unveiling the mechanisms of the virus-tumor cell interactions will lead to a better un
derstanding of the pathophysiology of both cancer progression and virus propagation. It would be challenging to 
monitor, through the different cancer registries, retrospectively, the response of patients who have been previ
ously exposed to the virus in contrast to those who have not contracted the infection.   

1. Introduction 

SARS-CoV-2, a novel ssRNA human-infecting coronavirus, broke out 
in Wuhan (China) in late 2019 and subsequently spread, leading to the 
current worldwide pandemic of its associated disease COVID-19. Its 
spread to vulnerable cancer patients has influenced their care and 
conferred a worse prognosis with higher morbidity and mortality. The 
mechanisms through which viruses in general and SARS-CoV-2 specif
ically interact with cancer cells are of great interest, and their under
standing will influence both cancer care and antiviral therapy. 

2. Viruses and cancer 

In 1910, Peyton Rous demonstrated that chickens developed cancer 
when injected with material extracted from a cancer tumor of a diseased 
hen and concluded that cells from the hen’s tumor contained an infec
tious substance, a virus, that transmits cancer. It was not until the 
mechanism of action of viruses on the genome was understood that 
Rous’ discovery was reignited, warranting him a Nobel Prize in 1966. 
Over the last 50 years, significant milestones have been achieved in 

tumor virology [1]. The mechanisms through which viruses interact 
with tumors are numerous. Viruses can be oncogenic, directly impli
cated in the neoplastic process or suppressing the immune system, 
paving the way for the development of malignancy or persistently 
challenging the immune system resulting in an immune clonal expan
sion and lymphomagenesis. They can, on the other hand, infect and kill 
cancer cells or be opportunistic, flaring when the body’s immune system 
is suppressed by the spreading tumors or under the effect of anticancer 
therapy [2,3]. 

Currently, at least seven human cancer oncogenic viruses have been 
identified, with recent advances in molecular technologies enabling the 
discovery of new potential ones [1]. It is well known now that infectious 
agents cause one fifth of human cancers and that 12 % of cancers are 
causally linked to oncogenic viruses [4]. The ubiquitous Epstein-Barr 
virus (EBV) is a herpesvirus linked to Burkitt’s lymphoma or nasopha
ryngeal carcinoma [5]. The relation between the blood-borne hepatitis B 
virus and acute and chronic liver infections, liver failure, cirrhosis, and 
hepatocellular carcinoma (HCC) has also long been described [6]. As for 
hepatitis C, a flavivirus, eighty-five percent of infected adults develop 
chronic infection, which leads to cirrhosis and HCC [7]. Furthermore, 
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hepatitis C has been implicated in the process of lymphomagenesis [8, 
9]. Human papillomaviruses are also established etiological agents of 
human cancer [10] and the retroviruses, human T-cell leukemia virus 
type 1 and HIV have also been labelled as oncogenic viruses [11,12]. 
Emerging technologies allowed the identification and characterization 
of the DNA sequence of the Kaposi’s sarcoma-associated herpesvirus 
(KSHV), a member of the gamma herpes viruses [13] and the most 
recent human oncogenic virus to be discovered is Merkel cell poly
omavirus (MCV) causing the rare, but highly aggressive neuro
ectodermal tumor, Merkel cell carcinoma (MCC) [14]. So, the link 
between virus infection and cancer is established. 

On the other hand, some viruses tend to infect and kill tumor cells. 
Known as oncolytic viruses (OVs), this group includes viruses found in 
nature and agents modified in the laboratory to reproduce efficiently in 
cancer cells without harming healthy cells. Herpes simplex virus, 
adenovirus, and Coxsackievirus have different clinical applications in 
cancer treatment [2]. OVs can achieve their targeted treatment effects 
through selective cell death and induction of specific antitumor immu
nity [15]. 

Another group of viruses interacts with immunosuppressed cancer 
patients, potentially inducing secondary oncogenicity. De novo oppor
tunistic viral infections or reactivation of dormant ones like cytomega
lovirus, EBV, Varicella-Zoster, Hepatitis B and C as well as BK 
polyomavirus have all been reported in immunocompromised cancer 
patients worsening their prognosis but are unlikely to interact directly 
with cancer cells [3,16]. Many of these opportunistic viruses are onco
genic and can induce a secondary malignancy. Therefore, one can 
postulate that widely spreading viral infections can have a substantial 
direct or indirect role in developing a new course of an existing 
malignancy. 

3. SARS-CoV-2 

SARS-CoV-2, a novel ssRNA human-infecting coronavirus, broke out 
in Wuhan (China) in late 2019 and subsequently spread, leading to the 
current worldwide pandemic of its associated disease COVID-19. SARS- 
COV-2 belongs to the β-coronaviruses genus, has an envelope, is 60–140 
nm in diameter and is round or oval. It enters the human body via the 
airway tract, infecting both the epithelial cells of the airway tract, as 
well as the resident, infiltrating and circulating cells of the immune 
system [17]. SARS-CoV-2 enters host cells via the 
angiotensin-converting enzyme 2 (ACE2). It is an RNA virus sharing 
some characteristics with other well-known RNA viruses’ such as HIV, 
HCV and influenza viruses [18]. To date, it has infected more than 500 
million individuals across the globe [19]. 

4. SARS-CoV-2 and cancer interactions 

4.1. SARS-CoV-2 and cancer, a bidirectional relation 

The COVID-19 pandemic has significantly disrupted the diagnostic 
workup and delivery of care to cancer patients and its burden was 
immense [20,21]. Furthermore, early analysis pointed out that those 
patients with cancer contracting COVID-19 had a higher probability of 
death compared with patients without cancer [22]. In studies that 
included solid cancer patients, those who got COVID-19 also had a 
higher probability of death compared with patients without cancer [23]. 
Immunosuppressed patients with hematologic malignancies had a 
2.5-fold increased risk of mortality from COVID-19 infection [24]. 
Furthermore, SARS-CoV-2 clearance times differ substantially depend
ing on the criteria used and may be prolonged in cancer patients [25]. 

COVID-19 infection and malignancy share the features of throm
boinflammation with the generation of platelet (pEVs) and other cell- 
derived extracellular vesicles (EVs) [26]. In COVID-19 infection, 
COVID-19 leads to T-cell depletion and lymphopenia. Intimate crosstalk 
exists between malignancy and the platelets with the generation of pEVs 

[27,28]. Malignancy, therefore, contributes to the generation of EVs and 
pEVs; it is thus postulated that a concomitant SARS-CoV-2 infection in a 
malignant patient would amplify the pEVs and EVs generation. Zahran 
et al., studied total EVs, pEVs, endothelial EVs (eEVs), CD62 activated 
platelets, and CD41 platelet markers in 23 patients with active cancer 
infected with SARS-COV-2, as evident by a positive PCR, compared to 
patients with COVID-19 infection in the absence of malignancy and 
normal healthy control volunteers’ [29]. Although COVID-19 malignant 
patients had significantly lower platelet counts than COVID-19 
non-malignant ones, their total EVs and eEVs were considerably 
higher, with no significant difference in pEVs between both groups. Yet, 
both groups had a considerable accumulation of total EVs, pEVs, eEVs, 
and activated platelets compared to healthy controls [26]. The enhanced 
thromboinflammation in COVID-19 cancer patients has likely contrib
uted to the increased mortality among this patient group [22]. 

The genomic alterations of six SARS-CoV-2 receptor-related regula
tors [transmembrane serine protease 2 (TMPRSS2), angiotensinogen 
(AGT), ACE1, solute carrier family 6 member 19 (SLC6A19), ACE2, and 
angiotensin II receptor type 2 (AGTR2)] and their clinical relevance 
across a broad spectrum of solid tumors were also evaluated across 33 
cancers. This may clarify the potential mechanisms of tumorigenesis and 
provide a novel approach to cancer treatments [30]. Furthermore, four 
major similar signaling pathway, have been identified at the intersection 
of COVID-19 and cancer; namely, cytokine, type I interferon (IFN-I), 
androgen receptor (AR), and immune checkpoint signaling. In 
COVID-19 infection, more than 50 cytokines have been described in the 
context of the pro-inflammatory cytokine storm, particularly interleukin 
6 which is reported to be aberrantly hyperactivated in many types of 
cancers [31]. 

The cell-to-cell transmission of SARS-CoV-2 is also an interesting 
phenomenon that may contribute to its interaction with cancer cells. The 
spike protein of SARS-CoV-2 mediates the viral cell-to-cell transmission, 
with cell-cell fusion contributing to cell-to-cell transmission, yet ACE2 is 
not required [32]. The roles played by the EVs in the cell-to-cell trans
mission of the virus and its infectivity to cancer cells are likely 
non-negligible [26]. 

4.2. SARS-CoV-2 and oncogenic potential 

The question of the potential oncogenic role of SARS-COV-2 remains 
unclear and will only be answered over time. Policard et al. [33] iden
tified genes modulated by COVID-19 infection implicated in oncogen
esis, including E2F transcription factors and RB1; this finding suggests a 
mechanism by which SARS-CoV-2 infection may contribute to onco
genesis [33]. Such observations has not yet been validated in the clinical 
setting. 

Many cancer patients who contracted COVID-19 were potential 
targets for opportunistic infections. Viral and fungal coinfections were 
infrequent among cancer patients with COVID-19, but were associated 
with very high mortality rates [34]. 

Remdesivir and molnupiravir are approved for treating COVID-19. 
However, little is known about their impact on the reactivation of 
concomitant dormant viral infections in COVID-19 patients. It seems 
that remdesivir, but not molnupiravir, induced lytic reactivation of 
Kaposi’s sarcoma-associated herpesvirus (KSHV) and EBV, two major 
oncogenic herpesviruses, in one patient [35]. Data indicate that those 
KSHV+ patients, especially in endemic areas exposed to COVID-19 or 
undergoing treatment, may have increased risks of developing 
virus-associated cancers, even after they have fully recovered from 
COVID-19 [36]. 

Glioblastoma multiforme (GBM) has an increased incidence in 
elderly COVID-19 vulnerable individuals. SARS-CoV-2 might invade the 
brain directly via coronavirus receptors with little information about the 
role of the infection in the clinical development of GBM. The oncogenic 
roles of six coronavirus receptors (ACE2, DPP4, ANPEP, AXL, TMPRSS2, 
and ENPEP) in GBM were tested using bioinformatics and experimental 
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approaches. ANPEP and ENPEP were significantly increased at both the 
mRNA and protein levels in GBM compared with normal brain tissue. 
High expressions of ANPEP and ENPEP are associated with poor prog
nosis and survival. Moreover, all receptors are positively correlated with 
the immune infiltration levels of monocytes. Interestingly, Chen et al. 
[37] explored the association of coronavirus receptors with GBM and 
suggested ANPEP and ENPEP as potential therapeutic targets of GBM 
irrespective of COVID-19 [37]. 

The role played by the ACE2 in cancer progression or control remains 
controversial. A systemic investigation into associations between ACE2 
and oncogenic pathways, tumor progression, and clinical outcomes in 
pan-cancer remains lacking. Computational analyses of associations 
between ACE2 expression and oncogenesis found that ACE2 upregula
tion was associated with increased antitumor immune signatures and 
PD-L1 expression, and favorable anti-PD-1/PD-L1/CTLA-4 immuno
therapy response. ACE2 expression levels are inversely correlated with 
the cell cycle activity, mismatch repair, TGF-β, Wnt, VEGF, and Notch 
signaling pathways. Its upregulation, therefore, is associated with 
favorable survival in pan-cancer and in multiple individual cancer types 
[38]. On the other hand, ACE2 downregulation disrupts the 
renin-angiotensin-aldosterone axis (RAAS) and causes bradykinin 
accumulation that exerts a proliferative response via mitogen-activated 
protein kinase pathways with established roles in many types of cancers. 
SARS-Cov2, by affecting the RAAS and the immune system, has, there
fore, the potential to induce tumor cell proliferation, apoptosis evasion, 
and dissemination, resulting in possible cancer progression [39]. ACE2 
and the transmembrane serine protease 2 (TMPRSS2) are both involved 
in the SARS-CoV-2 infection process and are increased in the epithelium 
of the human prostate gland during the prostate carcinogenesis and are 
regulated by androgens. The risk of the SARS-CoV-2 infection and the 
severity of the disease in prostate carcinoma (PCa) patients treated with 
androgen deprivation therapy (ADT) was investigated. Four retrospec
tive studies assessed the SARS-CoV-2 infection risk in PCa patients under 
ADT vs. no ADT. A non-significant association between the risk of 
SARS-CoV-2 infection and COVID-19 severity in PCa patients treated 
with ADT was reported [40]. 

4.3. SARS-CoV-2 and oncolytic potential 

Paradoxically, SARS-CoV-2 could elicit an anti-tumor immune 
response and exert a potential oncolytic role in lymphoma patients [41]. 
As NK cells massively express ACE2, they are easily infected by 
SARS-CoV-2, resulting in a decline in cell numbers and loss of immune 
surveillance [42]. Many RNA viruses have demonstrated their capacity 
to induce NK apoptosis [43]. Therefore, the depletion and suppression of 
NK could serve as an adjuvant therapeutic tool for patients with resistant 
NK cell lymphoma [43]. Of interest is that the viral load of EBV-DNA, a 
sensitive biomarker of NK/T cell lymphoma, declines during COVID-19 
and resurges as COVID-19 subsides [43]. Furthermore, recent studies 
have suggested that SARS-CoV-2 infection may protect against Hodg
kin’s lymphoma by eliciting an anti-tumor response [44]. 

5. Therapeutic implications 

Four major signaling pathways are at the intersection of COVID-19 
and cancer, namely, cytokine, type I interferon (IFN-I), androgen re
ceptor (AR), and immune checkpoint interactions [31]. At the core of 
the cytokine pathway, Interleukin 6 (IL-6)-mediated JAK/STAT 
signaling consists of different distinct paths that induce the transcription 
of multiple target genes [45]. From the cancer perspective, several 
factors may contribute to IL-6-induced neoplastic changes [46], whereas 
from the COVID-19 perspective, the levels of Il-6 correlate with the viral 
load and lung injury, reflecting the severity and prognosis of this disease 
[47]. Selective inhibitors of nuclear export (SINE) medications such as 
selinexor and verdinexor, are potent blockers of XPO1 and have 
enriched the palette of therapeutic options for myeloma. Their safety 

and efficacy are currently tested in COVID-19 [48]. Interferons, on the 
other hand, are indispensable for immune responses against both cancer 
and viral infections [49]. The TMPRSS2 and androgen receptor path
ways are also shared between prostate carcinoma and COVID-19. 
Interestingly, TMPRSS2 knockout mice are spared from severe infec
tion and escape from lung diseases, highlighting the role of TMPRSS2 
function in SARS-CoV-2 entry events [50] and the therapeutic potential 
of this axis. The role played by the PD-1/PD-L1 axis in both cancer and 
COVID-19 infection is also non-negligible. There is mounting evidence 
of upregulation of immune checkpoint receptors in severe COVID-19 
cases associated with T cell exhaustion and lymphopenia [51]. Ex vivo 
blockade of PD-1 nearly normalized CD8 + T cells and restored T cell 
function, reverting the post-COVID-19 immune abnormalities [52,53]. 
Therefore, it seems evident that deeper knowledge of the different 
cancer proliferative pathways led to a better understanding of 
SARS-CoV-2 signaling with potential therapeutic applications for both 
COVID-19 and Cancer. 

6. Conclusions 

The COVID-19 pandemic has shaken the oncology world as patients 
who contracted the infection were at a greater risk of developing a se
vere and critical form of illness and suffered a poorer prognosis. Many 
centers opted to delay using high-dose chemotherapy or immunopo
tentiation therapies such as immune checkpoint inhibitors and CAR-T as 
they could aggravate inflammatory symptoms of patients with COVID- 
19. Furthermore, the overwhelmed health care system across the 
globe delayed diagnosis and postponed surgeries for many cancer pa
tients, influencing their care. 

We are now confronted with many cancer patients who have con
tracted SARS-CoV-2 and recovered from COVID-19. The long-term im
plications of SARS-CoV-2 infection on this population are still unknown. 
The effects of infection on pathways relevant to cancer could affect cell 
proliferation, development, and survival, favoring DNA degradation, 
preventing the repair of damaging events, and impeding the translation 
of RNA into functional proteins, and could lead to a more rapid disease 
progression [54]. In contrast, profound virus-induced immune modu
lation may have a beneficial effect on certain lymphomas. 

The challenge of the coming years will be to track these patients 
through the different cancer registries and retrospectively monitor their 
disease path compared to those who did not contract the infection. It will 
also be of great interest to see if the pandemic has impacted the number 
of new cancer cases and the patterns of cancer development in the 
coming years. The data generated from these large databases will likely 
impact cancer care for decades to come. 
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