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Abstract: Background: The common non-synonymous mutation of the glucokinase regulator (GCKR)
gene, namely rs1260326, is widely reported to have pleiotropic effects on cardio-metabolic traits and
hematological parameters. Objective: This study aimed to identify whether other GCKR variants may
have pleiotropic effects independent of the rs1260326 genotypes. Methods: In total, 81,097 Taiwan
Biobank participants were enrolled for the regional plot association studies and candidate variant
analysis of the region around the GCKR gene. Results: The initial candidate variant approach showed
the significant association of the rs1260326 genotypes with multiple phenotypes. Regional plot
association analysis of the GCKR gene region further revealed genome-wide significant associations
between GCKR variants and serum total and low-density lipoprotein cholesterol; triglyceride, uric
acid, creatinine, aspartate aminotransferase, γ-Glutamyl transferase, albumin, and fasting plasma
glucose levels; estimated glomerular filtration rate; leukocyte and platelet counts; microalbumin-
uria, and metabolic syndrome, with rs1260326 being the most common lead polymorphism. Serial
conditional analysis identified genome-wide significant associations of two low-frequency exonic
mutations, rs143881585 and rs8179206, with high serum triglyceride and albumin levels. In five rare
GCKR exonic non-synonymous or nonsense mutations available for analysis, GCKR rs146175795
showed an independent association with serum triglyceride and albumin levels and rs150673460
showed an independent association with serum triglyceride levels. Weighted genetic risk scores
from the combination of GCKR rs143881585 and rs146175795 revealed a significant association with
metabolic syndrome. Conclusion: In addition to the rs1260326 variant, low-frequency and rare GCKR
exonic mutations exhibit pleiotropic effects on serum triglyceride and albumin levels and the risk of
metabolic syndrome. These results provide evidence that both common and rare GCKR variants may
play a critical role in predicting the risk of cardiometabolic disorders.

Keywords: GCKR gene; exonic mutation; pleiotropic effect; serum triglyceride level; serum albumin
level

1. Introduction

The liver is the major organ responsible for both the disposal of oral glucose load
(by sensing portal glucose signals, which increase net hepatic glucose uptake) and hy-
poglycemia (through the initiation of gluconeogenic and glycogenolytic pathways) to
maintain healthy blood glucose concentrations [1]. Glucokinase (GCK) is a glucose sensor
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and is a key regulator of glucose metabolism in the liver through the catalyzation of glucose
to glucose-6-phosphate as the first step of glycolysis and through conferring to hepatocytes
for cell autonomous regulation in response to plasma glucose fluctuations [2]. Glucokinase
regulator protein (GKRP), a hepatocyte-specific inhibitor of GCK, forms the GCK–GKRP
complex and acts as a metabolic switch capable of energy storage and activating pathways
in response to a period of feeding or fasting [3]. This GKRP-mediated inhibition is associ-
ated with nuclear sequestration and GCK inactivation at low glucose concentrations [4].
Additionally, GKRP is regulated by binding to fructose 1-phosphate (F1P) or fructose
6-phosphate (F6P). F1P binding to GKRP reduces GKRP–GCK interactions, whereas F6P
enhances such interactions [5]. Paradoxically, GKRP acts as a posttranslational stabilizer of
cellular GCK, as indicated by the adenovirus-mediated over-expression of GKRP [6] and
Gckr-/- mice [7]. GCK bound to GKRP may therefore act as a functional nuclear reserve
that can be rapidly activated and mobilized to the cytoplasm following a glucose challenge.
Although the exact mechanism is controversial, enhanced glycolytic flux leads to increased
triglyceride levels [8].

The glucokinase regulator gene (GCKR), a highly pleiotropic gene, encoding GKRP, is
located on chromosome 2p23.3 and contains 19 exons and 625 amino acids [9,10]. Recent
candidate gene approaches and genome-wide association studies (GWASs) have shown
the pleiotropic effects of GCKR gene variants in multiple cardiometabolic, biochemical,
and hematological pathways [11–26]. Individuals carrying GCKR variants that bind to
GCK less effectively are characterized by having low fasting plasma glucose levels and
protection from chronic kidney disease; however, this is accompanied by an increased
risk of nonalcoholic fatty liver disease, hypertriglyceridemia, hyperuricemia, gout, and
metabolic syndrome [17–26]. Comprehensive fine mapping identified a common non-
synonymous variant rs1260326 (p.Pro446Leu) as the likely causative variant associated with
an inverse modulation of fasting plasma glucose and serum triglyceride levels [23]. Notably,
p.Pro446Leu-GKRP has been shown to attenuate physiologically relevant F6P-mediated
inhibition in the formation of the GCK–GKRP complex, reduce nuclear sequestration of
GCK, and increase active cytosolic GCK [8,27]. Furthermore, decreased inhibition and
sequestration of GCK may lead to increased concentrations of malonyl-CoA, a substrate
for de novo lipogenesis, which results in increased triglyceride and cholesterol synthesis
and export, as suggested by the associations of GCKR with very-low-density lipoprotein
(LDL) particle concentrations [8,25]. These results provide a mutational mechanism for
the reported association of rs1260326 with increased triglyceride levels and decreased
glucose levels.

In addition to the rs1260326, functionally deleterious, rare GCKR exonic mutations
detected by biochemical and cellular biological assays were collectively associated with
hypertriglyceridemia [28]. However, the functional effect of individual variants did not co-
segregate with serum triglyceride levels in family studies [29]. Thus, even with functional
importance, the critical role of rare exonic GCKR mutations in serum triglyceride levels on
a population basis remains to be elucidated. By using a candidate variant approach and
regional plot association studies with conditional analysis in >80,000 Taiwan Biobank (TWB)
participants, this study aimed to test the role of common and rare GCKR variants on various
metabolic, biochemical, or hematological parameters in Taiwanese. Our data revealed that
multiple low-frequency and rare GCKR exonic mutations are also significantly associated
with serum triglyceride and albumin levels and metabolic syndrome, independent of
rs1260326 genotypes.

2. Materials and Methods
2.1. TWB Cohort

The current study cohort was TWB participants recruited from centers across Taiwan
between 2008 and 2020. In total, 107,494 participants with no history of cancer, who had
GWAS data, were recruited, and 26,397 participants were excluded from the analysis
according to the following criteria: no imputation data (12,289 participants), quality control
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(QC) for the GWAS with identity by descent PI_HAT > 0.187, suggesting 2nd-degree
relatives or closer (10,956 participants), fasting for < 6 h (2862 participants), failure of
genotyping of the rs1260326 (5), and absence of any study phenotypes (285). The flowchart
of participant enrollment is presented in Figure 1. For the analysis of blood pressure status,
lipid profiles, glucose metabolism parameters, and serum uric acid level, participants
with a history of hypertension, hyperlipidemia, diabetes mellitus, and gout, respectively,
were excluded from the analysis. Supplementary Method S1 presents the definitions of
hypertension, diabetes mellitus, obesity, current smoking, microalbuminuria, and metabolic
syndrome. Ethical approval was received from the Research Ethics Committee of Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (approval number: 05-X04-007)
and the Ethics and Governance Council of the TWB (approval number: TWBR10507-02 and
TWBR10611-03). Each participant signed an approved informed consent form.
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Figure 1. Study flowchart of inclusion and exclusion criteria used to screen Taiwan Biobank project
participants. Other phenotypes include age; body mass index; waist circumference; waist–hip
ratio; aspartate aminotransferase, alanine aminotransferase, γ-glutamyl transferase, and serum
creatinine levels; estimated glomerular filtration rate; serum albumin; total bilirubin; hemoglobin;
hematocrit; red blood cell, leukocyte, and platelet counts; and blood urea nitrogen, albuminuria,
microalbuminuria, and metabolic syndrome. Abbreviations: QC, quality control; HL, hyperlipidemia;
HTN, hypertension; DM, diabetes mellitus; HbA1C, hemoglobin A1C; SBP, systolic blood pressure;
DBP, diastolic blood pressure; MBP, mean blood pressure; LDL-C, low-density lipoprotein cholesterol;
HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; T-CHO, total cholesterol; UA, uric acid.

2.2. Clinical Phenotypes and Laboratory Examinations

Demographic data used for the analysis included waist circumference, waist–hip ratio,
body mass index (BMI), and systolic, mean, and diastolic blood pressure. Biochemistry
data used for the analysis included glucose metabolism parameters such as fasting plasma
glucose level and hemoglobin A1C; lipid profiles, namely total, high-density lipoprotein
(HDL), and low-density lipoprotein (LDL) cholesterol, and triglyceride levels; and liver and
renal functional test-related parameters, namely creatinine, uric acid, aspartate aminotrans-
ferase (AST), alanine aminotransferase (ALT), γ-glutamyl transferase (γGT), albumin, and
total bilirubin levels. BMI and estimated glomerular filtration rate (eGFR) were calculated
as previously reported [30]. Hematological parameters analyzed included leukocyte, red
blood cell, and platelet counts and hematocrit and hemoglobin levels. Because of the
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absence of urine creatinine level, only spot urine albumin level was used for urine albumin
evaluation.

2.3. Selection of GCKR Variants and Genotyping

DNA was isolated from blood samples by using a PerkinElmer chemagic 360 instru-
ment following the manufacturer’s instructions (PerkinElmer, Waltham, MA, USA). SNP
genotyping was conducted using custom TWB chips and performed on the Axiom Genome-
Wide Array Plate System (Affymetrix, Santa Clara, CA, USA). The GCKR variant rs1260326
was initially analyzed, followed by other low-frequency and rare exonic mutations selected
for further study (Supplementary Table S1). In this paper, we have used a minor allele
frequency (MAF) of <0.01 as rare exonic mutations, as suggested by Wang, et al. [31], and
MAF between 0.05 and 0.01 as low-frequency exonic mutations.

2.4. Regional Plot Association Analysis

To identify the lead single-nucleotide polymorphisms (SNPs) around the GCKR gene
region for various studied phenotypes, we performed a regional plot association analysis
by using the data of TWB participants enrolled after QC for GWAS and applying the
other exclusion criteria (Figure 1). The Axiom Genome-Wide CHB 1 and 2 Array Plates
(Affymetrix, Inc., Santa Clara, CA, USA), comprising 611,656 and 640,160 SNPs, each from
24,927 and 69,529 participants, respectively, were applied for analysis. With 1000 Genomes
Project Phase 3 East Asian populations used as a reference panel, genome-wide genotype
imputation was performed using SHAPEIT (version 2, Oxford, UK, https://mathgen.
stats.ox.ac.uk/genetics_software/shapeit/shapeit.html, accessed on 2 December 2020) and
IMPUTE2 (version 2, Oxford, UK, http://mathgen.stats.ox.ac.uk/impute/impute_v2.html,
accessed on 2 December 2020). QC was performed after imputation through the filtration
of SNPs with IMPUTE2 imputation quality scores of >0.3. Indels were removed using
VCFtools (version 0.1, https://vcftools.github.io/index.html, accessed on 2 December
2020). All the samples enrolled for the analysis had a call rate of ≥97%. For SNP QC, the
criteria for exclusion from subsequent analyses included an SNP missing rate of <3%, an
MAF of <0.01, and a violation of Hardy–Weinberg equilibrium (p < 10−6). Finally, 81,097
participants and 139 SNPs were used for regional plot association analysis of the GCKR
gene region on chromosome 2p23.3 at positions ranging between 27.62 and 27.85 Mb.

2.5. Selection of Rare Exonic GCKR Mutations from the Pre-QC Imputation Data for Analysis

During QC for regional plot association analysis, rare variants with MAF of less than
0.01 were excluded. To test for the role of rare exonic mutations in genotype–phenotype as-
sociations, we selected variants from the pre-QC imputation data for analysis. A total of five
rare exonic GCKR mutations were enrolled for the genotype–phenotype association analy-
sis, including four non-synonymous mutations (rs146175795, p.Val103Met; rs150673460,
p.Pro132Leu; rs1414321043, Ala314Ser; and rs146285804, p.Trp517Cys) and one nonsense
mutation (rs149847328, p.Arg227Ter) (Supplementary Table S1).

2.6. Statistical Analysis

Continuous variables were expressed as mean ± standard deviation. When the
distribution was strongly skewed, median and interquartile ranges were given, which
were tested using a two-sample t test or analysis of variance. Differences in categorical
data distribution were examined using a chi-squared test or chi-squared test for trend.
Before analysis, all study parameters were logarithmically transformed to adhere to a
normality assumption. We assumed the genetic effect to be additive after adjustment
for age, sex, BMI, and current smoking status, and a general linear model was used to
analyze the studied phenotypes in relation to the predictors of investigated genotypes and
confounders. Regional plot association studies with conditional analysis were conducted
using the analysis software package PLINK (version 1.07, Shaun Purcell, Cambridge, MA,
USA, https://zzz.bwh.harvard.edu/plink/, accessed on 14 August 2021). Conditional
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analysis is a tool to identify secondary association signals at a candidate locus by adjusting
the index variant in the region [32,33]. For the regional plot association study, conditional
analysis was conducted by testing the residual association with all remaining SNPs, and
another round of conditional analysis can be performed by adjusting the second index
variant in this region for independent signals. Genome-wide significance was defined
by p < 5 × 10−8. For Bonferroni correction of regional plot associational analysis, the
significant value was defined as p < 1.0 × 10−5, calculated as 0.05/(139 × 33), according to
a total of 139 variants and 33 traits analyzed. For Bonferroni correction of each genotype–
phenotype analysis with rare mutations, we used a more liberal threshold of p < 2.9
× 10−4, calculated as 0.05/5 × 33, according to a total of 5 rare variants and 33 traits
analyzed. For weighted genetic risk score (WGRS), we weighted the SNPs in each allele
score by using the β coefficients from our association analysis, and the risk allele was
selected with directionally concordant associations of target parameters. The LDmatrix
(https://analysistools.nci.nih.gov/LDlink/?tab=ldmatrix, accessed on 19 April 2021) was
used for the analysis of linkage disequilibrium (LD). SPSS (version 22; SPSS, Chicago, IL,
USA) was used to perform all calculations.

3. Results
3.1. Association of GCKR rs1260326 Genotypes with Clinical, Metabolic, and Biochemical
Phenotypes and Hematological Parameters

The data of the GCKR exonic mutations enrolled for the analysis are presented in Sup-
plementary Table S1. In total, >80,000 volunteers participated in the genotype–phenotype
association analysis (Table 1). By using an additive model, after adjustment of age, sex,
BMI, and smoking status, genome-wide significant associations were found for rs1260326
genotypes with total and LDL cholesterol and triglyceride levels, fasting plasma glucose,
serum uric acid levels, renal functional parameters (serum creatinine and urine albumin
levels and eGFR), liver functional parameters (AST, γGT, and serum albumin), and leuko-
cyte and platelet counts, whereas associations with p < 1.0 × 10−5 were noted for systolic
and mean blood pressure. The C allele of the rs1260326 variant is associated with higher
systolic and mean blood pressure; serum total and LDL cholesterol, triglyceride, uric acid,
AST, γGT, and albumin levels; eGFR; and leukocyte and platelet counts, and lower fasting
plasma glucose and serum creatinine levels.

Table 1. Association of the rs1260326 genotypes with metabolic and hematological phenotypes.

Clinical and Laboratory Parameters Total β SE p Value *

Anthropology
Age (years) 51.0 (41.0–59.0) 0.0767 0.0530 0.1481

Waist circumference (cm) 83.0 (76.0–89.5) 0.0533 0.0253 0.0350
Waist–hip ratio 0.87 ± 0.07 0.0002 0.0003 0.3493

Body mass index (kg/m2) 23.8 (21.6–26.3) −0.0318 0.0180 0.0773
Blood pressure

Systolic BP * (mmHg) 115.0(105.0–127.0) 0.3931 0.0762 2.48 × 10−7

Diastolic BP * (mmHg) 71.0 (65.0–79.0) 0.2182 0.0497 1.10 × 10−5

Mean BP * (mmHg) 86.0 (78.7–94.3) 0.2765 0.0546 4.08 × 10−7

Lipid profiles
Total cholesterol # (mg/dL) 171.0 (193.0–216.0) 0.0052 0.0004 1.74 × 10−39

HDL cholesterol # (mg/dL) 53.0 (45.0–63.0) −0.0003 0.0005 0.5755
LDL cholesterol # (mg/dL) 119.0 (99.0–140.0) 0.0047 0.0006 1.90 × 10−15

Triglyceride # (mg/dL) 90.0 (63.0–132.0) 0.0302 0.0011 7.34 × 10−168

https://analysistools.nci.nih.gov/LDlink/?tab=ldmatrix
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Table 1. Cont.

Clinical and Laboratory Parameters Total β SE p Value *

Glucose metabolism
Fasting plasma glucose ** (mg/dL) 92.0 (87.0–97.0) −0.6133 0.0750 2.83 × 10−16

HbA1C ** (%) 5.6 (5.4–5.9) −0.0038 0.0030 0.2031
Uric acid

Uric acid *** (mg/dL) 5.2 (4.4–6.2) 0.0714 0.0055 4.72 × 10−38

Renal function
Creatinine (mg/dL) 0.68 (0.57–0.83) −0.0072 0.0011 9.45 × 10−12

eGFR (mL/min/1.73 m2) 100.7 (87.5–116.4) 1.1035 0.1074 9.07 × 10−25

Urine albumin (mg/L) 8.7 (5.4–15.2) 0.0147 0.0023 9.64 × 10−11

Liver function
AST (U/L) 23.0 (20.0–27.0) 0.3812 0.0602 2.43 × 10−10

ALT (U/L) 19.0 (14.0–27.0) 0.3921 0.0929 2.40 × 10−5

γGT (U/L) 17.0 (12.0–26.0) 1.3605 0.1550 1.68 × 10−18

Serum albumin (g/dL) 4.5 (4.4–4.6) 0.0182 0.0011 9.08 × 10−61

Total bilirubin (mg/dL) 0.6 (0.5–0.8) 0.0022 0.0013 0.0968
Hematological parameters
Leukocyte count (103/µL) 5.7 (4.7–6.8) 0.0523 0.0076 8.17 × 10−12

Hematocrit (%) 41.6 (39.0–44.5) −0.0387 0.0173 0.0256
Platelet count (103/µL) 237.0 (202.0–276.0) 2.0649 0.2833 3.17 × 10−13

Red blood cell count (106/µL) 4.7 (4.4–5.0) −0.0052 0.0022 0.0189
Hemoglobin (g/dL) 13.7 (12.8–14.8) −0.0118 0.0061 0.0545

p: adjusted for age, BMI, and current smoking; Age: adjusted for BMI and current smoking; and BMI: adjusted
for age and smoking. Participants were analyzed after the exclusion of those with a history of * hypertension,
** diabetes mellitus, *** gout, and # hyperlipidemia. Data are presented as median (interquartile range). Abbre-
viations: SE, standard error; BP, blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein;
HbA1C, hemoglobin A1C; eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen; AST, aspartate
aminotransferase; ALT, alanine aminotransferase; γGT, γ-glutamyl transferase; BMI, body mass index.

3.2. Association of GCKR rs1260326 Genotypes with Risk Factors for Atherosclerosis

We analyzed the association of rs1260326 genotypes with atherosclerotic risk factors.
In our study, after adjustment for sex, age, BMI, and current smoking status, hypertension,
microalbuminuria, and metabolic syndrome were found to be significantly associated with
rs1260326 genotypes (Table 2). The C allele of the rs1260326 genotype is associated with a
higher risk of hypertension, microalbuminuria, and metabolic syndrome.

Table 2. Association between rs1260326 genotypes and atherosclerotic risk factors.

Genotypes TT TC CC β SE p Value *

Diabetes mellitus (%) 9.8 9.4 9.4 −0.0284 0.0178 0.1105
Hypertension (%) 21.6 22.3 23.4 0.0639 0.0132 1.00 × 10−6

Current smoking (%) 9.2 9 9.2 0.0156 0.0182 0.3908
Gout (%) 3.7 3.8 4.5 0.1153 0.0266 1.40 × 10−5

Microalbuminuria (%) 10.6 11.2 12.4 0.0953 0.0159 2.16 × 10−9

Metabolic syndrome (%) 23.9 24.8 26.2 0.0884 0.0133 2.51 × 10−11

* p value adjusted for age, sex, body mass index, and current smoking. Current smoking: adjusted for age, BMI,
and sex. Abbreviation: SE, standard error.

3.3. Regional Plot Association Studies for Determining the Associations of Genetic Variants at
Positions 27.62 to 27.85 Mb on Chromosome 2p23.3 with Study Phenotypes

Regional plot association analyses were performed to determine the association of
genetic variants around the GCKR gene region at positions 27.62–27.85 Mb on chromosome
2p23.3 with study phenotypes. Our data revealed that the lead SNP for each phenotype
was situated at or near the GCKR gene region, revealing pleiotropic effects on this gene
locus (Figure 2, Supplementary Figures S1–S20). Regional plot association analysis showed
genome-wide significant associations between GCKR variants and serum total and LDL
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cholesterol; triglyceride, uric acid, creatinine, AST, γ-GT, albumin, and fasting plasma
glucose levels; eGFR; urine albumin levels, and leukocyte and platelet counts, microalbu-
minuria, and metabolic syndrome (Table 3).

Genes 2022, 13, x FOR PEER REVIEW 7 of 19 
 

 

3.3. Regional Plot Association Studies for Determining the Associations of Genetic Variants at 
Positions 27.62 to 27.85 Mb on Chromosome 2p23.3 with Study Phenotypes 

Regional plot association analyses were performed to determine the association of 
genetic variants around the GCKR gene region at positions 27.62–27.85 Mb on chromo-
some 2p23.3 with study phenotypes. Our data revealed that the lead SNP for each pheno-
type was situated at or near the GCKR gene region, revealing pleiotropic effects on this 
gene locus (Figure 2, Supplementary Figures S1–S20). Regional plot association analysis 
showed genome-wide significant associations between GCKR variants and serum total 
and LDL cholesterol; triglyceride, uric acid, creatinine, AST, γ-GT, albumin, and fasting 
plasma glucose levels; eGFR; urine albumin levels, and leukocyte and platelet counts, mi-
croalbuminuria, and metabolic syndrome (Table 3).  

 
Figure 2. Regional plot associations of the GCKR gene region for the serum triglyceride and albu-
min levels. Regional plot associations are shown without (A,B) or with serial conditional analysis 
after further adjustment for rs1260326 (C,D), rs143881585 (E,F), and rs8179206 (G,H) genotypes. 
Association analyses were performed for serum triglyceride (A,C,E,G) and albumin (B,D,F,H) 
levels. GCKR, glucokinase regulator. 
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levels. Regional plot associations are shown without (A,B) or with serial conditional analysis after
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Table 3. Lead single-nucleotide polymorphisms at the GCKR gene region.

Phenotypes Lead SNPs p Value Position Allele # MAF LD ## Function Amino Acid
(Codon)

Triglyceride (mg/dL) rs1260326 7.34 × 10−168 27508073 T/C 0.4997 1 Missense variant Pro446Leu

rs143881585 * 3.69 × 10−22 27498323 G/A 0.0132 <0.015 Synonymous
Variant Ser118Ser

rs8179206 ** 3.89 × 10−8 27497575 A/G 0.0271 0.029 Missense variant Glu77Gly
Serum albumin (mg/L) rs1260326 9.08 × 10−61 27508073 T/C 0.4997 1 Missense variant Pro446Leu

rs143881585 * 1.24 × 10−10 27498323 G/A 0.0132 <0.015 Synonymous
Variant Ser118Ser

rs8179206 ** 3.11 × 10−8 27497575 A/G 0.0271 0.029 Missense variant Glu77Gly
Systolic BP (mmHg) rs1260326 2.48 × 10−7 27508073 T/C 0.4997 1 Missense variant Pro446Leu
Diastolic BP (mmHg) rs1260326 1.10 × 10−5 27508073 T/C 0.4997 1 Missense variant Pro446Leu

Mean BP (mmHg) rs1260326 4.08 × 10−7 27508073 T/C 0.4997 1 Missense variant Pro446Leu
Total cholesterol (mg/dL) rs1260326 1.74 × 10−39 27508073 T/C 0.4997 1 Missense variant Pro446Leu
LDL cholesterol (mg/dL) rs1260326 1.90 × 10−15 27508073 T/C 0.4997 1 Missense variant Pro446Leu
Fasting plasma glucose

(mg/dL) rs1260326 2.83 × 10−16 27508073 T/C 0.4997 1 Missense variant Pro446Leu

Uric acid (mg/dL) rs1260326 4.72 × 10−38 27508073 T/C 0.4997 1 Missense variant Pro446Leu

Creatinine (mg/dL) rs2950835 9.45 × 10−12 27527678 A/G 0.5040 0.828 Downstream gene
variant –

eGFR (mL/min/1.73 m2) rs2950835 9.07 × 10−25 27527678 A/G 0.5040 0.828 Downstream gene
variant –

Urine albumin (mg/L) rs1260326 9.64 × 10−11 27508073 T/C 0.4997 1 Missense variant Pro446Leu
AST (U/L) rs1260326 2.43 × 10−10 27508073 T/C 0.4997 1 Missense variant Pro446Leu
ALT (U/L) rs12989678 2.40 × 10−5 27598615 C/T 0.4935 0.476 Intron variant –
γGT (U/L) rs780093 1.68 × 10−18 27519736 T/C 0.4941 0.921 Intron variant –

Leukocyte counts
(103/µL)

rs6744393 8.17 × 10−12 27527272 C/T 0.3524 0.537 Downstream gene
variant –

Platelet counts (103/µL) rs6547692 3.17 × 10−13 27512105 G/A 0.4944 0.960 Intron variant –

Hypertension rs2950835 1.00 × 10−6 27527678 A/G 0.5040 0.828 Downstream gene
variant –

Gout rs780094 1.40 × 10−5 27518370 T/C 0.5099 0.921 Intron variant –
Microalbuminuria rs6547692 2.16 × 10−9 27512105 G/A 0.4944 0.960 Intron variant –

Metabolic syndrome rs1260326 2.49 × 10−11 27508073 T/C 0.4997 1 Missense variant Pro446Leu

* After conditional analysis adjusting for rs1260326. ** After conditional analysis adjusting for rs1260326 and
rs143881585. # Allele: Reference allele/alternate allele. ## LD with the rs1260326 variant. Abbreviations: GCKR,
glucokinase regulator; BP, blood pressure; LDL, low-density lipoprotein; eGFR, estimated glomerular filtration
rate; BUN, blood urea nitrogen; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, γ-glutamyl
transferase; MAF, minor allele frequency; LD, linkage disequilibrium; SNV, single-nucleotide variation.

3.4. Linkage Disequilibrium between GCKR Gene Region SNPs

The rs1260326 was the most common lead SNP for lipid profile, blood pressure status,
fating plasma glucose, serum uric acid, albumin, and AST levels, urine albumin levels,
and metabolic syndrome (Table 3). Most of the other lead SNPs had a strong LD with
the rs1260326 variant (all r2 > 0.82), whereas for the phenotypes of leukocyte count and
serum alanine aminotransferase (ALT) levels, the lead SNPs rs6744393 and rs12989678,
respectively, had a moderate LD with the rs1260326 variant (r2 = 0.537 and r2 = 0.476,
respectively; Figure 3). Further, after serial conditional analysis was conducted, the lead
SNPs rs143881585 and rs8179206 for serum triglyceride and albumin levels showed a weak
LD with the lead SNPs (all r2 < 0.015 for the rs143881585 variant and maximal r2 = 0.029 for
the rs8179206 variant). The linkage disequilibrium map of the GCKR variants is presented
in Figure 3.
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Figure 3. Linkage disequilibrium map of GCKR gene region single-nucleotide polymorphisms.

3.5. Association of GCKR rs143881585 and rs8179206 Genotypes with Clinical, Metabolic, and
Biochemical Phenotypes, Hematological Parameters, and Risk Factors for Atherosclerosis

We further tested the association of rs143881585 and rs8179206 genotypes with the
study phenotypes (Supplementary Tables S2–S5). After adjustment for age, sex, current
smoking, and BMI, our data revealed that individuals with the A and G alleles of the
rs143881585 and rs8179206 variants, respectively, had significantly higher serum triglyc-
eride and albumin levels (p = 1.17 × 10−10 and p = 7.00 × 10−6, respectively, for the
rs143881585 variant and p = 0.0046 and p = 1.19 × 10−4, respectively, for the rs8179206
variant; Figure 4). The associations of the rs143881585 genotypes became more significant
after further adjustment of the rs1260326 genotypes (p = 3.69 × 10−22 and p = 1.24 × 10−10,
respectively, for serum triglyceride and albumin levels; Supplementary Tables S2 and S3
and Figure 4C,D). With further adjustment of both rs1260326 and rs143881585 genotypes
for the conditional analysis, genome-wide significant associations were noted between
the G allele of the rs8179206 variant and higher serum triglyceride and albumin levels
(p = 3.89 × 10−8 and p = 3.11 × 10−8, respectively; Supplementary Tables S4 and S5 and
Figure 4E,F).
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Figure 4. Association of GCKR exonic mutations with serum triglyceride (A,C,E,G,I) and albumin
(B,D,F,H) levels in Taiwan Biobank project participants. Further adjusted for rs1260326 genotypes in
conditional analysis (C,D). Further adjusted for rs1260326 and rs143881585 genotypes in conditional
analysis (E,F).

3.6. Association between Rare GCKR Exonic Mutations and Clinical Phenotypes and Laboratory
Parameters

From the pre-QC imputation data, five rare exonic nonsynonymous or nonsense
mutations were selected for genotype–phenotype association analysis (Supplementary
Tables S6–S15). All the rare GCKR mutations showed a weak LD with the other genotypes
(r2 < 0.01) (Supplementary Figure S21). After adjustment for age, sex, body mass index
(BMI), and current smoking, in genotype–phenotype association analysis, rs146175795
genotypes showed significant associations with serum triglyceride and albumin levels
(p = 1.50 × 10−5 and p = 3.50 × 10−5, respectively, Supplementary Tables S8 and S9,
Figure 4G,H) and rs150673460 genotypes showed significant associations with serum
triglyceride levels (p = 2.70 × 10−5; Supplementary Table S10, Figure 4I).

3.7. Stepwise Linear Regression Analysis for Serum Triglyceride and Albumin Levels

A stepwise linear regression analysis using age, sex, body mass index, current smoking,
and GCKR variants revealed that rs1260326, rs143881585, rs8179206, rs146175795, and
rs150673460 genotypes contributed to 0.83%, 0.10%, 0.05%, 0.03%, and 0.01% of the variation
in serum triglyceride levels and that rs1260326, rs143881585, rs8179206, and rs146175795
genotypes contributed to 0.32%, 0.05%, 0.04%, and 0.04% of the variation in serum albumin
levels, respectively (Table 4).
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Table 4. Serum triglyceride level and serum albumin level: stepwise linear regression analysis,
including genotypes.

Serum Triglyceride Level (75,169 *) Serum Albumin Level (81,097)

β r2 P β r2 P

Age (years) 0.0031 0.0175 <10−307 −0.0034 0.0243 <10−307

Sex (male vs. female) −0.0560 0.0189 8.11 × 10−226 −0.1179 0.0503 <10−307

Body mass index (kg/m2) 0.0223 0.1475 <10−307 −0.0033 0.0028 1.23 × 10−52

Current smoking (%) 0.0819 0.0090 6.70 × 10−181 −0.0202 0.0005 2.47 × 10−12

rs1260326 (TT vs. TC vs. CC) 0.0328 0.0083 1.55 × 10−188 0.0205 0.0032 1.58 × 10−73

rs143881585 (GG vs. GA vs. AA) 0.0499 0.0010 1.11 × 10−22 0.0344 0.0005 2.14 × 10−11

rs146175795 (GG vs. GA) 0.0474 0.0005 8.36 × 10−12 0.0401 0.0004 6.83 × 10−9

rs8179206 (AA vs. AG vs. GG) 0.0190 0.0003 2.13 × 10−8 0.0194 0.0004 1.60 × 10−8

rs150673460 (CC vs. CT) 0.0401 0.0001 0.0013

* Participants were analyzed after the exclusion of those with a history of hyperlipidemia.

3.8. WGRS from the Combination of GCKR rs143881585 and rs1461755795 Revealed Significant
Association with Metabolic Syndrome

In addition to rs1260326, the low-frequency and rare GCKR variants rs143881585
and rs146175795 were linked to metabolic syndrome, but the p values (0.0402 and 0.0005,
respectively) fell short of the statistical significance cut-off (1.0 × 10−5). We wanted to see if
the combination of these two variations had an influence on metabolic syndrome risk. We
discovered that the combined low-frequency and rare variants rs143881585 and rs146175795
in the GCKR gene are highly linked with the risk of metabolic syndrome (p = 1.83 × 10−6)
using WGRS from rs143881585 and rs146175795 variants (Supplementary Table S16).

4. Discussion

In this investigation, the combined approaches of analyzing candidate gene variants
and a regional plot association study were used to confirm the pleiotropic effect of the
rs1260326 genotypes on multiple quantitative traits and diseases. Through regional plot
association analysis, all lead SNPs showed moderate to strong LD with the rs1260326
variant. With serial conditional analysis, we demonstrated novel genome-wide significant
associations of GCKR exonic mutations rs143881585 and rs8179206 with serum triglyceride
and albumin levels. With further rare GCKR exonic mutation analysis, GCKR rs146175795
also showed a significant association with serum triglyceride and albumin levels and
rs150673460 showed an independent association with serum triglyceride levels. In combi-
nation, the aforementioned variants contributed to 1.02% and 0.45% of serum triglyceride
and albumin levels, respectively. All these results showed the same direction of elevated
serum triglyceride and albumin levels with mutation alleles (Figure 5). We then tested the
effect of combination of the low-frequency and rare GCKR variants by using WGRS analysis
and found a significant association with metabolic syndrome. To our knowledge, this is the
first report to describe novel associations of multiple low-frequency and rare GCKR variants
with serum triglyceride and albumin levels and metabolic syndrome independent of the
rs1260326 variant. With the combination of candidate variants and regional plot association
studies, these results may provide further evidence for understanding the critical role of
the GCKR gene in the risk of cardiometabolic disorders.
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Figure 5. Genomic structure of GCKR variants and their association with various pheno-
types/diseases. Green arrow: association with low-frequency and rare GCKR variants. Blue arrow:
association with rs1260326 genotypes. Abbreviations: MetS, metabolic syndrome; MA, microalbu-
minuria; PLT, platelet. Other abbreviations as in Figure 1 and Table 2.

4.1. Pleiotropic Effect of GCKR Gene Locus

Kanai et al. [16] showed that the GCKR region is one of the most pleiotropic regions
and is associated with 18 quantitative traits. The NHGRI-EBI GWAS Catalog is a pub-
licly available resource for GWASs, and it contains useful visualizations of variant–trait
associations. All variants are mapped onto chromosomal positions on the human genome
(https://www.ebi.ac.uk/gwas, accessed on 2 December 2020). When the data of the GWAS
Catalog were reviewed, genome-wide significant associations with the GCKR region vari-
ants were noted, with the associations including various demographic factors (body height,
BMI, lean body mass, and heart rate), cardiometabolic traits, liver and kidney functional
tests and diseases, lifestyle factors (such as alcohol consumption, coffee consumption,
and dietary factors), biomarker and hormone levels (such as C reactive protein, leptin,
YKL40, testosterone, and estradiol levels), hematological parameters, coagulation factors,
electrolyte and metabolite levels, and various diseases (such as gallstone, urolithiasis, and
age-related diseases). Moreover, our data revealed the association of GCKR gene variants
with multiple quantitative traits and diseases, in which 19 of them have genome-wide
significance (p < 5 × 10−8). All these data support the notion that the GCKR gene and
its encoded protein GKRP are involved in the functions of multiple organs and systems,
revealing its critical role in mediating homeostasis in the human body. In addition to the
pleiotropic effect of the GCKR gene locus, our findings confirmed a recent finding in a
Korean population that many cardiometabolic traits had a common genetic foundation [34].
The relevance of understanding pleiotropy and its consequences for genetic testing and
personal genomics has been highlighted by the expanding use of genetic information in
clinical practice.

4.2. Bidirectional Effects of GCKR rs1260326 Variant on Associated Phenotypes

With the pleiotropic effect of GCKR variants, the allelic effects of SNPs conferred both
favorable and unfavorable outcomes on the human body. As previously reported [17–26],
our data revealed that the C allele carrier of the rs1260326 variant is associated with
multiple unfavorable phenotypes, such as higher systolic, diastolic, and mean BP and risk

https://www.ebi.ac.uk/gwas
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of hypertension and microalbuminuria, elevated levels of liver function indicators (such as
serum ALT, AST, and γGT levels), higher total and LDL cholesterol and triglyceride and
uric acid levels, as well as a higher risk of metabolic syndrome and gout. Furthermore,
the C allele carrier of the rs1260326 variant is associated with preferable phenotypes,
such as a lower fasting plasma glucose level and higher eGFR and serum albumin levels.
These results are consistent with those reported previously [17–25] and the diverse and
bidirectional effects of the rs1260326 variant reveal that a more cautious approach should
be considered when GCKR is used as a target of drug therapy.

4.3. Association between the rs143881585 Variant and Serum Triglyceride and Albumin Levels Is
Independent of the rs1260326 Variant

The rs143881585 variant is a low-frequency one in the Taiwanese population, with
a minor allele frequency (MAF) of 1.19% in TWB project participants. According to the
PUBMed.gov website, the allele frequency of rs143881585 was 0% in 1006 participants from
the 1000 Genomes project and 0.102% in 60,706 unrelated individuals from The Exome
Aggregation Consortium, with exome sequencing data obtained from diverse large-scale
sequencing projects. These results suggest that rs143881585 may be a rare variant in
other populations. Furthermore, the association of rs143881585 genotypes with serum
triglyceride and albumin levels was partially suppressed by rs1260326, with the association
becoming stronger after adjustment for rs1260326 genotypes. In addition, rs143881585 is a
synonymous variant (c.354 G > A, p.Ser118Ser) that lies at the branch point between exon
4 and intron 5. Whether this variant affects gene splicing is unknown. Thus, a further
mechanistic study may be necessary to elucidate the molecular basis of the rs143881585
variant’s association with serum triglyceride and albumin levels.

4.4. Association of the rs8179206 Variant with Serum Triglyceride and Albumin Levels Is
Independent of the rs1260326 Variant

The SNP rs8179206 (c. 296 A to G, p.Glu77Gly), a previously reported, rare GCKR
variant, is a non-synonymous variation located on exon 3 of the GCKR gene [28,29]. From
the dbSNP database, the MAFs for European Descent participants of 1000 Genomes Phase
V1, African, and East Asian populations were 0%, 0%, and 2.3%, respectively, suggesting
that this variant is rare in non-East Asian populations. In our study, the frequency of minor
allele rs8179206 was 2.78%, similar to those previously reported in East Asian populations,
including Chinese [35]. In terms of function, the rs8179206 variant was classified as a
putative loss-of-function mutation with reduced nuclear localization of GKRP, GKRP
expression, and F6P binding [28,29]. Chinese studies with a relatively small sample size
have shown no significant association of SNP rs8179206 with obesity, type 2 diabetes
mellitus, and various lipid profiles [35–37]. With >80,000 TWB project participants for
analysis, we provide the first evidence regarding the genome-wide association of this
variant with serum triglyceride and albumin levels.

4.5. Role of Rare GCKR Exonic Mutations in Serum Triglyceride Levels

Rare nonsynonymous variants in the GCKR gene have been associated with variations
in metabolic traits, particularly serum triglyceride levels [28,29,38]. A recent study high-
lighted the clinical relevance of the collective burden of rare alleles in GCKR, reporting that
non-synonymous variants with an MAF of <0.01 in the GCKR gene are enriched in cases of
extreme hypertriglyceridemia [38]. When exonic Sanger sequencing of the GCKR gene in
800 individuals (mostly of non-Hispanic mixed European descent) was applied, 19 nonsyn-
onymous rare GCKR variants were detected, which, in combination, showed significantly
higher serum triglyceride levels compared to those without such variants [28]. However, rare
loss-of-function GCKR variants do not co-segregate with increased plasma triglyceride levels in
families [29]. By contrast, in two South Asian population-specific, functionally disruptive, rare
GCKR non-synonymous mutations, rs774930016 (p.Ser105Asn) and rs55537970 (p.Arg553Trp),
significantly increased risks of hypertriglyceridemia have been reported [39]. Rees et al. [28]
subdivided rare GCKR variants into three classes according to cellular localization, cellular
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interaction with GCK, and kinetic effects. Several reports have shown GCKR rs146175795
(p.Val103Met) in patients with hypertriglyceridemia [28,40–42]. The GCKR p.Val103Met
mutation was predicted to be disease-causing by in silico algorithms (SIFT, Poly-Phen-2,
and FATHMM). The rs146175795 variant was also classified as a putative loss-of-function
mutation with reduced nuclear localization of GKRP, GKRP expression, and F6P bind-
ing [28]. Jin et al. [40] performed genetic analysis for 103 Chinese patients with very high
triglyceride levels and found that 46 patients had rare pathogenic/potential pathogenic
variants in 15 triglyceride-related genes, in which four of them had the GCKR p.Val103Met
mutation. The MAF of the GCKR p.Val103Met mutation has been shown to be <0.001 in
European and African populations and 0.0069 in East Asian populations according to the
PUBMed.gov website. In our study participants, the MAF was 0.0065. In addition to serum
triglyceride levels, our results also showed a genome-wide significant association of GCKR
p.Val103Met mutation with serum albumin levels. One non-synonymous exonic mutation,
rs150673460, has not been previously reported and was found to be associated with serum
triglyceride levels in our study cohort.

4.6. GCKR Variants and Serum Albumin Levels

Previous GWAS studies have shown GCKR as a candidate gene locus for serum albu-
min levels, with rs1260326 as the lead SNP [13,43,44]. Our data also revealed the consistent
association of several low-frequency and rare GCKR variants with elevated serum albumin
levels. Albumin is a multifaced protein synthesized in the hepatocytes that has many
physiological properties, including anti-inflammatory, antioxidant, anticoagulant, and
anti-platelet aggregation activities, and serum albumin has been assigned as an indica-
tor of malnutrition [45]. In a meta-analysis of more than one million apparently healthy
adult participants, elevated serum albumin levels were associated with a reduced risk of
hypertension, adverse vascular events, all-cause mortality, certain cancers, and fracture,
revealing serum albumin as a biomarker in determining the risk of adverse cardiometabolic
outcomes [46]. Using a GWAS study, Loomis et al. [47] further showed that GCKR rs1260326
genotypes are significantly associated with percent glycated albumin, which is in the inverse
direction of the association with serum albumin levels. Glycated albumin, a ketoamine
formed by the non-enzymatic glycation of serum albumin, is calculated as the percentage
of serum albumin that is in glycated form. A significant and negative correlation was found
between glycated albumin and serum albumin levels [48], and the serum glycated albumin
value decreased by 0.23% with every 1g/dL increase in serum albumin [49]. Glycated
albumin has been suggested to be an alternative to HbA1C in situations when HbA1C is not
recommended for plasma glucose monitoring, such as hemoglobinopathies, pregnancy, or
chronic kidney disease [50–52]. Increase glycated albumin values have been associated with
diabetic nephropathy, neuropathy, and cardiovascular complications [53]. With increased
serum albumin levels, the GCKR variants may also decrease the glycated albumin values.
Thus, the GCKR variants may affect the cardiometabolic outcomes not only by increasing
serum albumin levels but also by decreasing glycated albumin values. Further studies may
help to elucidate more of the potential roles for the GCKR variants in serum albumin levels,
serum glycated albumin values, and cardiometabolic outcomes.

4.7. Association between GCKR Variants and Metabolic Syndrome

Previous studies have focused on gene–environmental factor (obesity or diet) in-
teractions explaining ‘missing heritability’ for phenotypic variance in MetS risk [54,55],
accounting for strong but paradoxical relationships of GCKR polymorphisms with lower
fasting plasma glucose and higher TG levels among MetS components. This study looked
into other possibilities, such as significantly larger numbers of variants with lower effects
that have yet to be discovered or rarer variants (perhaps with larger impacts) that are
poorly detected by existing genotyping arrays. Because four low-frequency and rare GCKR
variants have a strong and persistent connection with serum triglyceride levels, aggre-
gation of their effects may increase the risk of metabolic syndrome independently of the
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established risk of common polymorphism rs1260326. Our findings, by the combination of
GCKR variants rs143881585 and rs1461755795, add to the growing body of evidence that
GSKR plays a critical role in the development of metabolic syndrome.

5. Conclusions

Our investigation confirmed the pleiotropic effect of the GCKR variants, particularly
the GCKR rs1260326. Moreover, multiple low-frequency and rare GCKR variants were
found to contribute to various aspects of cardiometabolic traits, such as serum triglyceride
and albumin levels and metabolic syndrome, in this Taiwanese population, independent
of the rs1260326 variant. A larger population study with meta-analysis and trans-ethnic
population analysis may help to further elucidate the critical role of GCKR variants in
cardiometabolic traits and diseases.
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clinical phenotypes and laboratory parameters; Table S5: Association of the GCKR rs8179206 geno-
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genotypes and atherosclerotic risk factors; Table S12: Association of the GCKR rs149847328 genotypes
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syndrome, including genotypes, in 81,097 participants. Figure S1: Regional plot association studies
genetic variants at positions 27.62 to 27.85 mega-base on chromosome 2p23.3 for systolic BP without
(A) or with (B) conditional analysis; Figure S2: Regional plot association studies genetic variants
at positions 27.62 to 27.85 mega-base on chromosome 2p23.3 for diastolic BP without (A) or with
(B) conditional analysis; Figure S3: Regional plot association studies genetic variants at positions
27.62 to 27.85 mega-base on chromosome 2p23.3 for mean BP without (A) or with (B) conditional
analysis; Figure S4: Regional plot association studies genetic variants at positions 27.62 to 27.85
mega-base on chromosome 2p23.3 for total cholesterol level without (A) or with (B) conditional
analysis; Figure S5: Regional plot association studies genetic variants at positions 27.62 to 27.85
mega-base on chromosome 2p23.3 for serum low-density lipoprotein cholesterol level without (A)
or with (B) conditional analysis; Figure S6: Regional plot association studies genetic variants at
positions 27.62 to 27.85 mega-base on chromosome 2p23.3 for fasting plasma glucose level without
(A) or with (B) conditional analysis; Figure S7: Regional plot association studies genetic variants
at positions 27.62 to 27.85 mega-base on chromosome 2p23.3 for serum uric acid level without (A)
or with (B) conditional analysis; Figure S8: Regional plot association studies genetic variants at
positions 27.62 to 27.85 mega-base on chromosome 2p23.3 for serum creatinine levels without (A)
or with (B) conditional analysis; Figure S9: Regional plot association studies genetic variants at
positions 27.62 to 27.85 mega-base on chromosome 2p23.3 for estimated glomerular filtration rate
without (A) or with (B) conditional analysis; Figure S10: Regional plot association studies genetic
variants at positions 27.62 to 27.85 mega-base on chromo-some 2p23.3 for BUN without (A) or with
(B) conditional analysis; Figure S11: Regional plot association studies genetic variants at positions
27.62 to 27.85 mega-base on chromosome 2p23.3 for albuminuria without (A) or with (B) conditional
analysis; Figure S12: Regional plot association studies genetic variants at positions 27.62 to 27.85
mega-base on chromosome 2p23.3 for serum AST levels without (A) or with (B) conditional analysis;
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Figure S13: Regional plot association studies genetic variants at positions 27.62 to 27.85 mega-base on
chromosome 2p23.3 for ALT without (A) or with (B) conditional analysis; Figure S14: Regional plot
association studies genetic variants at positions 27.62 to 27.85 mega-base on chromosome 2p23.3 for
serum γGT level without (A) or with (B) conditional analysis; Figure S15: Regional plot association
studies genetic variants at positions 27.62 to 27.85 mega-base on chromosome 2p23.3 for leukocyte
count without (A) or with (B) conditional analysis; Figure S16: Regional plot association studies
genetic variants at positions 27.62 to 27.85 mega-base on chromosome 2p23.3 for platelet count
without (A) or with (B) conditional analysis; Figure S17: Regional plot association studies genetic
variants at positions 27.62 to 27.85 mega-base on chromosome 2p23.3 for the risk of hypertension
without (A) or with (B) conditional analysis; Figure S18: Regional plot association studies genetic
variants at positions 27.62 to 27.85 mega-base on chromosome 2p23.3 for the risk of gout without
(A) or with (B) conditional analysis; Figure S19: Regional plot association studies genetic variants at
positions 27.62 to 27.85 mega-base on chromosome 2p23.3 for the risk of microalbuminuria with-out
(A) or with (B) conditional analysis; Figure S20: Regional plot association studies genetic variants at
positions 27.62 to 27.85 mega-base on chromosome 2p23.3 for the risk of metabolic syndrome without
(A) or with (B) conditional analysis; Figure S21: Linkage disequilibrium map of GCKR gene region
rare mutations.
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