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Abstract

Background: Hundreds of genes with differential DNA methylation of promoters have been identified for various cancers.
However, the reproducibility of differential DNA methylation discoveries for cancer and the relationship between DNA
methylation and aberrant gene expression have not been systematically analysed.

Methodology/Principal Findings: Using array data for seven types of cancers, we first evaluated the effects of experimental
batches on differential DNA methylation detection. Second, we compared the directions of DNA methylation changes
detected from different datasets for the same cancer. Third, we evaluated the concordance between methylation and gene
expression changes. Finally, we compared DNA methylation changes in different cancers. For a given cancer, the directions
of methylation and expression changes detected from different datasets, excluding potential batch effects, were highly
consistent. In different cancers, DNA hypermethylation was highly inversely correlated with the down-regulation of gene
expression, whereas hypomethylation was only weakly correlated with the up-regulation of genes. Finally, we found that
genes commonly hypomethylated in different cancers primarily performed functions associated with chronic inflammation,
such as ‘keratinization’, ‘chemotaxis’ and ‘immune response’.

Conclusions: Batch effects could greatly affect the discovery of DNA methylation biomarkers. For a particular cancer, both
differential DNA methylation and gene expression can be reproducibly detected from different studies with no batch
effects. While DNA hypermethylation is significantly linked to gene down-regulation, hypomethylation is only weakly
correlated with gene up-regulation and is likely to be linked to chronic inflammation.
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Introduction

Methylation arrays have been used to identify hundreds of genes

with differential DNA methylation of their promoters in various

types of cancers [1,2,3,4], hereafter referred to as DM genes,

providing insights into cancer biology and useful biomarkers for

predicting cancer outcomes and drug targets [5]. However,

various biological and technical factors may affect the discovery

of biomarkers for human cancers. In particular, batch effects,

which could be introduced by using samples from different

experimental batches (such as sample preparation at different

times, with different protocols, on different chip lots or different

microarray platforms), may produce systematic non-biological

differences between different groups of samples [6,7,8,9]. Thus, a

challenging task of fundamental importance for biomarker

validation is to evaluate the reproducibility of DM gene discovery

across different studies for a particular cancer [10,11,12]. This

problem has not been fully addressed until now. Once DM genes

are reproducibly identified for a particular cancer, an important

task is to define their roles in cancer development. It is widely

accepted that aberrant promoter methylation is a significant cause

of altered gene expression in cancer [13]. However, several recent

studies have challenged the inverse correlation between methyl-

ation and expression changes [14,15]. Thus, the relationship

between changes in DNA methylation and gene expression in

cancer still needs to be systematically evaluated.

The Cancer Genome Atlas (TCGA) database [16] provides

hundreds of methylation profiles for various cancer types. For a

particular cancer, samples were often collected from different

laboratories and treated in different experimental batches due to

practical complications such as technology limitation. In this

paper, based on methylation profiles for nine types of cancer

collected in the TCGA database [16], we showed that improperly

integrating data from different experimental batches to extract

DM genes could be misleading. After excluding datasets with

potential batch effects, we demonstrated that the change of

methylation states (hypermethylation or hypomethylation) of DM

genes in cancer samples compared with normal samples can be

highly reproducibly detected from different datasets for a given

cancer. A similar trend was observed for the expression changes of
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genes in cancers based on datasets available from the Gene

Expression Omnibus database [17]. Then, based on the

reproducible DM and DE genes for each cancer type, we

determined that the promoter hypermethylation is highly inversely

correlated with the gene down-expression, whereas hypomethyla-

tion is only weakly correlated with the up-expression of genes with

large expression changes. At last, we found that hypomethylated

genes mainly disturb functions directly linked to chronic

inflammation, such ‘chemotaxis’ and ‘immune response’ functions.

Materials and Methods

Data sources
The expression and methylation datasets described in Table 1

and Table 2 were downloaded from the GEO [17] and TCGA

[16] databases, respectively. The raw gene expression profiles were

normalised using the robust multi-array analysis (RMA) algorithm

[18]. We used the level 2 data defined in the TCGA database,

which provides U (unmethylated) and M (methylated) values for

each probe. The Beta values of the probes were calculated by M/

(U+M+100) [19]. The probe IDs were mapped to Gene IDs with

the annotation table for each platform.

Analysis of batch effects
The batch effects could be generated for samples from different

experimental batches or collection centres in the TCGA database

[16]. For the methylation data from TCGA, we computed an F-

statistic to test for the correlation between probes’ methylation

levels (Beta values) and their experimental batches or collection

laboratories. The P values were adjusted by the Bonferroni-

Hochberg procedure with the false discovery rate (FDR),0.05

[20] and significant probes were considered susceptible to batch

effects [9]. To evaluate the effect of experimental batches on DM

gene detection, we also compared DM genes selected from

datasets compromising tumour samples from different batches and

a given group of normal samples from a batch for a particular

cancer type.

Selection of DM genes and DE genes
For each dataset, we selected DM genes with t-test [19] and

used the Benjamini-Hochberg procedure to control the FDR at a

given level [20]. The DM genes with larger means of methylation

levels in the cancer samples than in the normal samples were

defined as hypermethylated genes; otherwise, the DM genes were

defined as hypomethylated genes.

Differentially expressed (DE) genes were selected using the SAM

(significance analysis of microarray) algorithm [21]. Genes with

adjusted P values less than 0.05 were defined as differentially

expressed (DE) genes.

Reproducibility analysis of DM genes and DE genes
Then, we evaluated the reproducibility of DM gene detection

by analysing the overlap of the lists of DM genes selected from two

datasets for each cancer. If k genes are shared by list 1 with length

L1 and list 2 with length L2, then the POG (percentage of

overlapping genes) score from list 1 (or list 2) to list 2 (or list 1) is

POG12 = k/L1 (or POG21 = k/L2). Next, we evaluated the

consistency of the methylation directions (hypermethylation or

hypomethylation) of the k genes shared by lists 1 and 2 across the

two datasets. The same analysis was performed on the lists of DE

genes selected from two expression datasets for each cancer.

Concordance between DNA methylation and gene
expression changes

If the expression of a hypermethylated (or hypomethylated)

gene was significantly down-regulated (or up-regulated), we

considered the methylation change to be concordant to the

change in gene expression. We defined the concordance rate

between DNA hypermethylation and gene down-regulation as the

percentage of down-regulated genes among the hypermethylated

genes with differential expression. The P value was calculated by

the hypergeometric model [10,11,12]. Similarly, the concordance

rate between DNA hypomethylation and gene up-regulation was

defined as the percentage of up-regulated genes among the

hypomethylated genes with differential expression.

Function enrichment of DM genes
Using Elim software, we detected Gene Ontology (GO) terms

enriched with DM genes [22]. The P values were adjusted by the

Bonferroni-Hochberg procedure with an FDR,0.05 [20].

Results

Batch effects on DM gene detection
We first evaluated the effects of experimental batches on the

methylation level for each probe in the tumour samples of two

batches separately for nine types of cancers collected in the TCGA

database(see Table 1) using the F-statistic with an false discovery

rate (FDR),0.05 [20] (see Methods). As shown in Fig. 1a, about

30% of probes, on average, were significantly susceptible to batch

Table 1. The datasets of nine cancer types for analyzing batch effects.

Cancer type Abbreviation
Number
of batch

Number of
Laboratory

Number of
Tumour samples

Number of
normal samples

Ovarian serous cystadenocarcinoma OV 13 17 520 35

Colon adenocarcinoma COAD 9 5 168 23

Lung adenocarcinoma LUAD 4 11 128 27

Lung squamous cell carcinoma LUSC 5 12 115 31

Stomach adenocarcinoma STAD 3 3 82 61

Kidney renal clear cell carcinoma KIRC 6 10 219 205

Glioblastoma multiforme GBM 9 13 264 5

Breast invasive carcinoma BRCA 3 9 186 2

Rectal adenocarcinoma READ 5 4 70 7

doi:10.1371/journal.pone.0029686.t001
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effects for the nine cancer types when samples came from different

laboratories and different batches. And about 20% probes were

still significantly susceptible when restricted samples from the same

laboratory but treated in different batches (Fig. 1b). However, only

about 7.7% probes were significantly susceptible when samples

came from the same batches (Fig. 1c). Especially, as shown in

Fig. 1d, the tumour samples from two batches (batch 9 and batch

12) for ovarian serous cystadenocarcinoma could be clustered

together perfectly according to batch by the hierarchical clustering

algorithm using the Euclidean distances of the Beta values between

samples.

The above results indicated that integrating tumour samples

from different batches to detect DM genes might be misleading. In

fact, as a result of the batch effects, the change of methylation

states of DM genes in cancer samples compared with normal

samples could be highly inconsistent when comparing tumour

samples from different batches with the same group of normal

controls (see Fig. 2). For example, when comparing tumour

Table 2. The Methylation and Expression datasets of five cancer types for concordance analysis.

Cancer type Methylation# Database Expression# Database

Colon adenocarcinoma C22 TCGA c23 GSE4183

C44 GSE17648 c64 GSE8671

Kidney renal clear cell carcinoma K78 TCGA k20 GSE6344

K100 TCGA k34 GSE15641

Stomach adenocarcinoma S24 TCGA NA

S94 TCGA

Lung adenocarcinoma La8 TCGA la52 GSE7670

La14 TCGA la107 GSE10072

Lung squamous cell carcinoma Ls24 TCGA NA

Ls28 TCGA

Platform Illumina HumanMethylation27 BeadChip Affymetrix Human Genome U133 (GPL96,GPL570)

#Each dataset is denoted by the following nomenclature: initial character of the cancer type followed by the total number of samples of the dataset; NA, not available.
doi:10.1371/journal.pone.0029686.t002

Figure 1. Batch effects on tumour samples for nine cancer types. (a) different batches and different laboratories; (b) the same laboratory but
different batches; (c) the same batch but different laboratories; (d) Hierarchical clustering the tumour samples of ovarian serous cystadenocarcinoma
in batch 9 and batch 12. For a cancer type denoted in the x-axis in graph a, b or c, a box plot in the y-axis represents the percentage of probes
significantly susceptible to different batch conditions. The percentage takes value ranging from 0 (no susceptible probe) to 1 (100% susceptible
probes). Each box stretches from the lower hinge (defined as the 25th percentile) to the upper hinge (the 75th percentile) and the median is shown
as a line across the box.
doi:10.1371/journal.pone.0029686.g001
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samples from batch 9 and batch 15 for ovarian serous

cystadenocarcinoma with the same group of normal samples

(batch 27), respectively, the consistency of the change of

methylation states of the common DM genes was only 23.5%.

Therefore, most of the observed differential methylation was

across batches rather than across biological groups, leading to

highly irreproducible results.

Reproducibility of DM gene detection
To avoid potential batch effects and bias which could be

introduced by different ages of the patients, we only analysed the

profiles of five cancer types for each of which pair-matched tumour

and normal samples from the same patients collected by the same

laboratory and measured in the same experimental batch were

available (see Table 2). For each cancer, we used the two largest

batches as independent datasets and detected DM genes with t-test

at FDR,0.05 [20]. Then, we evaluated the consistency of the two

lists of DM genes detected separately from the two datasets (batches)

by calculating the percentage of overlapping genes (POG) between

the two lists of DM genes [10] (see Methods). For each cancer, most of

the DM genes on the shorter list were included in the longer list, as

reflected by the POG12 scores shown in Table 3. More than 99% of

the DM genes detected in both datasets were consistent in the

change of methylation states across the two datasets. For example,

3778 and 3966 DM genes were separately identified in the two

datasets (K78 and K100, respectively) for kidney renal clear cell

carcinoma (kidney cancer), with an overlap of 3443 genes.

Strikingly, all of the 3443 genes showed the same change of

methylation states across the two datasets, significantly more than

expected by chance (Bernoulli model P,2.2610216).

Figure 2. Batch effects on DM genes of six cancer types. For each cancer type denoted in the x-axis, a box plot in the y-axis represents the
consistency score defined as the proportion of DM genes with consistent methylation states among all overlapping DM gene commonly detected in
both of the two groups (see ‘Methods’ section). The consistency score takes value ranging from 0 (no consistent states) to 1 (100% consistent states).
Each box stretches from the lower hinge (defined as the 25th percentile) to the upper hinge (the 75th percentile) and the median is shown as a line
across the box.
doi:10.1371/journal.pone.0029686.g002

Table 3. Consistency of DM genes across different datasets for each cancer.

Dataset# DM-S* DM-L** Overlap POG12
$

POG21
$$

Consistency¥

C22–C44 2601 4001 2421 93.1% 60.1% 99.9%

K78–K100 3778 3966 3443 91.1% 86.8% 100%

La8–La14 752 1698 488 64.9% 28.7% 99.6%

S24–S94 2274 4867 2210 97.2% 45.4% 100%

Ls24–Ls28 2682 2909 2152 80.2% 74.0% 100%

#Each dataset was denoted by the following nomenclature: initial character of the cancer type followed by the total number of samples of the dataset.
*DM-S denotes DM genes from the shorter list;
**DM-L denotes DM genes from the longer list.
$
POG12 denotes the score from the shorter list to the longer list;

$$
POG21 denotes the score from the longer list to the shorter list.

¥Consistency denotes the percentage of overlapping genes which showed the same methylation directions across the two datasets.
doi:10.1371/journal.pone.0029686.t003
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A large fraction of DM genes detected in one dataset were not

determined to be significant in another dataset for each cancer, as

reflected by the POG21 scores shown in Table 3. However, our

analysis showed that most of the DM genes that were solely

detected in one dataset also showed the same change of

methylation states in another dataset for the same cancer,

revealing that the effective biological signals of these DM genes

also existed in the other dataset. For example, for kidney cancer,

514 (98.2%) of the 523 genes detected to be significant solely in the

larger dataset (K100) showed the same change of methylation

states in the smaller dataset (K78), which was highly unlikely to

happen by chance (Bernoulli P,2.2610216). Thus, the relatively

low POG21 scores might reflect a reduced statistical power for

detecting DM genes in the smaller dataset, coupled with a

stringent FDR control [10,23].

We also analysed an independent dataset for colon cancer

available from the GEO database [17]. With FDR,0.05, 2601

and 4001 DM genes were identified in the C22 dataset (from

TCGA) and the C44 dataset (from GEO), respectively. These two

lists of DM genes shared 2421 genes, among which 2419 (99.9%)

showed the same change of methylation states across the two

datasets (Bernoulli model P,2.2610216). Among the other 1582

genes that were significant in the larger C44 dataset but not in the

smaller C22 dataset, 1502 (94.9%) showed the same change of

methylation states in the smaller dataset, significantly more than

expected by chance (Bernoulli model P,2.2610216). The high

consistency of the change of methylation states for the DM genes

across different datasets for the same cancer indicated that DM

genes in cancer could be reproducibly detected in high-throughput

methylation data.

Reproducibility of DE gene detection
The TCGA data are also problematic for expression data

because only one normal sample were measured in expression for

each cancer, which makes the comparison between tumour and

normal samples unreliable. Therefore, we selected expression data

of matched cancer type from GEO database [17]. For nine

cancers analysed above, we were able to find two gene expression

datasets for three cancers (see Table 2). For each of these three

cancers, using SAM [21] with FDR,0.01, we selected two lists of

differentially expressed (DE) genes from the two datasets and

found that most of the DE genes in the shorter list were included in

the longer list, as reflected by the POG12 scores shown in Table 4.

In addition, over 94.5% of the DE genes detected in both of the

datasets for each cancer were consistent in the regulation direction

(up or down) across the two datasets, which was highly unlikely to

happen by chance (Table 4, Bernoulli model P,2.2610216). In

addition, most of the DE genes solely detected in one dataset

showed the same regulation directions in another dataset for the

same cancer, revealing that the effective biological signals of these

DE genes existed in the later dataset. For example, for colon

cancer, 6056 (94.5%) of the 6420 genes detected to be significant

solely in the larger dataset (c64) showed the same regulation

direction in the smaller dataset (c23), which is highly unlikely to

happen by chance (Bernoulli model P,2.2610216).

The above analyses were based on data normalised by the RMA

algorithm, which assumes that the majority of genes are not

differentially expressed in a disease [24]. We performed the same

analyses using the least-variant set (LVS) algorithm [25], which

relies less on this assumption, and the results were similar.

Concordance between differential methylation and
differential expression

The above results indicated that the methylation and expression

changes could be reproducibly detected across different datasets

for a particular cancer. Notably, although the expression

microarray data from different sources, rather than the TCGA

data itself, the highly consistency of expression change across two

datasets from the same cancer indicated the gene regulation

directions were reproducible and reliable for the specific type of

cancer. Therefore, based on the reproducible DM and DE genes

of the same cancer type, we examined the influence of gene

promoter methylation on gene expression. Briefly, if a hyper-

methylated (or hypomethylated) gene found by methylation data

was significantly down-regulated (or up-regulated) in the expres-

sion data, we considered that its DNA methylation was concordant

to its expression change. The concordance rate was measured by

the percentage of hypermethylated (or hypomethylated) genes

concordant to gene down-regulation (or up-regulation).

We evaluated the concordance between differential methylation

and expression at two levels. First, we evaluated the concordance

between differential methylation and differential expression of

genes. As shown in Table 5, 91.6%, 86.6% and 88.2% of the

hypermethylated genes were down-regulated in colon, kidney and

lung cancers, respectively, indicating that hypermethylation is

significantly correlated with down-regulation of genes (hypergeo-

metric test P,1.061025 for all three cancers). For example, in

colon cancer, 98 of the 107 hypermethylated genes were down-

regulated in cancer samples compared with normal controls

(hypergeometric test P = 7.861029). Then, we focused on the

concordance between methylation with great methylation level

change and expression with great fold change (FC) between

tumour and normal samples. When we focused on DM genes with

at least 0.15 Db (difference of the mean methylation levels between

tumour and normal samples), the concordance rates increased to

96.1%, 96.2% and 91.3% for colon, kidney and lung cancers,

respectively. Similarly, when we focused on reproducible DE genes

with at least a 2-fold change (FC), the concordance rates for the

three cancers were all above 90%. However, the relationship

between the hypomethylation of genes and the up-regulation of

gene expression is rather elusive. The concordance rates were

50.3%, 39.4% and 62.5% for colon, kidney and lung cancers,

Table 4. Consistency of DE genes across different datasets for each cancer.

Dataset# DE-S* DE-L** Overlap POG12
$

POG21
$$

Consistency

c23–c64 2733 9098 2678 97.9% 29.7% 100%

k20–k34 4309 6045 2856 66.3% 47.2% 94.5%

la52–la107 3691 5920 3260 88.3% 55.1% 100%

*DE-S denotes DE genes from the shorter list;
**DE-L denotes DE genes from the longer list.
doi:10.1371/journal.pone.0029686.t004

Differential DNA Methylation and Gene Expression
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respectively. For lung cancer only, the hypomethylation showed a

significant inverse correlation with gene up-regulation (hypergeo-

metric test P = 4.261026). When we focused on DM genes with at

least 0.15 or 0.3 Db, the hypomethylation was significantly

correlated with the up-regulation of gene expression only in lung

cancer. When we examined the DE genes with at least a 2-fold

change, the concordance rates increased to 58.5% and 61.7% for

colon and kidney cancers, respectively, and became significant

(hypergeometric test P = 2.761027 and 5.461024, respectively).

Notably, the concordance rates were approximately 60% even

after the FC cut-off for the three cancers. These results suggest that

hypomethylation may partially affect up-regulation of gene

expression with large fold changes.

Functions of hypermethylated genes and
hypomethylated genes

Using Elim software with FDR,0.05 [22], we detected GO

terms significantly enriched with hypermethylated genes repro-

ducibly identified in the two datasets for each cancer. For colon

cancer, we found 58 significant terms, which were associated with

basic biological processes such as transcription, cell adhesion and

signalling (Supplementary Table S1 for detailed terms). For kidney

cancer, we found 14 significant terms, among which 11 were

included in the significant terms for colon cancer, suggesting that

hypermethylated genes in these two cancers tend to be involved in

similar functions. However, no significant GO term was found for

lung cancer with FDR,0.05. By comparing the top 10 terms with

the smallest P values for the three cancers, we found that 4 terms

were shared by colon and kidney cancers, and neither cancer

shared a term with lung cancer. These results indicated that the

hypermethylation pattern of lung cancer may be different from

those of colon and kidney cancers.

With FDR,0.05, we found 14, 29 and 2 GO terms enriched

with hypomethylated genes for colon, kidney and lung cancers,

respectively (Supplemental Table S2). Most of these significant

terms were related to immune response. A comparison of the lists

of the top 10 terms with the smallest P values for the three cancers

showed that they shared three terms: ‘keratinization’, ‘defense

response to bacterium’, and ‘cellular defense response’. We

additionally tested the function of hypomethylated genes from

Lung squamous cell carcinoma and Stomach adenocarcinoma

data. These genes were also enriched in ‘keratinization’ and

‘defense response to bacterium’ (Supplemental Table S3).

Specifically, in‘keratinization’, we found that 12 KAP genes

encoding keratin associated proteins (Table 6) were hypomethy-

lated in all five types of cancers. Notably, these 12 KAP genes were

also included in the 16 KAP genes found to show pronounced

differential hypomethylation in bladder cancer [26]. These

evidences together suggest that KAP genes could be used as

biomarkers for multiple cancers. Finally, a comparison of two of

the three cancers revealed that the DM genes detected solely in a

particular cancer were more likely to be hypermethylated than the

DM genes detected in two cancers (chi-squared test P,0.001 for

the comparison of the proportions of hypermethylated genes). For

example, 635 (43.5%) of the 1411 DM genes detected in colon

cancer but not in lung cancer were hypermethylated, while only 42

(16.5%) of the 254 DM genes detected in both cancers were

hypermethylated. On the other hand, 168 of the 189 DM genes

shared by the three cancers were hypomethylated and enriched in

‘keratinization’, ‘chemotaxis’, and ‘immune response’ functions

(see Discussion).

Discussion

The detection of aberrant DNA methylation in cancer can yield

important biomarkers for predicting cancer outcomes and drug

targets. However, pitfalls in experiment designs and faulty data

analyses, such as improperly integrating batches of TCGA data,

may produce unreliable biomarkers [9]. Notably, most studies

using the TCGA data, including many published in high-profile

journals [16,27,28,29], did not considered the potential batch

effects, which would be likely to produce misleading results

associated with the batches rather than the biological outcomes.

For example, Houtan et al. [27] integrated glioblastoma tumour

samples from several batches and identified a distinct subset of

samples displaying concerted hypermethylation, which might have

been correlated with their experimental batches similarly to the

data shown in the clustering map in Fig. 1d. Therefore, we

suggested that the conclusions based on integrated samples should

be re-evaluated by considering potential batch effects. Our results

strongly suggest that, an experiment should be designed to avoid

the batch effect by equally distributing possible experimental

Table 5. Concordance between differential methylation and differential expression.

Cancer types Hypermethylation Hypomethylation

Gene1 number Concordance rate P value Gene1number Concordance rate P value

Colon 107 91.6% 7.7*1029 157 50.3% 0.99

Kidney 254 86.6% 1.5*10212 302 39.4% 0.397

Lung 34 88.2% 1.5*1026 88 62.5% 4.2*1026

1Gene number denotes the number of hypermethylated (or hypomethylated) genes which were determined to be differentially expressed in the expression data.
doi:10.1371/journal.pone.0029686.t005

Table 6. Keratin associated protein genes hypomethylated in
five cancers.

GeneID Gene Name GeneID Gene Name

337880 keratin associated
protein 11-1

337972 keratin associated
protein 19-5

140258 keratin associated
protein 13-1

337976 keratin associated
protein 20-2

337960 keratin associated
protein 13-3

337977 keratin associated
protein 21-1

284827 keratin associated
protein 13-4

337978 keratin associated
protein 21-2

254950 keratin associated
protein 15-1

337979 keratin associated
protein 22-1

337882 keratin associated
protein 19-1

337879 keratin associated
protein 8-1

doi:10.1371/journal.pone.0029686.t006

Differential DNA Methylation and Gene Expression
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surrogates between biological groups and using sufficient samples

for each group [9].

Our results showed that DM genes detected from different

datasets for the same cancer, excluding batch effects, were

consistent in methylation across the datasets, similar to the

observation that DE genes detected from various microarray

studies show a consistent up or down expression pattern

[10,30,31]. Thus, the signals of the methylation states of DM

genes in cancer can be reliably detected in methylation arrays.

Notably, 36 of the 47 hypermethylation genes of colon cancer

documented in the Methycancer database [32] were found to be

DM genes in our colon cancer data, among which 34 were also

hypermethylated (Supplementary Table S4). The reproducible

methylation biomarkers in different cohorts of patients could

provide valuable information for finding prognostic biomarkers

and drug targets for cancers.

On the other hand, we found that, for a particular cancer, many

DM genes detected in one dataset may not be significant in

another dataset due to the insufficient power of detecting DM

genes in small samples coupled with stringent FDR control

[10,30,33]. The reduction of power could lead to the selection of

the most significant genes as biomarkers for a cancer to be highly

unstable across different studies [34]. To evaluate the reproduc-

ibility of the most significant DM genes discovered from different

studies for a particular cancer, we could take into account the

functional relationship rather than simply counting the overlaps

[11,35].

For the function of DM genes, our results showed hypermethy-

lation of gene promoters was significantly linked to the down-

regulation of gene expression in cancer and affects basic biological

processes, such as signalling and cell growth, similar to what has

been observed for human ageing [36]. By contrast, hypomethyla-

tion was only weakly correlated with gene up-regulation,

indicating that other factors such as gene body hypermethylation

[37] and copy amplification [38] may contribute more to the up-

regulation of gene expression. We found that hypomethylated

genes for different cancers were similar in functions directly linked

to chronic inflammation, such as ‘chemotaxis’ and ‘immune

response’. Chemokines play important roles in regulating

inflammation progress [39], and immune deficiency can result in

chronic inflammation [39]. This chronic inflammation may

induce global hypomethylation, which may cause chromosome

instability and increase mutations of the genome and then increase

the risk of cancer [40].

Additionally, our results showed that DM genes detected in a

specific type of cancer were more likely to be hypermethylated

than DM genes detected in multiple cancers. However, defining

cancer type-specific biomarkers is difficult because different studies

for a particular cancer frequently discover different DM genes.

Using the tissue-specific genes collected by Xiong et al. [41], we

found that genes preferentially expressed in a specific tissue were

enriched with genes differentially methylated in the corresponding

cancer type (hypergeometric test P,0.001 for all three cancers),

but these DM genes did not show any preference toward

hypermethylation or hypomethylation. Considering that the

accuracy of ‘‘tissue-specific’’ genes strongly depends on the

expression level of the respective transcript [42], it might be more

reliable to define ‘‘tissue-specific’’ genes by their methylation

patterns [43]. In future work, we plan to study cancer type-specific

DM genes by taking into account the opposite methylation

directions of DM genes detected for different cancer types.
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