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The efficacy of Bacillus Calmette-Guerin (BCG) vaccination in protection against pulmonary tuberculosis
(TB) is highly variable between populations. One possible explanation for this variability is increased
exposure of certain populations to non-tuberculous mycobacteria (NTM). This study used a murine
model to determine the effect that exposure to NTM after BCG vaccination had on the efficacy of BCG
against aerosol Mycobacterium tuberculosis challenge. The effects of administering live Mycobacterium
avium (MA) by an oral route and killed MA by a systemic route on BCG-induced protection were eval-
uated. CD4+ and CD8+ T cell responses were profiled to define the immunological mechanisms un-
derlying any effect on BCG efficacy. BCG efficacy was enhanced by exposure to killed MA administered by
a systemic route; T helper 1 and T helper 17 responses were associated with increased protection. BCG
efficacy was reduced by exposure to live MA administered by the oral route; T helper 2 cells were
associated with reduced protection. These findings demonstrate that exposure to NTM can induce
opposite effects on BCG efficacy depending on route of exposure and viability of NTM. A reproducible
model of NTM exposure would be valuable in the evaluation of novel TB vaccine candidates.

© 2014 The Authors. Published by Elsevier Ltd. Open access under CC BY license.

1. Introduction

Tuberculosis (TB) is caused by the bacterium Mycobacterium
tuberculosis (M. tb). It was estimated that in 2011, 12 million people
worldwide were suffering with TB disease and a further 8.7 million
people are infected each year [1]. The number of people living with
latent M. tb infection may be nearer 2 billion [2]. The incidence is
greatest in Asia (59% of TB cases) and Africa (26%) and the burden
of disease is particularly high in countries with high HIV
prevalence [1].
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Bacillus Calmette-Guerin (BCG), an attenuated strain of Myco-
bacterium bovis, is the only licensed vaccine for use against TB. BCG
induces CD4+ T helper type 1 and CD8+ T cell responses, which
play a protective role in the host’s immune response against M. tb
[3—5]. A meta-analysis of randomised controlled trials and case—
control studies that evaluated the efficacy of BCG vaccination
against pulmonary TB showed efficacy to vary between 0% and 80%
across these trials [6,7]. Forty one per cent of this variation could be
attributed to the geographical location where the trial was con-
ducted [6]. There are a number of theories to explain the variable
efficacy of BCG vaccination against pulmonary TB. Animal studies
have shown genetically different strains of BCG have varying levels
of immunogenicity but the observation that the same vaccine
preparation confers significantly different levels of protection in
different human populations implies that BCG strain difference is
probably not the only explanation [8—11]. Certain strains of M. tb
are more virulent than others and BCG vaccine efficacy is impaired
in mice infected with these high-virulence strains [12,13]. Helminth
co-infection is associated with a reduction in the immunogenicity
of BCG vaccination in a mouse model [14—16]. Exposure to non-
tuberculous strains of mycobacteria (NTM) in the environment
may also contribute to the variability of BCG efficacy [17,18].

1472-9792/© 2014 The Authors. Published by Elsevier Ltd. Open access under CC BY license,

http://dx.doi.org/10.1016/j.tube.2013.12.006


mailto:hpoyntz@malaghan.org.nz
mailto:elena.stylianou@ndm.ox.ac.uk
mailto:elena.stylianou@ndm.ox.ac.uk
mailto:Kristin.griffiths@gmail.com
mailto:Leanne.marsay@ndm.ox.ac.uk
mailto:Leanne.marsay@ndm.ox.ac.uk
mailto:annacheckley@yahoo.com
mailto:Helen.mcshane@ndm.ox.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tube.2013.12.006&domain=pdf
www.sciencedirect.com/science/journal/14729792
http://intl.elsevierhealth.com/journals/tube
http://dx.doi.org/10.1016/j.tube.2013.12.006
http://dx.doi.org/10.1016/j.tube.2013.12.006
http://dx.doi.org/10.1016/j.tube.2013.12.006
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

H.C. Poyntz et al. / Tuberculosis 94 (2014) 226—237 227

Currently, at least 55 species of NTM have been identified [19].
NTM are ubiquitous in the environment, more prevalent in hot
climates than cold climates and are often associated with soil and
water supplies [20,21]. Around half of the species are capable of
causing infection in humans and animals although these infections
are generally opportunistic and often affect people with some de-
gree of immune suppression [19]. In populations where BCG is less
effective, there is a high level of exposure to NTM. This can be
demonstrated by comparing, on a population level, the reactivity to
purified protein derivatives (PPDs) of mycobacteria prior to BCG
vaccination. The frequency of responders and the magnitude of
interferon-y (IFNvy) induced in response to PPDs of NTM species is
far greater in Malawian and South Indian populations, where the
efficacy of BCG against pulmonary TB is 0%, compared to the UK,
where the efficacy of BCG is 80% [22,23].

It has been shown in guinea pigs and mice that, like BCG, NTM
can induce protective immunity against M. tb infection, although
the level of protection is reported to be less than that conferred by
BCG [24—28]. Detailed analyses of the immune responses induced
by NTM infection are limited. An overview of reports indicates that
IFNYy is commonly induced and production of TNFa, IL-1§ and IL-6
has also been reported [5,29—31]. There are also reports that NTM
may induce mycobacteria-specific responses that are not protective
against M. tb infection; for example a T helper 2 type response and
the immune-modulatory cytokines IL-10 and TGFp [31—-33].

Several studies in animal models have assessed the effect of
NTM exposure on the efficacy conferred by subsequent BCG
vaccination against challenge with M. tb or M. bovis. Brandt et al.
published data showing that subcutaneous infection of mice with
a mix of Mycobacterium avium, Mycobacterium vaccae and Myco-
bacterium kansasii, which was subsequently cleared by antibiotic
treatment prior to BCG vaccination, reduced the level of protection
afforded against M. th aerosol challenge [27]. A similar reduction of
BCG efficacy was seen in guinea pigs when M. avium strain
WAg206 was administered orally prior to BCG vaccination [24]. In
a study of BCG efficacy in calves, no protection was conferred
against M. bovis challenge in animals with PPD sensitivity prior to
BCG vaccination [34]. This PPD sensitivity was attributed to natural
exposure to NTM before recruitment of the calves to the study. In
contrast to these studies, there are others that fail to show a
reduction in BCG efficacy after exposure to NTM, highlighting the
variability and inconsistency of these models of NTM exposure
[25,26,35—38].

To understand the effect of NTM exposure in populations where
BCG fails to protect against pulmonary TB, we set out to model the
pattern of NTM exposure that is likely to occur. Despite the variable
efficacy of BCG against pulmonary TB, vaccination confers a high
level of protection against childhood forms of severe TB (81%) and
World Health Authority guidance is that in TB-endemic populations
BCG should be administered at, or as soon after, birth as possible
therefore exposure to NTM occurs after BCG vaccination [7,19]. The
route by which people are exposed to NTM is unknown. Exposure
via the oral route in drinking water is a probable route, as is sys-
temic exposure. This study evaluated two models of NTM exposure
in mice previously vaccinated with BCG. The effect of NTM expo-
sure on BCG vaccine efficacy was assessed by aerosol M. tb chal-
lenge and CD4+ and CD8+ T cell responses were profiled. We first
modelled exposure to killed M. avium via the systemic route and
found BCG efficacy was enhanced by this exposure. Flaherty et al.
have previously published a model of oral exposure to M. avium
after BCG vaccination and reported that exposure reduced the ef-
ficacy of BCG against M. tb challenge [39]. We replicated Flaherty’s
model to compare the immune responses induced in a model that
compromises vaccine efficacy to the responses induced in a model
that enhances vaccine efficacy with the view to determine the

immunological mechanisms behind these differential effects on
BCG-induced immunity.

2. Materials and methods
2.1. Ethics statement

Animal procedures were performed in accordance with the UK
Animals (Scientific procedures) Act 1986 and were approved by the
University of Oxford Animal Care and Ethical Review Committee
(PPL 30/2414 and 30/2889).

2.2. Mycobacteria

BCG Pasteur (a kind donation from Dr A Rawkins) was grown in
Middlebrook 7H9 media (with 10% ADC supplement and 0.05%
Tween 80) at 37 °C to mid-log phase, aliquoted and frozen in PBS
at —80 °C. M. avium (MA) strain 724, strain 2-151 (both a kind
donation from Prof. I Orme) and MA strain 104 (a kind donation
from Prof. A Cooper) were grown in supplemented Middlebrook
7H9 media to mid-log phase and then plated on Middlebrook 7H10
plates (with 10% oleic acid-albumen-dextrose-catalase (OADC)
enrichment and 0.05% glycerol) for 2—3 weeks at 30 °C. Smooth-
transparent and rough colonies were picked and suspended in
7H9 media, then incubated in a rotating incubator at 30 °C over-
night to reduce clumping before freezing in PBS at —80 °C. MA 724
was chosen based on well documented use in NTM exposure
models and it’s ability to cause a persistent infection in mice,
suggesting a degree of pathogenicity [25,36]. MA 104 was the strain
used by Flaherty et al. in the published study we replicated [39].
This strain was originally isolated from an AIDS patient and causes a
persistent infection in mice [40]. M. tb Erdmann KO1 was supplied
by the US Food and Drug Administration (FDA) or BEI Resources
(Manassas Virginia, USA).

2.3. Mice and immunisations

Female C57BL/6 ] mice were from Harlan Laboratories, UK. An-
imals were ordered at six weeks of age. Ex-breeders and nine week
old mice were used as naive controls in aerosol challenge experi-
ments. Groups of animals were kept in a specific pathogen free
facility within individually ventilated cages.

Frozen aliquots of bacteria were thawed and sonicated. Where
MA was to be given heat-killed, the aliquots were placed in a water
bath at 80 °C for 25 min. Bacteria were then diluted to the required
concentration in sterile PBS before administration. 100 pl of BCG in
PBS was injected subcutaneously (SC) at the base of the tail using a
U-100 29G syringe. 1 x 10° CFU was administered. 100 pl of MA
724 or 2-151 for intraperitoneal injection (IP) was suspended in
PBS and administered with a U-100 29G syringe in the right or left
side of the peritoneal cavity. In the IP exposure model 1 x 108 CFU
of killed MA strain 2-151 or 724 were administered. In the model
of oral exposure mice received 100 pl of live MA 104 suspended in
PBS via a dosing cannula inserted directly in to the stomach.
1 x 10?> CFU was administered. Mice were restrained but not
anaesthetised for these procedures (Figure 1(A): Experiment plan
of the IP exposure model; Figure 4(A): Experiment plan of the oral
exposure model).

2.4. M. tb aerosol challenge

Mice were transferred to a containment level III (CL3) suite and
loaded into nose-only restrainers. Restrainers were inserted into an
exposure chamber inside a CL3 isolator. M. tb was diluted in sterile
PBS and put in to a collision nebuliser. Dose escalation studies were
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Figure 1. Cellular responses in BCG vaccinated mice that were or were not sensitised with MA 724 IP after BCG Responses were assayed at the 12 month time point; 4 weeks after
the last dose of MA 724. Cells from inguinal lymph nodes (LN) and spleens were stimulated with PPD-T. (A) Experiment plan (B and C) IFNy, TNFa. and IL-2 production from CD4+ or
CD8+ T cells in the LN, (D) IL-17 production from CD4+ T cells in the LN and spleen, (E) IL-4 production from CD4+ T cells in the LN and spleen, (F) expression of CD25, FoxP3 and
CD39 on CD4+ T cells from the LN and spleen, (G) IL-10 production from CD4+ T cells in the LN and spleen. B = BCG vaccinated only, BM = BCG vaccinated mice which received MA
724. Results are expressed as a percentage of the CD4+ or CD8+ T cell population and are stimulation specific; media only control well values are subtracted. Each data point
represents one mouse and the median is displayed, n = 5. The Mann—Whitney U test was used to determine statistical significance and is shown where differences were significant.
Subcutaneous (Sub Cut.), Intraperitoneal (IP), M. avium (MA), Colony Forming Units (CFU), Day 0 (DO), Regulatory T cells (Tregs).

performed to determine the concentration of M. tb needed to
deliver 100 CFU to each mouse in a 10 min period of nebuliser
activity followed by a five minute purge cycle with clean air. The
Biaera aeroMP controller monitored the airflow and pressure in the
apparatus. After exposure, mice were removed from the restrainers
and housed in CL3 containment cages. For quantification of CFU in
M. tb infected lungs or spleens the organs were homogenised in
1 ml of PBS using the Precellys®24 then plated on enriched Mid-
dlebrook 7H10 plates. After four weeks of incubation at 37 °C col-
onies were counted. Lungs from three naive mice were taken

24 h after challenge to determine the dose of M. tb administered in
the challenge. Vaccine efficacy was determined from CFU quanti-
fication on lung and spleen homogenates taken 35 days after
challenge. In the model of oral exposure the burden of MA 104 CFU
in the lungs and spleen was determined by also plating homoge-
nates on Middlebrook 7H10 plates supplemented with 2 pg/ml
Clarithromycin to exclude MA growth. There was no difference in
the number of CFU between plates that contained antibiotic and
those that did not, therefore we concluded there was no growth of
MA 104 in the lungs or spleens of these mice.
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Figure 2. Burden of M. tb CFU in the lungs and spleens 35 days after challenge Groups included naive, BCG vaccinated (BCG) and BCG followed by MA 724 IP exposure (BCG + MA
IP). Data are Log (10) of the colony forming unit (CFU) count of the whole organ. Each data point represents one mouse and the mean is displayed. A One-way ANOVA with
Bonferroni post test was used to determine statistical significance; the p value for each comparison is displayed.

2.5. Isolation and stimulation of cells

Mouse spleens and lymph nodes were mechanically homoge-
nised in PBS, passed through a 70 um cell strainer and erythrocytes
in the spleens were removed by re-suspension of cells in ACK lysis
buffer for five minutes. The reaction was stopped by PBS. Cells were
centrifuged and resuspended in complete MEM (10% Foetal Calf
Serum, Pen/Strep and r-glutamine). Lungs were perfused before
dissection by injecting roughly 2 ml of sterile PBS into the heart.
Lungs were then dissected into PBS, diced into 1 mm pieces and
suspended in 5 ml of RPMI with 700 pg/ml collagenase and 30 pg/
ml DNAse (Sigma) for 30 min at 37 °C. The reaction was stopped by
adding complete MEM, then the suspension was passed through a
70 pum sieve and mashed with a 5 ml syringe. Samples were
centrifuged and erythrocytes lysed with ACK lysis buffer. Cells were
centrifuged and resuspended in complete MEM.

For flow cytometry, cells were incubated for six hours at 37 °Cin
the presence of PPD from M. tb (PPD-T) at 10 pg/ml. After two hours,
0.22 ul of GolgiPlug (Brefeldin A) was added. Following incubation,
cells were stored at 4 °C overnight.

2.6. Multi-parameter flow cytometry

Cells were centrifuged, washed with PBS and then stained with
10 pl of live/dead fixable stain diluted in PBS at the required
concentration for 10 min. All incubations in this protocol were on
ice and in the dark. Cell surface specific antibodies and FC block
(anti CD16/32) were diluted in PBS with 2% FBS (PBS-FBS). Surface
antibodies used in this study were B220 AF700 (clone RA3-6B2),
B220 PE-Texas red (clone RA3-6B2), CD3 PerCP-Cy5.5 (clone 145-
2c11), CD3 AF700 (clone 17A2), CD8a APC-ef780 (clone 53-6.7),
CD4 eFluor 650NC (clone GK1.5), CD44 AF700 (clone IM7), CD25
APC (clone PC61.5) and CD39 PE-Cy7 (clone 24DMS1). The cocktail
of surface antibodies was added to the live/dead stain and incu-
bated for 30 min. If cells were to be stained for intracellular
markers they were then washed in PBS-FBS and permeabilised by
incubation with Cytofix/Cytoperm for 10 min. Cells were washed

in PermWash and then incubated for 30 min with an intracellular
staining cocktail and Fc block diluted in PermWash. Intracellular
antibodies used in this study were IFNy Brilliant Violet 421 (clone
XMG1.2), IL-2 PE-Cy7 (clone JES6-5H4), IL-17a PerCP-Cy5.5 (clone
eBio17B7), TNFa FITC (clone MP6-XT22), IL-4 PE (clone 11B11), IL-
10 APC (clone JES5-16E3) and FoxP3 PE (clone FJK-16S). Cells were
finally resuspended in PBS-FBS for analysis. For M. tb infected
samples the protocol for cell staining was followed as above but at
CL3 containment. After the final stage of staining the cells were
fixed in PBS-FBS with 4% paraformaldehyde for 30 min. The
samples were then washed and resuspended in PBS-FBS then
transferred to a sterile 96 well U-bottom plate and removed from
CL3. Samples were run on a BD LSRII cytometer linked to Facs Diva
software and analysed with Flow Jo v8.8.7 and 9 (Tree Star Inc.). An
example of typical gating strategies is shown in Supplementary
Figure 1. For gating of cytokines the media control sample was
used to determine where the negative population fell. For CD44 a
preliminary experiment with fluorescence minus one (FMO) was
performed to determine the level of marker expression. For some
experiments SPICE was used to display complicated data
comparisons.

2.7. Statistics

All data were graphed and analysed with Prism v5.0 (GraphPad
Software). Flow cytometry data are presented as an antigen-
specific response by subtracting media-only control values from
the antigen-specific value prior to analysis. These data were non-
parametric therefore the median value was calculated and signifi-
cance between groups tested with the Mann—Whitney U test.
Where comparison of multiple groups was made the One-way
ANOVA Kruskal—Wallis with Dunns post-test was applied. CFU
Log(10)data was tested for normal distribution using a D’Agostino
and Pearson omnibus normality test. The mean was calculated for
these samples and significance between groups tested with a one-
way analysis of variance and Bonferroni post-test. Differences were
considered statistically significant if p < 0.05.
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Figure 3. Cellular response to M. tb infection 13 days after challenge Thirteen and sixteen days after M. tb challenge cells were isolated from lungs and pulmonary LN (LN) of naive
mice, BCG-vaccinated mice (BCG) and mice vaccinated with BCG followed by MA 724 IP exposure (BM IP). Cells were stimulated with PPD-T and then stained for analysis by flow
cytometry. (A) CD44 + CD4+ T cells in the lung, (B) IFNYy, TNFa. and IL-2 production from CD4+ T cells in the lung, (C) CD44 + CD8+ T cells in the lung, (D) IFNy, TNFa and IL-2
production from CD8+ T cells in the LN, (E) IL-17 + CD4+ T cells in the lung and LN, (F) IL-4+ CD4+ T cells in the lung and LN, (G) IL-10 + CD4+ T cells in the lung and LN, (H)
expression of CD25, FoxP3 and CD39 on CD4+ T cells from the lung and LN. Cytokine responses are antigen-specific; media control values are subtracted. Regulatory T cell (Treg)
frequency is not antigen-specific. Each data point represents one mouse and the median is displayed. The One-way ANOVA Kruskal—Wallis with Dunns post test was used to
determine statistical significance; the p value is displayed where significance was calculated.

3. Results

3.1. Exposure to killed MA IP after BCG vaccination increases the
magnitude of Th1 and CD8+ T cells

We set out to model human NTM exposure in order to assess it’s
effect on the immune response induced by BCG. We reasoned that
human exposure is likely to be repeated exposure to NTM at sys-
temic surfaces; such exposures do not generally cause pathological
infections in immunocompetent people. Mice were vaccinated with
BCG then given MA intraperitoneally (IP) once a month for 6
months. Mice are susceptible to pathological infection from this
strain of MA therefore MA was administered killed to avoid the
induction of a pathological infection. From a previous experiment
we knew that giving repeated doses of killed MA to BCG vaccinated
mice produced a stronger immune response than a single dose of
killed MA did (Supplementary Figure 2). An aerosol M. tb challenge
was conducted to assess the effect of MA exposure on the protec-
tion conferred by BCG vaccination. Immune responses were char-
acterised prior to M. tb challenge and 13 and 16 days after
challenge. The experiment plan is summarised in (Figure 1(A)).

Prior to challenge, in the inguinal lymph node (iLN) of mice that
received BCG alone PPD-T specific IFNy+ CD4+ T cells and TNFo+
CD4+ T cells were recorded at a frequency of 0.03% and 0.05%
respectively (Figure 1(B)). Exposure to 6 doses of killed MA 724

after BCG vaccination induced IFNy+ and TNFa+ PPD-specific
CD4+ T cells at 0.2% as well as IL-2+ CD4+ T cells at 0.1%. These
responses were greater compared to the BCG alone mice, however
the difference was not statistically significant. The Th1 response
was more polyfunctional after exposure to MA; with greater pro-
portions of PPD-T specific CD4+ T cells secreting IFNy, TNFa and IL-
2, and CD4+ T cells secreting both IFNy and TNFa, compared to the
BCG alone group (Supplementary Figure 3 ). No PPD-T specific
CD8+ T cell responses were detected in mice vaccinated with BCG
alone whereas a PPD-T specific IFNy+ CD8+ T cell response was
detected in MA-exposed group (Figure 1(C)). Similar frequencies of
IL-17 + CD4+ T cells were detected between the groups in the iLN
(Figure 1(D)). IL-17 + CD4+ T cells were recorded in the spleen of
the MA-exposed group whereas the median frequency was 0% in
the BCG alone group. In the MA-exposed group the frequency of IL-
4+ CD4+ T cells in the iLN and spleen were 0.04% and 0.02%
respectively, in the BCG alone group it was 0% in both organs
(Figure 1(E)). The frequency of regulatory T cells (Tregs) in the iLN of
the MA-exposed group was 10% and in the BCG alone group 19%,
this difference was not statistically significant (Figure 1(F)). The
frequency of Tregs in the spleen of both groups was comparable.
The median frequency of PPD-T specific IL-10 + CD4+ T cells was
0.01% in the iLN of the MA-exposed group and 0.09% in the BCG
alone group; this difference was significant (p = 0.02; Figure 1(G)).
IL-10 responses in the spleen were very low in both groups.
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Figure 4. Responses induced by oral exposure to live MA 104 after BCG vaccination (A) Experimental plan; mice were orally exposed to live MA 104 8 times at 2 week intervals after
BCG vaccination (BM) or left un-manipulated after BCG (B) and then challenged with M. tb. Immune responses were recorded at week 28, six weeks after the last dose of MA in the
exposed group and directly before challenge with M. tb. Cells from mesenteric lymph nodes (LN) and spleens were stimulated with PPD-T then stained for analysis by flow
cytometry. (B and C) IFNYy, TNFa and IL-2 production from CD4+ and CD8+ T cells in the spleen, (D) IL-4+ CD4+ T cells in the LN and spleen, (E) IL-10 + CD4+ T cells in the LN and
spleen, (F) expression of CD25, FoxP3 and CD39 on CD4+ T cells from the LN and spleen. Cytokine responses are antigen-specific; media control values are subtracted. Regulatory T
cell (Treg) frequency is not antigen-specific. Each data point represents one mouse and the median is displayed. The Mann—Whitney U test was used to test for statistical sig-
nificance and is shown where differences were significant. Subcutaneous (Sub Cut.), M. avium (MA), Colony Forming Units (CFU), Day 0 (DO0), Regulatory T cells (Tregs), Intracellular
staining (ICS).

3.2. Exposure to killed MA IP after BCG vaccination increases the lungs compared to the BCG alone group (p = 0.017 lungs)
protection against M. tb challenge (Figure 2). The mean CFU count in the spleen of the group that
received MA 724 after BCG was lower compared to the group that

Thirty-five days after aerosol M. tb challenge, the group received BCG alone but this difference was not significant. The
receiving MA 724 after BCG had a significantly lower CFU burden in mean Log(10) CFU count in the naive group was 6.37 lung; 5.31
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spleen, in the BCG alone group 5.9 lung; 4.44 spleen and in the
group that received MA 724 after BCG 5.54 lung; 4.1 spleen. Both
the BCG alone group and the group that received MA 724 after BCG
had a significantly lower CFU burden in the lungs and spleen
compared to naive mice (p = 0.0001 lungs, p = <0.0001 spleen BCG
alone; p = 0.0002 lungs, p = <0.0001 spleen BCG + MA).

3.3. Exposure to killed MA IP after BCG vaccination enhances Th1,
Th17 and CD8+ T cell responses in the lung during M. tb infection

Thirteen and 16 days after challenge with M. tb, the cellular
immune responses in the lungs, pulmonary lymph nodes (pLN) and
spleens were assayed. Day 16 data were similar to day 13 data, so
only day 13 data are presented. CD44 expression was used as a
marker for CD4+ and CD8+ T cell activation. Thirteen days after
M. tb challenge, there were significantly greater frequencies of
activated CD4+ T cells in the lungs of the BCG alone and the MA-
exposed groups compared to naive mice (p < 0.05B + M and BCG
alone; Figure 3(A)). The same was also seen in the pulmonary LN
(pLN) and the spleen (p < 0.05B + M and BCG alone pLN;
p < 0.05B + M and BCG alone spleen; data not shown). The median
frequency of IFNy+, TNFo+ and IL-2+ CD4+ T cells in the lungs of
the MA-exposed group was 1-1.5%. In the BCG alone group the
median frequency of IFNy+ CD4+ T cells was 0.2% and TNFa+ CD4+
T cells was 0.8%. This was a lower frequency compared to the MA-
exposed group although not statistically significant (Figure 3(B)).
NoTh1 response was detected in the lungs of the naive group at day
13 or day 16.

The frequencies of activated CD8+ T cells were significantly
higher in the lungs of the BCG alone group compared to naive mice
(p < 0.05 BCG alone lungs; Figure 3(C)). Frequencies of activated
CD8+ T cells were significantly higher in the pLN of the MA-
exposed group compared to naive mice (p < 0.05B + M pLN; data
not shown). In the pLN at day 13 the frequency of IFNy+ CD8+ T
cells in the MA-exposed group was significantly higher than in the
BCG alone group (0.2% compared to 0.03%, p < 0.05; Figure 3(D)).
No IFNy+ CD8+ T cells were detected in the pLN of naive mice.
Frequencies of TNFo+ and IL-2+ CD8+ T cells in the pLN were low
in all groups.

IL-17 + CD4+ T cells were detected 13 days after M. tb challenge
in the lung of the MA-exposed group but not the BCG alone or naive
groups; the median frequency was 1.5% (Figure 3(E)). [L-4+ CD4+ T
cells were also detected in the lungs of the MA-exposed group but
not the BCG alone or naive groups; the median frequency was 0.3%
(Figure 3(F)). A low level of IL-10 + CD4+ T cells were detected in
the lungs and pLN of the MA-exposed group and the BCG alone
group; 0.05% and 0.03% respectively (Figure 3(G)). Frequencies of
regulatory T cells in the lungs of all groups were around 1%. The
frequency in the pLN of the MA-exposed group was 6%, the BCG
alone group was 4% and the naive group 3%; these differences were
not statistically significant.

3.4. Exposure to live MA orally after BCG vaccination enhances Treg
frequencies in the mesenteric lymph nodes

We replicated a previously published model where live MA is
administered orally after BCG vaccination [39]. Repeated doses of
live MA strain 104 (MA 104) were administered to mice at a low
dose of 100 CFU to induce a sub-clinical infection. Analysis of CD4+
and CD8+ T cell responses were performed before and after chal-
lenge with M. th: the model is represented in Figure 4(A).

After eight doses of live MA 104, the frequencies of PPD-T spe-
cific IFNy+ and TNFa+ CD4+ T cells in the spleen were similar
between the BCG alone and BCG — oral MA groups; median fre-
quency 0.03—0.04% (Figure 4(B)). The BCG — oral MA group had a

greater frequency of IL-2+ CD4+ T cells compared to the BCG alone
group. PPD-T-specific I[FNy+, TNFa+ and IL-2+ CD8+ T cells were
detected in the spleen of the BCG alone group; IFNy+ and IL-2+
CD8+ T cells were detected in the BCG — oral MA group
(Figure 4C). Frequencies of IFNy+ and IL-2+ CD8+ T cells were
similar between the groups at 0.02% and 0.01% respectively. Fre-
quencies of IL-4+4 CD4+ T cells specific for PPD-T were measured in
the mesenteric LN (mLN) of the BCG — oral MA group at around
0.01%, a median frequency of 0% was detected in the BCG alone
group (Figure 4D). PPD-T specific IL-4+ CD4+ T cells were detected
in the spleens of the BCG — oral MA and BCG alone groups at 0.01%
and 0.03% respectively; the difference was not statistically signifi-
cant. PPD-T-specific IL-10 + CD4+ T cells were detected in the mLN
of the BCG — oral MA group and the BCG alone group at 0.01% and
0.02% respectively (Figure 4(E)). The frequency of IL-10 + CD4+ T
cells in the spleen was comparable between the groups. Fre-
quencies of regulatory T cells in the mLN were significantly greater
in the BCG — oral MA group compared to the BCG alone group; 13%
and 9% respectively (p = 0.008; Figure 4(F)). Both groups had a
median frequency of regulatory T cells around 3% in the spleen.

3.5. Oral exposure to live MA after BCG vaccination reduces
protection against M. th

Thirty five days after aerosol M. tb challenge, the group that
received MA 104 orally after BCG had a significantly greater CFU
burden in the spleen compared to the BCG alone group (p = <0.05
spleen). The mean CFU count in the lung of the group receiving MA
104 orally after BCG was greater compared to the group that
received BCG alone but this difference did not reach statistical
significance. The mean Log(10) CFU counts in the naive group was
5.62 lung; 4.36 spleen, in the BCG alone group 4.92 lung; 2.34
spleen and in the group that received MA 104 after BCG 5.1 lung;
3.63 spleen (Figure 5). Both the BCG alone group and the group
receiving MA 104 orally after BCG had a significantly lower CFU
burden in the lungs compared to naive mice and the BCG alone
group had significantly lower CFU burden in the spleen compared
to naive mice (p = <0.0001 lungs, p = <0.001 spleen BCG alone;
p = <0.0001 lungs, p = ns spleen BCG — oral MA;Figure 5(A) and
(B). The CFU burden in the spleen of the group receiving MA 104
orally after BCG was not significantly different to the naive group.

3.6. The cellular immune response during M. tb infection is altered
by oral exposure to MA after BCG vaccination

We also measured the responses of lymphocytes following M. tb
challenge in the oral exposure model. Again, CD44 expression was
used as a marker for CD4+ and CD8+ T cell activation. Thirteen days
after challenge, significantly greater frequencies of activated CD4+
T cells were detected in the lungs of the BCG alone group compared
to the naive group; 12%—8% respectively (p < 0.01; Figure 6(A)). 16
days after challenge the frequency of activated CD4+ T cells in the
lungs was similar between the BCG alone and BCG — oral MA
groups at 30%; this was greater than the frequency in the naive
group which was 15%, although the difference did not reach sta-
tistical significance (Figure 6(B)). The same trend was also seen in
the pLN and spleen at day 16 (data not shown). No PPD-T-specific
cytokine responses were detected at day 13 in any of the groups
(data not shown). At day 16 IFNy+ and TNFa+ CD4+ T cells were
detected in the lungs of the BCG alone and the BCG — oral MA
groups at similar frequencies; 1.5—2% (Figure 6(C)). Median fre-
quencies of activated CD8+ T cells were greater in the lungs, pLN
and spleen of the BCG alone and BCG — oral MA groups compared
to the naive group; however these differences were not significant
(Figure 6(E); spleen not shown). The frequency of [FNy+ CD8+ T
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Figure 5. Burden of M. th CFU in the lungs and spleens 35 days after challenge Groups in the challenge included naive mice, BCG vaccinated mice (BCG) and BCG vaccinated
followed by oral MA 104 exposure mice (BCG + MA 104). Data is Log (10) of the CFU count of the whole organ. Each data point represents one mouse and the mean is displayed. A
One-way ANOVA with Bonferroni post test was used to determine statistical significance; the p value for each comparison is displayed. Colony forming units (CFU), 6 months since
BCG (6 m).
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Figure 6. Cellular response to M. tb infection 16 days after challenge Thirteen and sixteen days after M. tb challenge cells were isolated from lungs and pulmonary lymph nodes (LN)
of naive mice, BCG vaccinated mice (BCG) and BCG vaccinated mice followed by oral MA 104 exposure (BM oral). Cells were stimulated with PPD-T and then stained for analysis by
flow cytometry. (A and B) CD44 + CD4+ T cells in the lung at day 13 and 16 after infection, (C) IFNy, TNFa and IL-2 production from CD4+ T cells in the lung at day 16, (D) IL-
17 + CD4+ T cells in the lung and LN at day 16, (E) CD44 + CD8+ T cells in the lung and LN at day 16, (F) IFNy, TNFa and IL-2 production from CD8+ T cells in the LN at day 16, (G) IL-
4+ CD4+ T cells in the lung and LN at day 16, (H) expression of CD25, FoxP3 and CD39 on CD4+ T cells from the lung and LN at day 16. Cytokine responses are antigen-specific;
media control well values are subtracted. Regulatory T cell frequency is not antigen-specific. Each data point represents one mouse and the median is displayed. The One-way
ANOVA Kruskal-Wallis with Dunns post test was used to determine statistical significance; the p value is displayed where significance was calculated.
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cells in the pLN was similar between all 3 groups; median fre-
quencies 0.18—0.2% (Figure 6(F)). TNFa+ CD8+ T cells were detec-
ted in the BCG — oral MA group but not the BCG alone or naive
groups. Only a low level CD8+ T cell response was detected in the
lungs at this time (data not shown).

A high frequency of IL-17 + CD4+ T cells was detected in the
lungs of the BCG — oral MA group; 6.5% (Figure 6(D)). In the lungs of
the BCG alone group 4% of CD4+ T cells were IL-17 +; this was lower
than recorded in the BCG — oral MA group however the difference
was not statistically significant. A similar trend was seen in the pLN
but at lower frequencies. A greater frequency of IL-4+ CD4+ T cells
was detected in the lungs of the BCG — oral MA group compared to
the BCG alone group; 0.8% and 0.2% respectively; the difference was
not statistically significant between these groups but was against
naive mice (p < 0.01; Figure 6(G)). No IL-4+ CD4+ T cell response
was recorded in the pLN. Regulatory T cell frequencies were similar
between the 3 groups in the lungs (Figure 6(H)). In the pLN a similar
frequency was recorded in the BCG — oral MA group and BCG alone
groups at around 5.5%. Fewer regulatory T cells were recorded in
the naive group; this difference was not significant. There was no
difference in the IL-10 response between the groups (data not
shown).

4. Discussion

Thirty-five days after M. tb challenge, mice exposed to killed
MA-IP after BCG vaccination had a significantly lower CFU burden
in lungs compared to mice receiving BCG alone, demonstrating that
exposure to killed MA by the IP route after BCG can increase efficacy
of BCG vaccination. Early infiltration of T helper 1 and T helper 17
responses into the lungs during M. tb infection were associated
with increased protection. Mice that had been exposed to live MA
orally after BCG had a higher burden of M. tb in the lungs and
spleens compared to mice that received BCG alone, demonstrating
that exposure to live MA by the oral route after BCG reduced the
efficacy of BCG vaccination. Th2 responses in the lungs during M. tb
infection were associated with reduced protection. There have been
previous reports of NTM exposure enhancing immunogenicity and
protection against M. tb challenge in comparison to BCG alone;
Edwards et al. showed protection was enhanced by Mycobacterium
intracellulare exposure after BCG vaccination in a guinea pig study
and Howard et al. reported enhanced immunogenicity in calves
sensitised with MA prior to BCG vaccination compared to calves
which received only BCG [29,38]. The observation that oral expo-
sure to live MA reduced the efficacy of BCG vaccination is in line
with data reported by Flaherty et al. (in the study from which the
model was replicated) [39]. Others have reported similar reductive
effects on BCG efficacy in animal models, as discussed previously
[24,27,34].

At day 13 after M. tb infection mice that had been exposed to
killed MA-IP after BCG had higher frequencies of Th1 and Th17
subsets in the lungs compared to the BCG alone mice. Prior to
challenge it was observed that repeated doses of killed MA-IP had
increased the magnitude of IFNy, TNFa and IL-2 producing CD4+ T
cells and the ability of these cells to produce more than one of these
cytokines. A polyfunctional Th1 profile has been linked to improved
vaccine efficacy against M. tb in mice [41]. The enhanced Th17 and
Th1 responses seen in the lungs of the killed MA-exposed mice
during M. tb infection was likely due to the enhanced frequencies of
these subsets observed pre-infection. This may have contributed to
the increased protection observed in this group compared to the
BCG alone mice; an early Th17 response in the lung has been shown
to aid protection by induction of chemokines in the lungs that
promote chemotaxis of Th1 cells to this site early in infection [42].
Prior to M. tb infection we observed a CD8+ T cell response in the

killed-MA exposed mice but not in the BCG alone mice, this may
have been due to a wane in the response in the BCG alone mice
given vaccination was 12 months previously and they received no
further mycobacterial exposure. Frequencies of CD8+ T cells were
significantly greater in the LN of the killed MA-exposed mice 13
days after infection compared to the BCG alone mice and we also
observed a greater frequency in the lungs at day 16 after infection.
Mittrucker et al. correlated an early accumulation of CD8+ T cells to
vaccine-mediated protection in M. tb infection; this study suggests
that the enhanced frequency of this subset in our model may have
played a role in controlling M. tb [43].

Unlike the killed IP model, we did not see an enhanced Thl
response before M. tb infection in mice exposed to live MA-orally
compared to the BCG alone mice. Instead, we observed a signifi-
cant increase in the frequency of Tregs in the mesenteric lymph
nodes. The intestinal immune system is highly specialised to deal
with constant antigen exposure from intestinal flora and food
antigens and induces a tolerising environment to prevent
inflammation against these common antigens [44,45]. Studies of
oral MA infection have reported low levels of pro-inflammatory
cytokines and instead a local and systemic IL-10 response
induced during infection [46,47]. Furthermore, in vitro analysis has
shown that intestinal macrophages infected with MA secreted
lower levels of TNFa. compared to their systemic counterparts;
blocking IL-10 and TGFp allowed these macrophages to kill intra-
cellular bacteria [48]. During M. tb infection we observed a delayed
infiltration of activated CD4-+ T cells to the lungs of the mice that
received oral MA after BCG compared to mice that received BCG
alone. It is possible the delayed CD4+ T cell infiltration in the live
MA-oral model may be linked to the reduction in vaccine efficacy,
this is in agreement with the association of an early Th1 and Th17
pulmonary response and increased protection that we observed in
the killed MA-IP model. It is important to note that no cytokine
production from CD4+ T cells was detected in the lungs of the BCG
alone group at day 13, as a result the subset of CD44 + CD4+ T cells
could not be defined and their functional capability at this time
point remains questionable. Prior to M. tb challenge we observed a
significantly enhanced Treg response in the mesenteric LN of the
live MA exposed group, however this group had a similar fre-
quency of Tregs in the pulmonary LN during M. tb infection
compared to the BCG alone group. Given the similar frequency of
Tregs between the groups during infection it is unlikely that reg-
ulatory responses were accountable for the delay in activated T
cells accumulating in the lungs of MA-exposed mice during M. tb
infection. By day 16 after infection both vaccinated groups had
comparable frequencies of Th1 in the lungs and a similar response
in all three groups was detected in the LN. A significantly greater
frequency of Th17 cells was detected in the lungs of the MA-
exposed group. These results show that by day 16 Th1 and Th17
immune responses were equivalent if not enhanced in the live
MA-exposed group and suggests that the mechanism by which
vaccine efficacy is reduced is not likely to be through a reduction of
these cell subsets.

The appearance of Th2 immune responses during M. tb infection
in the lungs of mice exposed orally to live MA is potentially
important in terms of understanding the mechanisms behind the
varying effect of NTM exposure on BCG efficacy. Th2 responses
were also detected in mice exposed to killed MA-IP but the fre-
quency of IL-4+ CD4+ T cells in killed MA-IP mice was lower
compared to the orally exposed mice. It may be that the increased
frequencies of IL-4+ CD4+ T cells in the lungs of the live MA-oral
mice during M. tb infection has a negative impact on infection
control. IL-4 can inhibit inducible nitrous oxide synthase activity,
which is a key mechanism in the control of M. tb in macrophages
[49]. IL-4 knockout mice were shown not to be better at controlling
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M. tb infection compared to C57BL/6 wild type controls, which
suggests that a normal level of Th2 response is not detrimental in
M. tb infection [50]. However, BALB/C mice mount a Th2 skewed
immune response and are more susceptible to M. tb than C57BL/6
mice [51]. [L-4 is produced in the late stages of infection in BALB/C
mice and is linked to an increase in pathology in this strain [51,52].
These reports may imply that a higher ratio of Th2/Th1 in long-
term infection is pathological. In the live MA-oral exposure model
it is possible that the Th2 response may have begun to expand by
day 35 after infection, which is why there was a moderate effect on
the level of BCG efficacy at this time point. In the report published
by Flaherty et al., M. tb infection was followed-up to day 120 and
showed lower BCG efficacy in the MA-exposed group at this time
point compared to the 35 day time point [39]. It may be that at this
later stage Th2 responses have further expanded in the MA-
exposed group compared to the BCG alone group. This hypothesis
remains to be tested but is a plausible explanation for the reduced
efficacy observed in mice exposed to live MA-orally after BCG.
Functional studies could help delineate the importance of the Th2
response in lowering BCG mediated protection in the oral model.
Further studies are also required to demonstrate whether the
increased Th1 and Th17 infiltrate observed in the killed MA-IP
model is the mechanism by which efficacy is enhanced in this
model.

Our study has focussed on comparing the immune response
induced in a model of NTM exposure that enhances BCG efficacy to
that induced in a model of NTM exposure that compromises BCG
efficacy with the view to understand the immunological mecha-
nisms that mediate these effects. The main limitation in our study
design is that the models were not evaluated with the same strain
of MA and that both live and dead bacteria were not tested in the
same model. This has prevented us from delineating which pa-
rameters mediate the differential effects on vaccine efficacy;
whether it is viability of the bacteria, the route of exposure or the
strain of MA employed. However, the results have demonstrated
that a model of NTM exposure that induces Th2 type responses and
a regulatory response is associated with reduced vaccine efficacy.
Further work can lead to determining which parameters are most
important in inducing these types of responses and reduced vac-
cine efficacy. Live MA 724 could be assessed in the systemic model
to evaluate the importance of MA viability in enhancing protective
immunity. In previous studies the immune response induced by
administering live MA 724 by the IP route was compared to the
killed preparation. We found the Th1 and Treg response to be
similar between the two, which suggests that viability may not
affect the ability of MA exposure to enhance BCG efficacy via the IP
route (Supplementary Figure 4). The administration of live MA
orally induced a large Treg response, which was not seen when live
MA was given IP. We conclude that the oral route of exposure in-
duces this regulatory phenotype implicating route as a contributing
factor to the reduced efficacy observed in the MA-oral model. These
experiments are not directly comparable as no prior BCG vaccina-
tion was given when live MA IP was tested, although we do not
think prior BCG would have changed the immune response we
measured. Whether or not viability is important in reducing vac-
cine efficacy in the MA-oral model is an important further experi-
ment. We suspect MA may need to be living to exert these
immunological effects. Sangari et al. report that MA 104 invades the
intestinal mucosa through enterocytes and enables it to dissemi-
nate and infect intestinal macrophages, which is likely to be an
important step in modulating the immune response against the
mycobacterium [53]. Both invasion and intracellular survival within
macrophages are active processes and require the bacteria to be
alive. An additional parameter to evaluate would be the difference
in immunogenicity between the two strains used in the models.

Different strains of MA and indeed other species of mycobacteria
stimulate different arms of the immune response to variable
magnitudes; therefore we cannot predict that the outcome of
either of these exposure models will be replicated if a different
NTM isolate is used. Non-pathogenic species of mycobacteria have
uncapped lipoarabinomannan (LAM), which can bind to toll-like
receptor (TLR) 2 and CD14 to induce phagocyte activation and in-
duction of pro-inflammatory IL-6 and IL-1f [54]. Mannose capping
of LAM avoids binding to TLR2 and instead can bind DC-SIGN and
induce IL-10 production from dendritic cells (DC) [55]. Different
species of MA have variable levels of mannose capping which may
in part explain why different NTM isolates activate different arms of
the immune response. MA 104 may influence the regulatory
phenotype we observed in the MA-oral model simply by having a
high level of mannose capped LAM. Killed MA 724-IP enhanced
IFNy production from CD4+ T cells and CD8+ T cells whilst having
little effect on the regulatory response which may suggest that MA
724 has a low level of mannose capped LAM. Employing MA 724 in
the oral model and MA 104 in the IP model would clarify the
importance of strain in the outcomes we observed.

What restricted us from performing the evaluations above was
the timeframes required to complete these models. We know that
repeated doses of MA after BCG induce a stronger effect on the
immune response than a single dose but it may be possible to
manipulate the models by reducing the number of doses and time
between doses, thus reducing the timeframe required to complete
the models to enable faster evaluation of the outstanding questions.

Exposure to NTM is likely to be an important factor in the
reduction of BCG efficacy in tropical regions. This study shows that
exposure to NTM can generate diverse effects on BCG mediated
protection depending on the model of exposure that is used.
Humans are likely to be exposed to different NTM species, via
different routes of infection and with both live and dead bacteria.
There is a need to determine which exposures are detrimental to
BCG efficacy, and to define the immunological mechanisms that
modify the protective response conferred by BCG. Without under-
standing the reasons behind the variable efficacy of BCG, we cannot
predict whether the efficacy of a novel TB vaccine candidate will be
compromised in the same way. A reproducible model of NTM
exposure is necessary to evaluate novel TB vaccine candidates
during their development. More research is required in this field to
ensure we have an efficacious TB vaccine for all populations.
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