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I. INTRODUCTION 

The first step in viral infection is the attachment of viral surface 
proteins to the cell membrane through specific cellular receptors. One 
or several viral proteins may be required to mediate this attachment 
step. Both enveloped and nonenveloped viruses are surrounded by mul- 
tiple copies of surface proteins, which permit multivalent interactions 
with cellular receptors to occur. 

Receptor specificity is a major determinant of cell and tissue tropism 
and determines the host range of viruses. The various constituents of 
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cell membranes that can serve as viral receptors include carbohy- 
drates, lipids, and proteins. Among nonprotein components, the best 
known may be the sialic acid receptors for the influenza virus hemag- 
glutinin that are present on host cell glycoproteins and glycolipids 
(Weis et al., 1988). 

The following membrane proteins are known to serve as viral recep- 
tors: several members of the immunoglobulin superfamily [CD4, inter- 
cellular adhesion molecule type 1 (ICAM-l), carcinoembryonic anti- 
gens, and major histocompatibility complex (MHC) I antigens], two 
permeases, an integrin WLA-2 (very late activation-2)1, a metal- 
loprotease (aminopeptidase N), a cellular adhesion molecule (laminin 
receptor), and a receptor for complement fragments C3dg and iC3b 
(CR2) (Table I). 

The viral receptors listed in Table I have been shown to possess 
biological relevance by the following important criterion: namely, 
transfection of DNA that encodes receptor activity, into cells that do 
not express relevant receptors and that are ordinarily nonpermissive 
for infection, conferred susceptibility. ' h o  other important criteria of 
biological relevance are the blocking of viral infectivity by anti- 
receptor antibodies and soluble receptor derivatives. On the basis of 
these criteria, three retroviral receptors have been identified and in- 
clude the well-characterized CD4 molecule, for human immunodefi- 
ciency viruses types 1 and 2 (HIV-1 and HIV-2) and simian immu- 
nodeficiency viruses (SIVs) (Clapham et al., 1989; Dalgleish et al., 
1984; Klatzmann et al., 1984; Maddon et al., 1986; Sattentau et al., 
1988); a basic amino acid transporter termed ecoR or Rec-1, which 
serves as a specific receptor for the ecotropic murine leukemia viruses 
(MuLV-E) (Albritton e ta l . ,  1989; Kim e ta l . ,  1991; Wang etal . ,  1991a,b); 
and the GLVRl gene product, which serves as a receptor for gibbon ape 
leukemia virus (GALV) (O'Hara et al., 1990), the homologous simian 
sarcoma-associated virus (SSAV), and feline leukemia virus subgroup 
B (FeLV-B) (Takeuchi et al., 1992). GLVRl also shares homology with a 
phosphate permease of Neurosporu c r a ~ ~ a  (Johann et al., 1992). 

Picornavirus receptors include two immunoglobulin superfamily 
members, poliovirus receptor (PVR) (Mendelsohn et al., 1989; Nobis et 
al., 1985) and ICAM-1, which is a specific cellular entry molecule for 
the major group of human rhinoviruses (Greve et al., 1989; Marlin et 
al., 1990; Staunton et al., 1989). In addition, a member of the integrin 
family, VLA-2, is a receptor for echovirus 1 (Bergelson et al., 1992). 
Two coronaviruses, transmissible gastroenteritis virus (TGEV) and the 
human coronavirus 2293 (HCV-229E1, use aminopeptidase N, which is 
a metalloprotease, as a specific receptor (Delmas et al., 1992; Yeager et 
al., 1992). Another coronavirus, mouse hepatitis virus (MHV), enters 



TABLE I 
PROTEINS AS VIRAL RECEFTORS~ 

Virus Receptor Natural 
family Virus Receptor function ligand Evidence Ref. 

Retroviridae HIV-1 
HIV-2 
SIV 

MuLV-E 

GALV 
SSAV 
FeLV-B 

Picornaviridae Poliovirus 
VPe 1 
me 2 
VPe 3 

Major group 
of human 
rhinoviruses 

Echovirus 1 

CD4 TCR coreceptor 
Ig superfamily 

member 

ecoR (Rec-1) Basic amino acid 

GLVRl Phosphate permease 
transporter 

(?) 

PVR Ig superfamily 
member 

ICAM-1 Cell adhesion 
molecule 

member 
Ig superfamily 

VLA-2 Cell adhesion 
molecule 

MHC II anti- 
gens 

? 

LFA- 1 
(CDlla/CD18) 

(CDllb/CD18) 
(Leukocyte inte- 

grins) 
Collagen and 

laminen 

Mac-1 

RR 
aRa 
sRb 

RR 

RR 

RR 
aRa 
sRb 

RR 
aRa 
sRb 

RR 
aRa 

Clapham et al. (1989); 
Dalgleish et al. (1984); 
Klatzmann et al. (1984); 
Maddon et al. (1986) 

Albritton et al. (1989); 
Wang et al. (1991b) 

O’Hara et al. (1990); 
Takeuchi et al. (1992) 

Kaplan et al. (1990); Men- 
delsohn et al. (1989); 
Nobis et al. (1985) 

Greve et al. (1989); 
Marlin et al. (1990); 
Staunton et al. (1989) 

Bergelson et al. (1992) 

(continued) 



TABLE I (Continued) 

Virus Receptor Natural 
family Virus Receptor function ligand Evidence Ref. 

Caronaviridae MHV mmCGMl 

mmCGM2 
(MHVR,) 

TGEV Aminopep- 
HCV-229E tidase N 

lbgaviridae Sindbis virus High-affinity 
(alphaviruses) laminin 

receptor 
Herpesviridae EBV CR2 (CD21) 

Papovaviridae SV40 MHC I 
antigens 

Integrin family 

Carcinoembryonic 
member 

antigens 

member 
Ig superfamily 

Metalloprotease 

Cell adhesion 
molecule 

Receptor for comple- 
ment fragments 

Member of a family 
of proteins 
containing short 
consensus repeats 
(SCRS) 

Antigen 
presentation 

Ig superfamily 
member 

? 

Laminin 

C3dg and iC3b 
(complement 
fragments) 

IFN-a 

TCR + CD8 

rr Dveksler et al. (1991); 
aRa Williams et al. (1991); 

Yokomori and Lai 
(1992) 

RR Delmas et al. (1992); 
Yeager et al. (1992) aRa 

RR 
aRa 

Wang et al. (1992) 

Ahearn et al. (1988); 
Fingeroth et al. (1984); 
Moore et al. (1991) 

RR 
aRa 
sRb 

RR Atwood and Norkin 
aRa (1989); Breau et al. 

(1992) 

QRR, receptor reconstitution; aRa, anti-receptor antibody blocking; sRb, soluble receptor blocking of infectivity; Ig, immunoglobulin. 
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cells through either of two carcinoembryonic antigens (CEA), 
mmCGMl (MHVR1) or mmCGM2, which are members of the immu- 
noglobulin superfamily (Dveksler et al., 1991; Williams et al., 1991; 
Yokomori and Lai, 1992). 

The major receptor on mammalian cells for Sindbis virus, an alpha- 
virus from the Togaviridae family, appears to be the high-affinity lam- 
inin receptor (Wang et al., 1992), an important cell adhesion molecule. 
The receptor for Epstein-Barr virus (EBV), an oncogenic herpesvirus 
associated with infectious mononucleosis, Burkitt’s lymphoma, and 
nasopharyngeal carcinoma, is the complement receptor 2 (CR2, CD21) 
(Ahearn et al., 1988; Fingeroth et al., 1984; Moore et al., 1991). CR2 is 
also a specific receptor for the C3dg and iC3b complement fragments 
(Cooper et al., 1988) and can specifically bind interferon a (IFN-a) 
(Delcayre et al., 1991). CR2 is a member of a family of proteins that 
contain short consensus repeats (SCRs) in their extracellular amino- 
terminal domain (Cooper et al., 19881, and is likely to be the EBV 
receptor on both human epithelial cells (Birkenbach et al., 1992) as 
well as B cells (Cooper et al., 1988). Finally, the well-characterized 
papovavirus, simian virus 40 (SV40), appears to require MHC class I 
antigens at the cellular surface for efficient viral entry (Atwood and 
Norkin, 1989; Breau et al., 1992). 

Binding between virion and cell surface receptor provides the initial 
physical association required for entry. Viruses may enter cells by 
either receptor-mediated endocytosis, generally through clathrin- 
coated vesicles (other endocytic mechanisms also exist), or by direct 
fusion of the viral envelope with the cell membrane (Marsh and 
Helenius, 1989). In the former situation, virions are delivered to endo- 
somes, where acidic conditions facilitate conformational changes in 
viral envelope proteins, permitting fusion of viral and endosomal 
membranes. This is followed by the entry of viral nucleic acid into the 
cytoplasm. Retrovirus penetration into permissive cells occurs by 
membrane fusion in either an acid-dependent or pH-independent fash- 
ion (Marsh and Helenius, 1989); the latter is characteristic of HIV-1 
(McClure et al., 1988; Stein et al., 1987). 

11. RETROVIRAL INTERFERENCE/SUPERINFECTION IMMUNITY 

Cells that are productively infected with a retrovirus are resistant to 
superinfection by the same virus, or by viruses that possess envelope 
glycoproteins that bind to the same receptor (reviewed in Weiss, 1985). 
This phenomenon is termed retrouiral interference or superinfec- 
tion immunity and is caused by blocking of the cell receptor. Interfer- 
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ence has commonly been studied in uitro, through the use of pseu- 
dotypes of vesicular stomatitis virus (VSV) or retroviral vectors (carry- 
ing drug resistance genes) that bear retroviral envelope glycoproteins. 
Infection by such pseudotypes is blocked in cells that are infected by 
retroviruses that use the same receptor as that to which the 
pseudotypes would bind, thus enabling patterns of receptor interference 
to be identified. Although retroviral interference has mostly been stud- 
ied in uitro, it has been reported that resistance may also occur in uiuo 
in a mouse model involving Friend leukemia virus (Mitchell and Ris- 
ser, 1992). Retroviruses have been classified into different receptor 
interference groups on the basis of their pattern of superinfection 
interference (Sommerfelt and Weiss, 1990; Weiss, 1985). 

One classification of mammalian retroviruses has led to  the identi- 
fication of eight receptor interference groups in human cells (Sommer- 
felt and Weiss, 1990) and the potential existence of eight distinct retro- 
viral receptors (Table 11). The first receptor group is that with the 
greatest diversity and includes all known exogenous type D simian 
retroviruses, for example, simian retrovirus (SRV) serotypes 1-5, 
which infect Asian macaques, two endogenous D-type simian retro- 
viruses that is, squirrel monkey retrovirus (SMRV) and langur endoge- 
nous retrovirus (PO-1-Lu), and two endogenous type C viruses of feline 
(RD114 strain) and simian (baboon endogenous virus or BaEV) origin. 
Data based on cross-interference patterns have shown that two avian 
retroviruses, that is, spleen necrosis virus (SNV) (Kewalramani et al., 
1992) and reticuloendotheliosis virus strain A (REV-A) (Koo et al., 
1992), also belong to receptor interference group 1 and are therefore 
likely to share a common receptor on human cells with the simian 
retroviruses (Table 11). Use of human-rodent somatic cell hybrids 
(Schnitzer et al., 1980; Sommerfelt et al., 1990) showed that the gene 
that encodes the cellular receptor for this group was localized on hu- 
man chromosome 19. The identity of this receptor molecule remains to 
be established. 

Amphotropic murine leukemia viruses (MLV-A), which are capable 
of infecting murine and heterologous cells, did not cross-interfere with 
other mammalian retroviruses, and thus constitute a second receptor 
interference group. Endogenous xenotropic murine leukemia viruses 
(MLV-X) can productively infect only cells of heterologous species, do 
not cross-interfere with MLV-A or other mammalian retroviruses, and 
constitute receptor group 3. Thus, MLV-A and MLV-X most likely uti- 
lize different receptors than those of the ecotropic murine leukemia 
viruses (MLV-El; the latter is a basic amino acid transporter (Albritton 
et al., 1989; Kim et al., 1991; Wang et al., 1991a) (Table I). 

Infection of cell lines with the exogenous feline leukemia virus sub- 
group C did not interfere with superinfection by any other mammalian 



TABLE I1 
RECEITOR INTERFERENCE GROUPS= 

Receptor group1 
receptor name Virus Full name and strain 

Exogenous or 
m e  endogenous origin 

1 

2 
3 
4 
5 (GLVR1) 

6 

7 
8 (CD4) 

SRV- 1 
SRV-2 
SRV-3 (MPMV) 
SRV-4 
SRV-5 
PO-1-Lu 
SMRV 
BaEV 
RD114 
REV-A 
SNV 
MLV-A 
MLV-X 
FeLV-C 
FeLV-B 
SSAV 
GALV 
HTLV-I 
HTLV-II 
ChTLV 
STLV 
BLV 
HIV- 1 
HIV-2 
SIVmac 
SIVSmm 

SIVagm 

Simian retrovirus type 1 
Simian retrovirus type 2 
Mason-Pfizer monkey virus 
Simian retrovirus type 4 
Simian retrovirus type 5 
Langur endogenous retrovirus 
Squirrel monkey retrovirus 
Baboon endogenous retrovirus 
Cat endogenous retrovirus RD114 
Reticuloendotheliosis virus-A 
Spleen necrosis virus 
Amphotropic murine leukemia virus 
Xenotropic murine leukemia virus 
Feline leukemia virus subgroup C 
Feline leukemia virus subgroup B 
Simian sarcoma associated virus 
Gibbon ape leukemia virus 
Human T cell leukemia virus type 1 
Human T cell luekemia virus type 2 
Chimpanzee T lymphotropic virus 
Simian T lymphotropic virus 
Bovine leukemia virus 
Human immunodeficiency virus type 1 
Human immunodeficiency virus type 2 
Simian immunodeficiency virus (macaque) 
Simian immunodeficiency virus 

Simian immunodeficiency virus 
(sooty mangabey) 

(African Green monkey) 

D 
D 
D 
D 
D 
D 
D 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
Lenti 
Lenti 
Lenti 
Lenti 

Lenti 

Exo 
Exo 
Exo 
Exo 
Exo 
Endo 
Endo 
Endo 
Endo 
Exo 
Exo 
Exo 
Endo 
Exo 
Exo 
Exo 
Exo 
Exo 
Exo 
Exo 
Exo 
Exo 
Exo 
Exo 
Exo 
Exo 

Exo 

“Adapted from Sommerfelt and Weiss (1990). 
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retrovirus, establishing a fourth category of receptor. Gibbon ape leu- 
kemia virus (GALV) and the closely related simian sarcoma associated 
virus (SSAV), as well as feline leukemia virus subgroup B (FeLV-B) 
cross-interfere with one another and belong to receptor group 5.  The 
gene that encodes this receptor, termed GLVRl, has been isolated and 
shown to resemble a phosphate permease (Johann et al., 1992; O’Hara 
et al., 1990; Takeuchi et al., 1992) (Table I). 

Interference patterns have established that a common receptor is 
shared by the human T cell leukemia viruses (HTLV-I and HTLV-11) 
and the related chimpanzee and simian T lymphotropic viruses 
(ChTLV and STLV) (receptor group 6). The gene encoding this receptor 
is on human chromosome 17 (Sommerfelt et al., 1988). The bovine 
leukemia virus (BLV) utilizes a different receptor from that of the 
group 6 T cell leukemia viruses and is the sole known member of 
receptor group 7, in spite of having a genetic structure similar to  
HTLV-I, including the two regulatory genes tux and rex. The last recep- 
tor group (group 8) is that which binds to CD4 and is exemplified by the 
human and simian immunodeficiency viruses (HIV-1, HIV-2, SIVmac, 
SIVsmm, SIVagm) (Sattentau, 1988) (Table 11). 

Retroviral envelope glycoproteins are a key determinant in both 
interference and cell killing. Cell lines that were engineered to express 
avian REV envelope proteins became refractory to infection by viruses 
of the REV group (Delwart and Panganiban, 1989; Federspiel et al., 
1989). Cell lines that expressed a mutant SNV env gene, the product of 
which lacked the carboxy end of the transmembrane protein (TM) and 
was blocked in the endoplasmic reticulum (ER), were also resistant to  
infection (Delwart and Panganiban, 1989). In HIV-l-infected cells or in 
cells coexpressing CD4 and the HIV-1 envelope glycoproteins, CD4 was 
found to be associated with a 1 6 0  (the envelope precursor), causing 
their mutual retention in the ER (Bour et al., 1991; Crise et al., 1990; 
Kawamura et al., 1989; Stevenson et al., 1988). Therefore, superinfec- 
tion immunity is the likely consequence of the sequestering of cellular 
receptors by viral envelope glycoproteins in the ER. 

Superinfection interference may sometimes be separated from in- 
fectiousness. Cells that stably expressed an MuLV-E mutant, carrying 
a deletion in the membrane-spanning region and the cytoplasmic tail 
of the TM protein that affected viral infectivity, but not processing or 
incorporation of envelope proteins, were resistant to  superinfection 
(Granowitz et al., 1991). The resistance of some animals to certain 
strains of retroviruses is attributable to expression of envelope pro- 
teins by defective endogenous proviruses, probably through intracellu- 
lar receptor-envelope interactions (Temin, 1988). 

Failure to establish or delay establishment of retroviral interference 
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may lead to massive reinfection and cell death, accompanied by accu- 
mulation of unintegrated viral DNA (Donahue et al., 1991; Haase 
et al., 1982; Pauza et al., 1990; Temin, 1988; Weller et al., 1980). enu 
gene determinants play important roles in retrovirus-induced cyto- 
pathicity (Donahue et al., 1991; Dorner and Coffin, 19861, and cyto- 
pathic viruses are commonly unable to establish superinfection inter- 
ference (Donahue et al., 1991). This may be attributable to  a slower 
rate of synthesis and processing of viral envelope precursors (Poss et 
al., 1990) or to the reduced efficiency with which such molecules asso- 
ciate intracellularly with the receptor (Temin, 1988). Additional fac- 
tors that may slow superinfection interference include rapid receptor 
recycling, and rapid viral replication, which enables superinfection to 
occur before establishment of interference (Temin, 1988). Finally, effi- 
cient displacement of envelope receptor-associated glycoprotein by in- 
coming viral envelope glycoprotein, and slower kinetics of interference 
due to high-level expression of receptors, may equally facilitate super- 
infection (Dorner and Coffin, 1986). 

Addition of neutralizing antibodies, anti-CD4 antibodies, or 
3’-azido-3’-deoxythymidine (AZT) to acutely infected T cell lines com- 
monly leads to reduction in rates of accumulation of unintegrated viral 
DNA (Bergeron and Sodroski, 1992; Pauza et al., 1990; Robinson and 
Zinkus, 1990). T cell lines that were engineered to express the HIV-1 
envelope gene had reduced levels of cell surface CD4, due to complex 
formation between CD4 and gp160 (Stevenson et al., 1988). Superinfec- 
tion by HIV-1 of such envelope-expressing cells was noncytopathic and 
persistent in nature. In contrast, infection of parental T cell lines was 
accompanied by accumulation of unintegrated viral DNA and cyto- 
pathicity. Inhibition of superinfection was associated with both a dimi- 
nution in accumulation of unintegrated viral DNA and syncytium for- 
mation (an early cytopathic effect), leading to persistent infection 
(Pauza et al., 1990; Stevenson et al., 1988). However, a delayed cyto- 
pathic effect, termed single-cell lysis, was not prevented by inhibition 
of superinfection, because the latter occurred in the absence of unin- 
tegrated viral DNA accumulation and when CD4 had been completely 
depleted from the cell surface (Bergeron and Sodroski, 1992; Steven- 
son et al., 1988). 

Macrophage-tropic HIV-1 variants from brain failed to  modulate cell 
surface CD4 expression after infection. In this instance, both the ca- 
pacity for CD4 modulation and macrophage tropism were mapped to 
the envelope gene (Cheng-Mayer et al., 1990). The failure of CD4 
downmodulation in brain may be related to superinfection and accu- 
mulation of unintegrated viral DNA in the brains of patients with 
HIV-1 encephalitis (Pang et al., 1990). 
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111. STRUCTURE AND FUNCTION OF CD4 AND p56lck 

A. CD4-MHC IZ Interaction 

CD4 is a transmembrane glycoprotein of approximately 55 kDa, 
predominantly expressed on the surface of certain subsets of mature T 
lymphocytes and thymocytes. CD4+ T lymphocytes specifically recog- 
nize foreign antigens as peptides presented by self major histocom- 
patibility class I1 (MHC 11) molecules (reviewed in Bierer et al., 1989; 
Littman, 1987; Parnes, 1989). Studies in which fibroblasts were engi- 
neered to express CD4 showed that this molecule confered the ability 
to aggregate class I1 MHC-expressing B cells (Doyle and Strominger, 
1987), suggesting a physical interaction between the two molecules. 
This interaction was shown to be important in T cell activation because 
effector functions of CD4+ T cells were inhibited with anti-CD4 mono- 
clonal antibody (MAb) (Biddison et al., 1982; Swain et al., 1984; Wilde 
et al., 1983). In addition, cell lines transfected with CD4 expression 
vectors were shown to secrete enhanced levels of interleukin 2 (IL-21, 
in the presence of cells that expressed human MHC I1 antigens; such T 
cell activation was abrogated by antibodies against either CD4 or 
MHC I1 determinants (Gay et al., 1987; Sleckman et al., 1987). There- 
fore, the CD4-MHC I1 interaction not only increases the avidity be- 
tween CD4+ T cells and antigen-presenting cells (APCs), but also plays 
a role in signal transduction leading to T cell activation (reviewed in 
Bierer et al., 1989; Janeway, 1992; Parnes, 1989). 

Cross-linking of CD4 molecules, in a manner independent of the T 
cell receptor (WR) at the T cell surface, and in the absence of MHC 
class I1 antigens, inhibited T cell activation by inducing a negative 
signal (Haque et al., 1987; Wassmer et al., 1985). This inhibitory effect 
was tightly associated with p561ck activity, a subject to be examined in 
the next section. CD4 probably binds to the same MHC molecule on an 
APC as does the TCR during T cell activation (reviewed in Janeway, 
1992). This .association between CD4 and the TCR enhanced signal 
transduction, suggesting that CD4 may be a coreceptor as well as an 
accessory molecule involved in cellular adhesion (reviewed in Janeway, 
1992). 

B .  Role of CD4 and p561ck in Thymic Development 

CD4 is not only necessary for T cell activation but also contributes to 
the shaping of the T cell repertoire during thymic development (Robey 
and Axel, 1990). CD4+ and CD8+ mature T cells develop from 
CD4-CD8- (double-negative) immature thymocytes that lack surface 
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TCR expression. Differentiation of these cells into CD4+CD8+ 
(double-positive) thymocytes is preceded by rearrangement and ex- 
pression of the TCR genes (a and p), leading to low-level surface repre- 
sentation of TCR. These double-positive T cells then lose either CD4 or 
CD8 expression, to  become either CD4+CD8- or CD4-CD8+ (single 
positive) with high levels of surface TCR (von Boehmer, 1988). 

Transgenic mouse models have revealed that the MHC specificity of 
TCRs, that is, class I1 or class I restricted, determines the CD4/CD8 
phenotype of peripheral T cells (von Boehmer, 1990). Surface TCR 
expression was shown to increase in freshly explanted double-positive 
thymocytes, but could be blocked by CD4-mediated signals, for exam- 
ple, multivalent cross-linking of MAbs bound to CD4 or MHC I1 en- 
gagement of CD4. Thus, signaling through CD4 in double-positive 
thymocytes resulted in diminished cell surface expression of TCR, sug- 
gesting that negative signaling had occurred (Nakayama et aZ., 1990). 

CD4 coding sequences, under the transcriptional control of the prox- 
imal Zck promoter or CD2 regulatory elements, were used to generate 
transgenic mice, in which CD8+ peripheral T cells equally expressed 
CD4. CD4+CD8+ T cells from such animals proliferated in response to 
both allogeneic class I and class I1 MHC antigen (Robey et al., 1991; 
Teh et uZ., 1991): such dual reactivity suggested that the ability of T 
cells to react to  allogeneic class I1 MHC was determined by CD4. The 
proximal Zck promoter, used to generate the transgenic mice, lies imme- 
diately 5' to the p561ck coding region and is highly active in the thy- 
mus, contributing to high-level CD4 expression on thymocytes (Rey- 
nolds et al., 1990). The distal Zck promoter, which is located far up- 
stream of the proximal promoter, is active in both thymocytes and 
mature T cells (Wildin et aZ., 1991). Overexpression of CD4 in thy- 
mocytes of transgenic animals dramatically inhibited positive selec- 
tion, as assessed by lower levels of CD8+ thymocytes bearing a specific 
TCR in comparison to control animals (Teh et aZ., 1991). These results 
demonstrated that altered CD4 levels in the thymus may influence the 
shape of the T cell repertoire. 

Thymocytes from transgenic mice that expressed a TCR specific for 
MHC I and a hybrid CD8/CD4 molecule, composed of an extracellular 
CD8 and both a transmembrane domain and cytoplasmic tail of CD4, 
differentiated into mature T cells that expressed CD4 (Seong et aZ., 
1992). Thus, the cytoplasmic tail of CD4, which associates with p561ck, 
mediates a signal that directs differentiation of immature thymocytes 
to  the CD4 lineage. In contrast to the importance of p561ck in T cell 
activation (see Section II1,D below), it appears that the process of clonal 
deletion of immature thymocytes may be independent of p561ck in tis- 
sue culture (Nakayama and Loh, 1992). These results suggest that the 
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signal transduction pathway that leads to clonal deletion by apoptosis 
is distinct from that of T cell activation. 

Knock-out technology, causing disruption of the CD4 gene, gener- 
ated mice that no longer expressed cell surface CD4 and that displayed 
reduced helper cell activity for antibody responses. However, the devel- 
opment of CD8+ T cells and CTL activity against virally (e.g., vaccina) 
infected cells was not affected (Rahemtulla et al., 1991). Mice in which 
the gene encoding p56zck was disrupted had severely reduced numbers 
of both peripheral T cells and double-positive (CD4+CD8+) thy- 
mocytes, as well as pronounced thymic atrophy (Molina et al., 1992). 
These reports demonstrate the importance of the CD4 and p561ck mole- 
cules in T cell development. 

C. D1 and 0 2  Domains of CD4: Interactions with gp120 and MHC ZZ 

In addition to its role in T cell activation and thymic development, 
CD4 is also a high-affinity receptor for HIV-1 (Sattentau and Weiss, 
1988) (Table I). The CD4 molecule is a member of the immunoglobulin 
(Ig) gene superfamily and consists of four external Ig-like domains 
(370 amino acids) (Dl-4 also referred to as V1-4), a transmembrane 
region (26 amino acids), and a cytoplasmic tail (38 amino acids) (Litt- 
man, 1987; Maddon et al., 19851, which is associated with the p561ck 
protein tyrosine kinase (reviewed in Bolen and Veillette, 1989; Rudd, 
1990) (Fig. 1). On the basis of sequence and structural homology be- 
tween the CD4 D1 domain and the immunoglobulin K light chain vari- 
able domain (V), three complementarity-determining regions (CDR1- 
3) have been described in D1: CDRl (amino acid positions 18-27), 
CDR2 (amino acids 42-49), and CDR3 (amino acids 85-97). Domains 
D1 and D2 contain residues involved in MHC I1 binding. 

Binding of HIV-1 gp120 is mediated by D1 (Capon and Ward, 1991; 
Clayton et al., 1989; Fleury et al., 1991; Lamarre et al., 1989; Satten- 
tau, 1988). Mutagenesis of this region has further shown the impor- 
tance in this respect of residues that comprise and surround the CDR2- 
like region (amino acids 40-55) (reviewed in Capon and Ward, 1991; 
Sattentau, 1988). 

Although the complete molecular structure of CD4 has not been 
defined, crystallographic studies have suggested that CD4 forms a 
rodlike structure about 125 A in length and 25-30 A wide (Kwong et 
al., 1990). Two reports have determined the structure of a soluble frag- 
ment of CD4, consisting of the two amino-terminal domains, D1 and 
D2, that is, about half the complete molecule (Ryu et al., 1990; Wang et 
al., 1990). Both D1 and D2 resemble Ig domains (antiparallel p strands 
folding to form two p sheets held together by a disulfide bond and 
hydrophobic interactions), consisting of nine and seven strands, respec- 
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FIG. 1. Schematic representation of the CD4-p56"k complex. Top finset): the D1 and 
D2 domains of CD4 as determined by crystallographic studies. [%printed with permis- 
sion from Nature (London), ref. from Wang et al., 1990. Copyright 1990 Macmillan 
Magazines Limited.] Bottom finset): Putative intermolecular association between CD4 
and p56fch. 

tively (Fig. 1, top inset). The D1 domain contains two antiparallel p 
sheets; strands B, D, and E make up one of these, whereas strands A, C, 
C', C", F, and G make up the other. The disulfide bond is between strands 
B and F (on opposing sheets). Strands A, B, and E make up one p sheet in 
D2, whereas strands C, C', F, and G compose the other. The D2 is 
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truncated in comparison with Ig variable domains. An unusual disulfide 
bond in D2 is present between strands C and F in the same sheet. 

D1 and D2 are associated by means of a long f3 strand that forms the 
last strand (G) of the former while continuing to become the first (A) of 
the latter; this confers rigidity to the amino terminus of CD4. Strands 
C’, C”, and D form a loop in D1, which encompasses the CDR2-like 
region, essential for binding of gp120. This loop is longer than that in 
Ig and forms a prominent ridge composed of the anti-parallel C and C” 
strands (Fig. 1, top inset). Additional residues involved in gp120 bind- 
ing lie in the adjacent D strand, suggesting that gp120 may have a 
complementary groove on its surface that interacts with this ridge. 

The binding site on CD4 for MHC I1 determinants is more complex 
than that for gp120 and involves residues in D2, in addition to D1 
(Clayton et al., 1989; Fleury et al., 1991; Lamarre et al., 1989). Muta- 
tions that abolish binding of gp120, such as at the hydrophobic residue 
Phe-43 on the C” strand, do not necessarily alter the general structure 
of CD4 but can affect binding of MHC I1 (Arthos et al., 1989; Bowman 
et al., 1990; Moebius et al., 1992). Replacement of four residues (amino 
acids 39 to 43) by an equivalent segment, derived from murine L3T4, 
yielded a modified CD4 structure that could still bind MHC 11, but not 
gp120 (Lamarre et al., 1989). 

Other residues in D1 that are important for binding of both MHC I1 
and gp120 include Pro-48, Lys-50, and Leu-51, located in CDRB (Clay- 
ton et al., 1989; Lamarre et al., 1989). Deletion of residues 42-47 or 
43-49 caused conformational changes in CD4 (Bowman et al., 1990) 
that led to the disruption of both MHC I1 and gp120 binding in one 
study (Bowman et al., 1990) and gp120 binding in another (Fleury et 
al., 1991); both deletions removed the Phe-43 residue, critical for 
gp120 binding. 

D1 residues at positions 19 (CDRl), 89 (CDR31, and D2 residue 165 
are critical for MHC I1 binding (Fleury et al., 1991). The lack of effect 
of the residue 43-49 deletion on MHC I1 binding suggests that gp120 
and MHC I1 may contact CD4 on opposite sides (Fleury et al., 1991): 
gp120 may require CDRB residues and MHC I1 involvement may re- 
quire CDRl and CDR3 of D1 and the FG loop of D2 (Fig. 1). 

Mutations in residues (amino acids 54-57) in the D strand were also 
shown to affect CD4 structure and both MHC I1 and gp120 binding 
(Piatier-Tonneau et al., 1991); an oligopeptide derived from CD4 amino 
acids 54-57 inhibited antigen-specific, MHC II-restricted T cell re- 
sponses (Mazerolles et al., 1988). Other residues in D1 of CD4 are also 
involved in binding of gp120 and MHC 11, suggesting alternatively 
that the binding sites for these molecules may overlap (Bowman et al., 
1990; Moebius et al., 1992). 

Residue Glu-87 located in CDR3 of D1 may play a role in HIV- 
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induced syncytium formation, as this effect was abolished following 
replacement of this amino acid by the equivalent chimpanzee residue 
Gly-87 (Camerini and Seed, 1990). The converse substitution conferred 
to the chimpanzee CD4 the ability to participate in HIV-associated 
syncytium formation. In addition to binding gp120 and MHC 11, CD4 
can also bind Ig. Residues 21-38 of the CC' loop in D1 were shown to 
be important in this latter association (Lennert et al., 1990). 

Monoclonal antibodies against the D2 and D3 domains of CD4 can 
block both HIV-1 infection and syncytium formation (Burkly et al., 
1992; Healy et al., 1990; Moore et al., 1992). However, these MAbs are 
unable to  impede the primary attachment of gp120 to CD4. This sug- 
gests that MAb binding to D2 or D3 may interfere with the postbind- 
ing conformational changes required for membrane fusion, in either 
CD4 or the viral envelope proteins. Removal of two N-linked glycosyla- 
tion sites, that is, asparagines at  positions 271 and 300 in D3 and D4 
(Fig. l), did not prevent infection (Bedinger et al., 1988). Thus, CD4 
may also be involved in postbinding steps that during the process of 
viral entry are independent of N-linked glycosylation and that may 
include membrane fusion. 

The binding site of CD4 on MHC I1 molecules has been mapped to 
the membrane-proximal p2 domain of the p chain (Cammarota et al., 
1992; Konig et al., 1992). This domain is structurally similar to the a3 
domain of MHC I heavy chains, which has been shown to bind to CD8 
(Salter et al., 1990). 

D .  CD4-p561ck Association 

CD4 is associated noncovalently through its cytoplasmic tail with 
the p561ck protein tyrosine kinase (PTK), a member of the Src family of 
PTKs (reviewed in Bolen and Veillette, 1989; Rudd, 1990; Ettehadieh, 
et al., 1992). The structural organization of p561ck and its association 
with CD4 are depicted in Fig. 1. The first eight amino acids at the N 
terminus of p561ck are important for myristylation and stable mem- 
brane association. p56"k is associated with the inner face of the cyto- 
plasmic membrane through a myristic acid group covalently linked to 
an N-terminal glycine residue at position 2 (Fig. 1, bottom inset). Each 
member of the Src family possesses a unique amino-terminal region 
(amino acids 8-65 in p561ck) believed to govern specific interactions 
with other cellular proteins. This is the region of greatest sequence 
diversity among Src family members, and is followed by two SH (Src 
homology) regions termed SH3 (residues 65-117 in p561ck) and SH2 
(residues 117-229 in p561ck). The latter two motifs are shared with 
other nonreceptor PTKs such as those of the feslfps (SH2 only) and abl 
gene families. SH sequences are also found in other proteins including 
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phospholipase Cy, GTPase-activating protein (GAP), and the Gag-Crk 
fusion product of an avian retrovirus (reviewed in Bolen et al., 1991; 
Cantley et al., 1991). 

The SH region is important in the regulation of Src family enzyma- 
tic activity. The SH3 domain may be important in the localization of 
PTKs to cytoskeletal components near the cytoplasmic membrane (Bo- 
len, 1991; Bolen et al., 1991). The SH2 domain is believed to interact 
with the regulatory phosphotyrosine located at the carboxy terminus 
of Src PTKs (Tyr-505 in p561ck). The region of highest sequence homol- 
ogy among Src family members resides in the catalytic or kinase do- 
main (also referred to as SHl), which represents the major portion of 
the carboxy terminus situated between amino acid 229 and 493 in 
p56"k. The catalytic domain also contains the ATP-binding site, which 
is centered around a common lysine residue (Lys-273 in p561ck), and the 
autophosphorylation site (Tyr-394 in p561ck), which is thought to  play 
an important role in catalytic activity and to favor interactions with 
potential substrates. 

The final 16 carboxy-terminal amino acids (positions 493-509) com- 
prise the regulatory domain of p561ck, which is important for basal 
PTK activity. This region has a central conserved tyrosine (Tyr-505 in 
p561ck) that is normally phosphorylated. Mutation of this Tyr residue 
results in constitutive activation of PTK activity (Abraham et al., 
1991) associated with enhanced transforming potential; this suggests 
that the phosphotyrosine residue of the regulatory domain may be an 
inhibitor of enzymatic activity. Hence, dephosphorylation of this Tyr 
residue may be a mechanism of regulative PTK activity (Bolen, 1991; 
Bolen et al., 1991; Cantley et al., 1991). 

Studies on CD4-VSV G (vesicular stomatitis virus protein G) and 
Src-Lck hybrid molecules, as well as on deletion mutants of CD4 and 
p561ck, have shown that the cytoplasmic tail of CD4 and the amino- 
terminal unique domain of p561ck (i.e., 38 C-terminal residues of CD4 
plus the first 32 N-terminal residues of p561ck) are sufficient for inter- 
action of the latter 2 proteins (Shaw et al., 1989). Furthermore, site- 
directed mutagenesis has established that two closely positioned cys- 
teine residues in the cytoplasmic tail of CD4 (positions 420 and 422) 
are critical for binding to  p561ck (Shaw et al., 1990) (Fig. 1, bottom 
inset). Two similarly positioned cysteine residues in murine L3T4 are 
also important in p561ck binding (Turner et al., 1990). Several cysteines 
in the unique N terminus of p561ck are also involved in association with 
CD4. Specifically, cysteines at positions 3 and 5, and a glycine at  posi- 
tion 2 (due to its linkage to myristic acid), are important in localizing 
p561ck to the cytoplasmic membrane (Turner et al., 1990). A second pair 
of cysteines at  positions 20 and 23 are essential for association with 
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CD4 (Shaw et al.,  1990; Turner et al., 1990) (Fig. 1, bottom inset). This 
CD4-p561ck association can be inhibited by alkylating agents that in- 
teract with free sulfhydryls; hence, free cysteines rather than inter- 
chain disulfide bonds are probably involved (Barber et al.,  1989; Shaw 
et al., 1990). This also suggests that CD4-p56lck interactions may in- 
volve a metal ion (Fig. 1). 

E .  Role of Cytoplasmic Tail of CD4 in Endocytosis and HIV-1 Entry 

CD4 endocytosis can be induced by phorbol esters such as phorbol 
12-myristate 13-acetate (PMA), 12-O-tetradecanoylphorbol 13-acetate 
(TPA), and phorbol 12,13-dibutyrate (PDB) (Acres et al., 1986; Hoxie et 
al.,  1986b1, which are all potent activators of protein kinase C (PKC). 
Cell surface CD4 internalization is accompanied by phosphorylation of 
serine residues in the cytoplasmic tail of CD4 (Shin et al., 1990) and 
dissociation of p561ck from CD4 (Hurley et al., 1989). The intracellular 
cytoplasmic tail of CD4 is crucial for internalization because CD4 
mutants with deleted cytoplasmic tails fail to internalize following 
phorbol ester treatment (Bedinger et al., 1988; Maddon et al.,  1988). 

Serine phosphorylation by PKC plays an important role in initiating 
endocytosis. First, PKC inhibitors, such as H7, inhibit CD4 internaliz- 
ation (Maddon et al., 1988; Munck Peterson et al., 1992). Second, CD4 
mutants in which Ser-408 (or the equivalent Ser-406 in mouse CD4), 
-415, and -431 were altered (Fig. 1, bottom inset) were impaired in 
their ability to internalize in response to treatment with phorbol esters 
(Bedinger et al., 1988; Glaichenhaus et al., 1991; Maddon et al., 1988; 
Shin et al.,  19901, with the highest degree of inhibition reported in cells 
mutated at all three residues (Shin et al., 1990). Nor was the mutated 
protein phosphorylated following phorbol ester treatment (Shin et al.,  
1990). In addition, a cytoplasmic deletion mutant of CD4, in which the 
C-terminal residues 418-433 were deleted (Fig. l), was capable of 
internalization following treatment with phorbol esters. Thus, the 
membrane-proximal region of the cytoplasmic tail of CD4, containing 
residues 396-417 and forming a potential (Y helix, is sufficient to per- 
mit CD4 endocytosis (Shin et al., 1991b). Phosphorylation of Ser-408 
may be necessary to initiate disruption of the CD4-p561ck complex, 
which precedes phorbol ester-induced CD4 internalization (Hurley et 
al., 1989; Sleckman et al., 1992). In addition, cytoplasmic tail deletion 
mutants of CD4 were found to internalize more frequently than wild- 
type CD4, which may be excluded from coated pits because of its asso- 
ciation with p561ck (Pelchen-Matthews et al., 19911, suggesting that 
p561ck may inhibit CD4 endocytosis. 

CD4 molecules with either individual serine mutations or the triple 
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mutation remained competent to associate with ~ 5 6 ~ ~ ~  (Glaichenhaus 
et al., 1991), suggesting that these serines are not important in this 
regard. However, cells that expressed the triple serine mutation, but 
not individual mutations, responded only weakly to antigen-MHC I1 
stimulation, as assessed by lower levels of IL-2 production. Thus, a 
mutation at Ser-408 can impair CD4 internalization but neither re- 
sponsiveness to antigenic stimulation nor association with p561ck, sug- 
gesting that two independent functional regions are located within the 
cytoplasmic tail of CD4. These are a membrane-proximal region (resi- 
dues 396 to 417, including Ser-408) important for both dissociation of 
CD4-p562ck and CD4 endocytosis, and a region centered around 
Cys-420 and -422 essential for p56kk association (Fig. 1). 

Cytoplasmic tail deletion mutants or Ser-408 mutants of CD4 can 
serve as efficient HIV receptors, in spite of their failure to be inter- 
nalized (Bedinger et al., 1988; Maddon et al., 1988). Thus, HIV may 
enter cells by a mechanism independent of receptor-mediated endo- 
cytosis. Coincidentally, the kinetics of viral replication were delayed in 
cells that expressed CD4 molecules containing cytoplasmic tail dele- 
tions (Poulin et al., 1991). In addition, CD4 molecules anchored to the 
cell membrane by glycophospholipid bonds served as efficient HIV-1 
receptors, suggesting that both the cytoplasmic tail, as well as the 
transmembrane domain of CD4, were dispensable for infection (Dia- 
mond et al., 1990; Jasin et al., 1991; Kost et al., 1991). These CD4 
molecules were chimeras in which the extracellular domain of CD4 
was fused to the C-terminal regions of either decay-accelerating factor 
(DAF) (Kost et al., 1991) or lymphocyte function-associated antigen 3 
(LFA-3) (Diamond et aZ., 1990). These C-terminal segments are suffi- 
cient to direct glycophospholipid anchoring. In other studies, the two 
N-terminal domains of CD4 were fused to the mouse Thy-1 antigen 
(Jasin et al., 1991). 

HIV-1 entry was also shown to be independent of both pH (McClure 
et al., 1988; Stein et al., 1987) and CDCrelated signal transduction 
events (Orloff et al., 1991). In the former case, neutralization of endo- 
soma1 compartments with lysosomotropic agents such as the weak 
bases chloroquine, amantadine, and ammonium chloride as well as the 
carboxylic acid ionophore monensin failed to inhibit HIV-1 entry (Mc- 
Clure et al., 1988; Stein et al., 1987). H7 (PKC inhibitor), EGTA (extra- 
cellular calcium chelator), cyclosporin A (inhibitor of calcium/ 
calmodulin-dependent activation), and pertussis toxin (inhibition of G 
protein function) also failed to inhibit penetration of HIV into cells, 
suggesting a dissociation between infection and signal transduction. 

Deletion of the 13 C-terminal amino acids of the CD4 cytoplasmic 
tail generated a molecule that was retained in the ER (Shin et al., 
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1990). The C terminus of this mutant is 416 Ser-Glu-Lys-Lys-Thr-Ser 
421. Site-directed mutagenesis showed that the ER retention property 
of this molecule was conferred by the two lysine residues. However, 
changing Lys-419 or Thr-420 to the positively charged residues Arg or 
Lys, respectively, did not affect ER retention. The latter signal (Lys- 
Lys-X-X, where X is any amino acid) is functional only in the presence 
of a transmembrane region, unlike the ER lumenal retention signal 
Lys- Asp-Glu-Leu (KDEL). 

F.  Role of CD4-p561ck in T Cell Activation 

Cross-linking of cell surface CD4 on murine T lymphocytes resulted 
in both enhanced autophosphorylation and phosphorylation of an ex- 
ogenous substrate by p561ck (Veillette et al., 1989). Cross-linking of 
CD4 also resulted in specific tyrosine phosphorylation of the 5 chain of 
the CD3 complex, associated with the TCR. The use of both anti-CD4 
MAbs as well as secondary cross-linking antibody was needed to in- 
crease p561ck PTK activity, because monovalent fragments of the same 
anti-CD4 MAb did not yield this effect. Hence, the CD4-p561ck 
receptor-kinase unit is capable of signal transduction as assessed by 
an early event in T cell signaling, namely, tyrosine phosphorylation. 

Signaling through CD4 (without involvement of the TCR-CD3 com- 
plex) resulted in an inhibitory effect termed negative signaling (re- 
viewed in Janeway, 1992). This inhibitory effect, initiated by CD4 
cross-linking, was also shown to be mediated by p561ck and correlated 
with p561ck PTK activity (Janeway, 1992; Takahashi et al., 1992). 
Cross-linking of CD4, followed by signaling through TCRaP resulted 
in the death of T cells by apoptosis (Newell et al., 1990). 

Cross-linking of CD4 with the TCR led to even greater levels of 
tyrosine phosphorylation (Abraham et al., 1991; June et al., 1990) and 
T cell activation (Owens et al., 19871, suggesting that physical associa- 
tion between CD4 and TCR is required for this to occur. CD4 may be 
involved through delivery of p561ck to the TCR-CD3 complex. A mu- 
tated form of p561ck (Qr-505-Phe) was constitutively activated in a 
CD4-negative murine hybridoma that expressed a defined TCR 
(Abraham et al., 1991). Coincubation of such cells with cells that ex- 
pressed appropriate combinations of MHC I1 plus antigen gave rise to 
enhanced levels of IL-2 secretion similar to those seen when CD4 was 
present in this murine hybridoma. Antibody-mediated aggregation of 
TCR-CD3 in cells expressing the Phe-505 p561ck mutant also led to 
enhanced tyrosine phosphorylation, but not to the extent seen follow- 
ing coaggregation of TCR and CD4 in CDCtransfected cells (Abraham 
et al., 1991). 
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During T cell activation, tyrosine phosphorylation is thought to pre- 
cede the breakdown of phosphoinositides (PI) into diacylglycerol and 
inositol phosphates; the former is involved in the activation of protein 
kinase C, whereas the latter are important in the mobilization of cyto- 
solic calcium (Klausner and Samelson, 1991). The importance of p56lck 
in this signal transduction cascade was demonstrated in a mutant T 
cell line that failed to  show Ca2+ increases following TCR engagement, 
and that was defective in tyrosine phosphorylation (Straus and Weiss, 
1992). Furthermore, this cell line was defective in p561ck expression. 
Restoration of p56lck function by gene transfer restored ability to  re- 
spond to TCR stimulation. 

The importance of p561ck in T cell activation was further documented 
by use of CD4 mutants that failed to associate with the former mole- 
cule. Murine cell lines that coexpressed TCRs of known antigen speci- 
ficity and human or murine CD4 molecules with deleted cytoplasmic 
tails were inefficient at secreting IL-2 in response to appropriate MHC 
II-antigen combinations (Glaichenhaus et al., 1991; Miceli et al., 1991; 
Sleckman et al., 1988). An even greater reduction in IL-2 production 
was seen in cells that expressed a glycolipid-anchored CD4 lacking 
both its cytoplasmic tail and transmembrane domain, despite its abili- 
ty to mediate intercellular adhesion (Sleckman et al., 1991). 

Failure to respond to MHC-peptide stimulation was also demon- 
strated in T cells that expressed murine CD4 mutants, in which 
Cys-418 and -420 of the cytoplasmic tail were changed to alanines 
(Glaichenhaus et al., 1991). Equivalent mutations of human CD4 
Cys-420 and -422, which abolish p561ck association, had the same ef- 
fect (Shaw et al., 1990) (Fig. 1). In addition, these cysteine mutants of 
CD4 failed to associate with TCR-CD3 following treatment with spe- 
cific anti-CD3 antibody that aggregated TCR-CD3, suggesting that 
CD4, in the absence of p561ck, does not associate with the TCR-CD3 
complex and further emphasizing the importance of p56lck-WRICD3 
juxtaposition in T cell activation. 

Both anti-WR MAb binding, and antigenic stimulation in the prop- 
er MHC I1 context, induced similar levels of activation in a murine 
cellular clone that expressed a CD4 structure containing both the 
double-cysteine mutation and a WR of defined specificity (Haughn et 
al., 1992). In contrast, the same cellular clone when engineered to 
express wild-type CD4 was activated more efficiently by MHC II- 
antigen than by anti-TCR MAb. Furthermore, cross-linking of CD4 
and TCR or the TCR alone at the surface of the double-cysteine mutant 
led to similar levels of activation, as assessed by DNA synthesis, cal- 
cium mobilization, and tyrosine phosphorylation. In contrast, clones 
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that expressed wild-type CD4 were minimally responsive to anti-TCR 
cross-linking, but had levels of activation similar to those of the 
double-cysteine mutant after CD4-TCR cross-linking. This shows that 
the CD4-p561ck receptor-kinase prohibits T cell activation when not 
juxtaposed properly to the TCR-CD3 complex a t  initiation of signal- 
ing. Hence, CD4 may be able to sequester the p561ck needed to couple 
the TCR to the CD3 complex in order for successful activation to occur. 
Previous reports of 5 chain tyrosine phosphorylation by p561ck may be 
related to this process (Veillette et al.,  1989). The CD4-p56Lck receptor- 
kinase complex is able to mediate signals important for T cell activa- 
tion, distinct from the role of CD4 in adhesion (Doyle and Strominger, 
1987). 

G.  Intermolecular Associations Involving p561ck 

p561ck can also interact with the IL-2p chain and treatment of T cells 
with IL-2 results in p56lck activation (Hatakeyama et al., 1991; Horak 
et al.,  1991). This suggests that  this PTK may also participate in IL-2- 
mediated signal transduction events. Because p561ck is a necessary 
link between IL-2 receptor-binding tyrosine phosphorylation, and T 
cell activation, it is relevant that CD4 cross-linking renders T cells 
nonresponsive to IL-2, probably by sequestering the majority of intra- 
cellular p561ck (Takahashi et al.,  1992). Signaling through the TCR- 
CD3 complex is also inhibited in the absence of CD4-p561ck participa- 
tion (Haughn et al., 1992). The IL-2 receptor, like TCR-CD3, may thus 
require p561ck to couple cell surface receptor-binding events to down- 
stream signal transduction steps. 

The membrane-bound CD45 phosphotyrosine phosphatase is in- 
volved in regulation of p561ck PTK activity by altering the state of 
tyrosine phosphorylation of this enzyme. Cell lines that lack CD45 had 
two to three times more phosphorylation at the p56lck Tyr-505 than is 
commonly observed (Ostergaard et al., 1989) but no p561ck activation 
(Mustelin et al., 1989). Moreover, CD45 appeared to enhance p561ck 
PTK activity directly in cell-free systems, an activity that was blocked 
by sodium orthovanadate, which inhibits phosphotyrosine phosphatase 
activity (Mustelin et al.,  1989). These findings are consistent with the 
observation that phosphotyrosine-505 of p561ck may be a negative reg- 
ulatory element, dephosphorylation of which activates p561ck and im- 
plicates CD45 in this activation. However, cross-linking of CD4 with 
CD45 failed to induce tyrosine phosphorylation (Ostergaard and 
Trowbridge, 19901, suggesting that coclustering of CD45 with CD4 
leads to dephosphorylation of p561ck and a reduction in p561ck activity. 
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This may be related to dephosphorylation of phosphotyrosine-394, 
which is important in catalytic activity and substrate association, 
rather than phosphotyrosine-505, which enhances PTK activity. 

The p50csk PTK may also be involved in the negative regulation of 
p56'ck, as it has been shown to phosphorylate Qr-505 specifically, a 
step that suppressed catalytic activity (Bergman et al., 1992). p56kk 
was shown both to  phosphorylate and then associate with GTPase- 
activating protein (GAP) (Amrein et al., 1992). p561ck also associates 
with other molecules involved in signal transduction, including a GTP- 
binding protein (Telfer and Rudd, 1991), and tyrosine-phosphorylated 
phosphoinositide-specific phospholipase Cyl (PLCy1) (through its SH2 
domain) (Weber et al., 1992). Substrates for p561ck include both the 
CD3 5 chain (Veillette et al., 1989) and the Raf-1 kinase, following 
cross-linking of cell surface CD4 (Thompson et al., 1991), and the 
mitogen-activated protein (MAP) kinase (p42mapk) following treatment 
of murine CD4+ T cells with immobilized anti-CD3 MAb (Ettehadieh 
et al., 1992). 

H .  Consequences of gp120 Binding to CD4 

Soluble gp120, like certain anti-CD4 MAbs, can inhibit T lympho- 
cyte proliferation in response to mitogens, antigen, and anti-CD3 MAb 
(Corado et al., 1991; Oyaizu et al., 1990; see also review in Habeshaw et 
al., 1990). This effect was dependent on the ability of gp120 to interact 
with CD4, and was blocked by soluble CD4 (Oyaizu et al., 1990; see also 
review in Habeshaw et al., 1990). The immunosuppressive effect of 
gp120 may result from inhibition of CD4-MHC I1 interactions 
through steric hindrance (Clayton et al., 1989; Lamarre et al., 1989; 
Rosenstein et al., 1990). In addition, gp120 was shown to cointernalize 
with CD4, and concomitantly to induce p56kk dissociation and a reduc- 
tion in T cell responsiveness to specific antigen or anti-CD3 MAb 
(Cefai et al., 1992). 

It is controversial whether gp120 can induce signal transduction 
through CD4 (Horak et al., 1990; Hoxie et al., 1988; Kornfeld et al., 1988; 
Mittler and Hoffmann, 1989). Cross-linking of CD4-bound gp120 by 
anti-gpl20 MAb activated neither p561ck nor Ca2+ mobilization (Horak 
et al., 1990; Veillette et al., 1989). However, cross-linking of CD4 by 
direct ligation or through CD4-bound gp120, followed by TCR cross- 
linking, both inhibited Ca2+ mobilization (Mittler and Hoffmann, 1989) 
and led to apoptosis (Banda et al., 1992; Newel1 et al., 1990). 

CD4+ T cells from asymptomatic HIV-infected individuals have also 
been shown to undergo apoptosis following treatment with anti-CD3, 
pokeweed mitogen, or staphylococcal enterotoxin B (SEB) superan- 
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tigen (Groux et al., 1992; Meyaard et al., 1992). Interestingly, 
gpl2O/gp4l-mediated cell fusion that was blocked by soluble CD4 and 
anti-CD4 MAb (Leu3d) was accompanied by enhanced tyrosine phos- 
phorylation, but not of the CD3 l, chain (Cohen et al., 19921, a known 
substrate of p561ck (Veillette et al., 1989). The CD4-gp120/gp41 inter- 
action that occurs during cellular fusion may thus be accompanied by 
signal transduction involving PTK activity. 

In contrast to T lymphocytes, gp120 binding to CD4 on cells of mono- 
cyte/macrophage lineage generally causes both activation and differen- 
tiation signals. p56lck is not present in monocytes/macrophages (Bolen, 
1991). Addition of soluble gp120 or inactivated HIV-1 to monocyte- 
derived macrophages (MDMs) had the following effects: secretion of 
several cytokines including IL-lp, tumor necrosis factor a (TNF-a), 
IL-6, and granulocyte/macrophage colony-stimulating factor (GM- 
CSF); secretion of arachidonic acid metabolites; and enhanced cell sur- 
face expression of MHC I1 antigen (Clousse et al., 1991; Merrill et al., 
1989; Nakajima et al., 1989; L. M. Wahl et al., 1989; S .  M. Wahl et al., 
1989). These effects could be blocked by soluble CD4 (Merrill et al., 
1989), and mimicked by anti-CD4 MAb (Merrill et al., 1989; L. M. Wahl 
et al., 1989; S .  M. Wahl et al., 1989). Cross-linking of CD4 with Fcy 
receptors on the surface of blood monocytes or U-937 monocytes was 
required for the mobilization of intracellular calcium, whereas cross- 
linking of CD4 alone was sufficient to increase intracellular calcium 
levels in T lymphocytes (Guse et al., 1992). 

gp120 can also induce various activation signals in brain cells in a 
CD4-independent fashion. Addition of gp120 to rat neuron cultures led 
to an increase in intracellular calcium levels and cell injury (Dreyer et 
al., 1990). binding of gp120 to a surface protein on CD4-negative glial 
cells induced tyrosine phosphorylation but did not lead to calcium mo- 
bilization (Schneider-Schaulies et d., 1992). Finally, both soluble re- 
combinant gp120 as well as whole HIV-1 induced the production of 
both IL-1 and TNF-a from rat microglia and astrocytes (Merrill et al., 
1992), an effect that was blocked by antibody to gp120 and gp41 but 
not by soluble CD4. These results suggest that gp120 may initiate 
signal transduction events in CD44ndependent fashion, in cells de- 
rived from brain tissue. 

I .  Downregulation of Cell Surface CD4 

Several compounds, including phorbol esters, gangliosides, 1,25- 
dihydroxyvitamin D,, and IFN-y, can induce cell surface depletion of 
CD4. This effect is also seen following MHC-antigen presentation, 
binding of gp120 to CD4, and differentiation of CD4+CD8+ thy- 
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mocytes to CD8+ T lymphocytes. In each instance, CD4 internalization 
is preceded by dissociation of p56Lck, for example, by a CD4 cytoplasmic 
tail serine phosphorylation pathway, in the case of phorbol esters, or a 
serine phosphorylation-independent pathway, in the case of gangliosides. 
Alternatively, reductions in CD4 transcription and destabilization of 
CD4 transcripts, enhanced degradation of CD4 protein (phorbol es- 
ters), and CD4 gene methylation (CD4+CD8+ thymocyte differentia- 
tion) may occur. These factors are summarized in Table 111. 

The phorbol ester-induced endocytosis of CD4 results from activa- 
tion of PKC, which in turn phosphorylates three serine residues in the 
cytoplasmic tail of CD4. Phosphorylation of Ser-408 is important in 
inducing dissociation of CD4 and p561ck, a prerequisite for CD4 inter- 
nalization (Sleckman et al., 1992). This effect of phorbol esters is be- 
lieved to mimic the CD4-CD3 cointernalization observed in T cell 
activation, induced by either CD3 or CD3-CD4 cross-linking (Ander- 
son et al., 1988; Rivas et al., 1988), or the more physiological situation 
of MHC-antigen presentation (Acres et al., 1986; Rivas et al., 1988; 
Weyand et al., 1987). Cross-linking of CD4 by anti-CD4 MAb activates 
p56Lck (Veillette et al., 1989) and also induces CD4-CD3 cointernaliza- 
tion (Cole et al., 1989). Despite the fact that  CD4 does not internalize 
with HIV-1 (Orloff et al., 19911, recombinant gp120 can cointernalize 
in such a way as to cause dissociation of CD4 and p561ck (Cefai et al., 
1992). CD4 internalization caused by gp120 appears to occur through a 
serine phosphorylation-independent pathway (Hoxie et al., 1988). 

Sialogangliosides induced internalization of wild-type CD4 as well 
as a hybrid glycolipid-anchored CD4-Thy-1 molecule that contained 
only the two N-terminal domains of CD4 fused to the Thy-1 antigen 
(Chieco-Bianchi et al., 1989; Jasin et al., 1991; Repke et al., 1992). Thus 
these N-terminal domains of CD4 (D1 and D2) are sufficient to medi- 
ate ganglioside-induced CD4 endocytosis. The CD4-Thy-1 hybrid con- 
struct could not be modulated by treatment with phorbol esters be- 
cause it lacked the cytoplasmic tail of CD4. Ganglioside-induced CD4 
internalization was accompanied by dissociation of CD4 and p56Lck 
(Repke et al., 19921, but was independent of serine phosphorylation. A 
minor serine phosphorylation-independent pathway of phorbol ester- 
induced CD4 internalization has also been reported (Shin et al., 1990) 
and may be dependent on calmodulin and intracellular calcium, be- 
cause an  inhibitor of the former and an  intracellular calcium chelator 
both blocked CD4 endocytosis (Bigby et al., 1990). Thus, at least two 
pathways may explain dissociation of CD4 and p561ck and CD4 inter- 
nalization. 

Transient decreases in steady state levels of CD4 mRNA following 
treatment with phorbol esters, in either the presence or absence of 



TABLE I11 
MECHANISMS/FACTORS INVOLVED IN CELL SURFACE CD4 DOWNMODULATION 

Mechanismifactor 
HIV- 1 

associated 
Non-HIV-1 
associated Ref. 

CD4 endocytosis Initiated by serine phos- 
phorylation of cyto- 
plasmic tail of CD4 

Serine phosphorylation 
independent 

Reduced steady Diminished or abolished 
state levels of CD4 transcription 
CD4 mRNA 

Cellular Nef expression 
(?) 

Soluble gp120 binding 
alone or with anti- 
gp120 antibodies 

Infection of CD4+ T 
lymphocytes or T cell 
lines (?) 

Phorbol esters 
MHCII + Ag 

presentation 
CD3 cross-linking 
CD3 + CD4 co-cross- 

linking 
Gangliosides 

CD4 + CD8+ thymocyte 
differentiation to 
CD8+ lymphocytes 

Phorbol esters 
Phorbol ester + anti- 

CD3 MAb 

Acres et al. (1986); Anderson et al. 
(1988); Cole et al. (1989); Rivas et 
al. (1988); Sleckman et al. (1992); 
Weyand et al. (1987) 

Amadori et al. (1992); Cefai et al. 
(1992); Chieco-Bianchi et al. 
(1989); Garcia and Miller (1991); 
Garcia et al. (1993); Hoxie et al. 
(1988); Jasin et al. (1991); Mittler 
and Hoffmann (1989); Repke et al. 
(1992) 

Geleziunas et al. (1991); Hoxie et al. 
(1986a); Lifson et al. (1986); Neu- 
dorf et al. (1991); Paillard et al. 
(1990); Pimentel-Muinos et al. 
(1992); Richardson et al. (1986); 
Salmon et al. (1988); Stevenson et 
al. (1987); von Boehmer (1988) 

(continued) 



TABLE 111 (Continued) 

HIV- 1 Non-HIV-1 
Mechanism/ factor associated associated Ref. 

CD4 mRNA degradation Phorbol ester + anti- Paillard et 01. (1990) 

Geleziunas et al. (1991); Hoxie et al. 
CD3 MAb 

Diminished CD4 Infection of T lympho- 
translation cyte and monocytic (1986a); Yuille et al. (1988) 

Bour et al. (1991); Crise et al. 
cell lines 

blocked in ER 
Intracellular reten- 

tion by inter- 
molecular complex 
formation 

CD4-gp160 heterodimer 
(1990); Crise and Rose (1992) 

CD4 degradation Caused by Vpu and Following phorbol ester- Munck Peterson et al. (1992); Shin 
occurring in the ER induced endocytosis 

and occurring in (1992a,b) 
1 y s o s o m e s 

et al. (1991b); Willey et al. 

CD4 shedding CD4 association with Meerloo et al. (1992) 

unknown Treatment of monocytes 
with either 1,25- (1990) 
dihydroxyvitamin D, 
or IFN-y 

budding virions 
Faltynek et al. (1989); Rigby et al. 
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anti-CD3 MAb, have been attributed to a highly diminished rate of 
CD4 transcription (Neudorfet al., 1991; Paillard et al., 1990; Pimentel- 
Muinos et al., 1992) and destabilization of CD4 transcripts (Paillard et 
al., 1990). Exposure of cells that expressed CD4 under control of a 
heterologous promoter to phorbol esters also led to CD4 internaliza- 
tion; however, reestablishment of cell surface CD4 occurred both more 
rapidly and to a greater extent in comparison with cells that expressed 
wild-type CD4 (Neudorf et al., 1991). Thus, reductions in CD4 tran- 
scription following treatment with phorbol esters may delay the rees- 
tablishment of cell surface CD4. 

A T cell-specific transcriptional enhancer located approximately 13 
kb upstream of the transcription initiation site for murine CD4 has 
been identified (Sawada and Littman, 1991). This element contains 
three nuclear protein-binding sites, one of which binds the T cell- 
specific transcription factor TCF-la/LEF-1, whereas the other two ap- 
parently bind basic helix-loop-helix proteins. Interactions between 
these transcriptional factors may be important for optimal CD4 en- 
hancer activity. 

Endocytosis of CD4 following treatment with phorbol ester led to 
accumulation of this molecule within lysosomes, where it was de- 
graded (Munck Peterson et al., 1992; Shin et al., 1991b). Treatment of 
monocytic cell lines with IFN-y and monocyte-derived macrophages 
(MDMs) with either IFN-y or 1,25-dihydroxyvitamin D, also caused 
reductions in cell surface CD4 (Faltynek et al., 1989; Rigby et al., 
1990). The IFN-y-induced reduction was cell lineage dependent, be- 
cause similar treatment of peripheral blood T lymphocytes or the 
MOLT-4 T cell line did not result in CD4 modulation (Faltynek et al., 
1989). Both compounds had lesser effects on CD4 modulation in mono- 
cytes than phorbol esters (Faltynek et al., 1989; Munck Peterson et al., 
1992). 

The CD4 gene is specifically downregulated in CD4+CD8+ (double- 
positive) thymocytes, which possess a MHC I-specific TCR, during the 
process of positive selection. Specifically, thymocytes that bear TCRs 
that recognize MHC I antigens retain CD8 but downmodulate expres- 
sion of CD4 (von Boehmer, 1988). A similar reciprocal pattern of nega- 
tive regulation apparently associated with gene methylation involves 
the CD8 gene in double-positive, MHC II-specific thymocytes. Progres- 
sive demethylation of the CD8 gene has been observed during the 
transition from CD4-CD8- (double-negative) to double-positive thy- 
mocytes (Carbone et at!., 1988a). Fusion of murine CD8+ T lympho- 
cytes, in which the CD8 gene was undermethylated, with a CD8- 
thymoma, in which the CD8 gene was heavily methylated, generated 
hybridomas that did not express CD8 (Carbone et al., 1988b). The loss 
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of CD8 expression was attributed to transcriptional inhibition and 
appeared to correlate with remethylation of the CD8 gene (Carbone et 
al., 1988b). 

These observations are consistent with the finding that treatment of 
CD8+ T cells with the DNA methylation antagonist 5-azacytidine in- 
duced CD4 expression (Richardson et al., 1986). Infection of CD8+ T 
cells by human herpesvirus-6 (HHV-6) also induced CD4 expression, as 
documented both at the transcriptional level and in terms of HIV-1 
receptor activity (Lusso et al., 1991). 

IV. CD4 DOWNREGULATION BY HIV-1: MECHANISMS AND VIRAL GENES 

A .  H N - I  Virion Structure, Genomic Organization, 
and Temporal Gene Expression 

HIV-1 is a lentivirus that shares with certain other retroviruses 
[including all lentiviruses, spumaviruses, and human T cell leukemia 
viruses (HTLV)] such characteristics as a complex genome and a tem- 
poral pattern of gene expression, attributable to the action of two viral 
regulatory proteins termed Tat and Rev (Cullen, 1991a). Simple retro- 
viruses such as murine leukemia viruses (MLVs) and avian leukemia 
viruses (ALV) lack these attributes. As depicted in Fig. 2, HIV-1 pos- 
sesses three genes that characterize all replication-competent retro- 
viruses; these are arranged in the order 5’ gag-pol-enu 3’ and are 
flanked by long terminal repeats (LTRs). Both LTRs are identical, but 
the 5’  LTR contains transcriptional regulatory sequences whereas the 
3’ LTR is functionally important for mRNA polyadenylation. HIV-1 
also possesses six regulatory genes: tat, rev, u i f ,  upr, upu, and nef(Cu1- 
len, 1991b). 

The gag gene encodes viral structural proteins of which p17 and p24 
comprise the matrix (MA) and capsid (CA), respectively, whereas p7/p9 
binds to viral RNA and make up the viral nucleocapsid (NC) (Fig. 2). 
The pol gene encodes three distinct enzymes: protease (pllPR), reverse 
transcriptase (p66/p51RT), and integrase (p32IN). The protease exists 
as a homodimer and processes the p16Wag-pl precursor protein into 
mature products. The reverse transcriptase (RT) is a heterodimer of 66 
and 51 kDa; the latter subunit lacks the C-terminal end associated 
with the former and that possesses RNase H activity. The RT possesses 
both RNA- and DNA-dependent DNA polymerase activity and cata- 
lyzes the synthesis of proviral DNA from viral genomic RNA. The 
viral integrase is responsible for integration of double-stranded viral 
DNA into host cell DNA. Finally, the enu gene encodes a precursor 
termed gp160 that oligomerizes prior to cleavage, generating the ma- 
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FIG. 2. HIV-1 virion structure, genomic organization, and temporal gene expression. 

ture envelope glycoproteins gp120 (SU) and gp41 (TM), which are pres- 
ent as either dimers or tetramers at the surface of the virion (Fig. 2) 
(reviewed in Camerini and Chen, 1991; Capon and Ward, 1991; Greene, 
1990, 1991). 

Both Tat and Rev have been extensively studied and shown to be 
essential for HIV-1 replication (Cullen, 1991a). These are both viral 
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RNA-binding proteins and are encoded by genes that are divided into 
two coding exons (Fig. 2). Tat binds to a specific RNA stem-loop struc- 
ture termed the TAR (trans-activation responsive element) located at 
the beginning of the R segment of the 5' LTR. Binding of Tat to the 
TAR dramatically increases HIV-1 LTRdriven gene expression, lead- 
ing to high levels of viral mRNA and proteins (Cullen, 1991a). Rev 
binds to a highly structured RNA segment termed the RRE (Rev re- 
sponsive element) located within the env gene. 

HIV-1 proteins are expressed in a temporally regulated fashion. The 
regulatory proteins Tat, Rev, and Nef are expressed during the early 
phase of viral gene expression whereas the gag, pol, env, vpu, vpr, and 
vifgene products are expressed later (Cullen, 1991a,b) (Fig. 2, bottom). 
This is due to the synthesis of the former proteins from fully spliced 
mRNAs (2-kb class), which are independent of Rev, whereas the latter 
proteins are generated from partially spliced (4-kb class) or unspliced 
(9-kb class) mRNAs that require.a threshold level of Rev protein for 
expression (Fig. 2, bottom). Thus, the switch from the early regulatory 
phase of HIV-1 gene expression to the late structural phase is con- 
trolled by levels of Rev protein (Cullen, 1991a). 

The function of Nef (negative factor) is controversial. Initially, this 
protein was shown to repress HIV-1 LTRdriven transcription, and de- 
letion of the nefgene was shown to enhance viral replication. However, 
subsequent reports did not corroborate these findings (reviewed in Cul- 
len, 1991b; Greene, 1990, 1991). Nef has also been shown to down- 
modulate cell surface CD4 expression (Garcia and Miller, 1991; Garcia 
et al., 1993; Guy et al., 1987). Vpu has been found only in HIV-1 and 
can enhance virion release from infected cells, possibly by inhibiting 
the budding of viral particles through intracytoplasmic membranes 
(Klimkait et al., 1990; Terwilliger et al., 1989). Vpu can also reduce 
CD4 levels (Willey et al., 1992a,b). Vif is important for infectivity, 
because virions produced from proviruses lacking vif are less infec- 
tious than wild-type virions. Vpr is virion associated and may enhance 
viral replication (reviewed in Cullen and Greene, 1990). 

This chapter focuses on the role of gp160, gp120, Vpu, and Nef in 
downmodulation of CD4. Both Vpu and gp160 are generated from the 
same bicistronic mRNA (4-kb class) during the late phase of viral 
replication and are dependent on Rev, whereas Nef is made during the 
early regulatory phase of HIV-1 gene expression (see Fig. 2, bottom). 

B. Factors Involved in HIV-1 -Associated CD4 Downmodulation 

HIV infection in culture with CD4+ lymphocytes, monocyte-derived 
macrophages, T cell lines, and monocytic cell lines leads to  cell surface 
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CD4 downmodulation (Folks et al., 1985; Geleziunas et al., 1991; Hoxie 
et al., 1985,1986a; Melendez-Guerrero et al., 1990; Salmon et al., 1988; 
Stevenson et al., 1987; Yuille et al., 1988). First, the masking of CD4 
may occur early in infection as a consequence of the binding of virions, 
soluble gp120, or gp120-anti-gp120 antibodies to  the cell surface (Am- 
adori et al., 1992; Hart and Cloyd, 1990; McDougal et al., 1986). In 
addition, binding to CD4 of soluble gp120 or gp120-anti-gp120 anti- 
bodies may cause CD4 internalization (Amadori et al., 1992; Cefai et 
al., 1992; Mittler and Hoffmann, 1989). Nef expression, which pre- 
cedes synthesis of HIV-1 structural proteins, may also cause cell sur- 
face CD4 downregulation (Garcia and Miller, 1991). 

During early HIV-1 viral production, CD4, along with other host 
proteins, was shown to associate with budding virions, representing 
another relatively early factor in cell surface CD4 depletion (Meerloo 
et al., 1992). A t  a later stage in the viral life cycle, CD4 expression may 
be affected at three different levels. First, CD4 transcript levels are 
reduced both in infected T cell lines and normal CD4+ lymphocytes 
(Geleziunas et al., 1991; Hoxie et al., 1986a; Salmon et al., 1988). Al- 
though mechanisms to explain this observation are ill defined, possible 
explanations include the outgrowth of low CD4-expressing variants 
that are resistant to HIV-l-induced cytopathicity (Lifson et al., 1986). 
Reduced levels of immunoprecipitable CD4 have also been observed 
(Hoxie et al., 1986a) and may be due to impaired translation of CD4 
mRNA (Geleziunas et al., 1991; Yuille et al., 1988) or Vpu-associated 
degradation of CD4 (Willey et al., 1992a,b). Finally, the formation of 
CD4-gp160 complexes may represent a further event in this process 
(Bour et al., 1991), because cell lines that expressed CD4 and the enu 
gene possessed such complexes and had reduced levels of cell surface 
CD4 (Crise et al., 1990; Jabbar and Nayak, 1990; Kawamura et al., 
1989; Stevenson et al., 1988) (Table 111). One consequence of cell sur- 
face CD4 depletion, by either gpl20-induced internalization or HIV-1 
infection, is refractoriness to  T cell activation mediated by the CD3- 
TCR complex (Cefai et al., 1992; Linette et al., 1988). This is most 
likely due to the absence of CD4, which serves as an important core- 
ceptor during this activation process (Janeway, 1992). 

C .  Maturation of gp160 

The enu gene encodes the gp160 precursor protein that is cleaved 
into the surface (SU) gp120 and transmembrane (TM) gp41 subunits. 
gp120 is responsible for CD4 recognition and is noncovalently associ- 
ated with gp41, which possesses fusion activity and anchors gp120 into 



234 ROMAS GELEZIUNAS et al. 

the viral envelope or plasma membrane (Fig. 2). This noncovalent link- 
age permits extensive shedding of gp120 (Schneider et al., 1986). 

gp160 is synthesized from a bicistronic mRNA that contains upu 
coding sequences at its 5' end (Schwartz et al., 1990). Synthesis of 
gp160 occurs when the upu AUG (initiation codon) is bypassed during 
ribosomal scanning (leaky scanning) of the bicistronic upu-enu mRNA 
molecules (Schwartz et al., 1992). The upu-enu mRNA is dependent on 
Rev for expression (Fig. 2, bottom). Rev functions by activating the 
transport of RRE-containing transcripts, such as upu-enu, from the 
nucleus to the cytoplasm. Rev, by binding to RRE-containing mRNA, 
may antagonize the interaction of splicing factors with such tran- 
scripts or may facilitate their interaction with components involved in 
nuclear export (Cullen, 1991a) (Fig. 2, bottom). In addition, Rev may be 
required for the translation of upu-enu mRNAs (Arrigo and Chen, 
1991). 

The presence of a leader sequence containing a hydrophobic signal 
peptide at the N terminus of gp160 (Ellerbrok et al., 1992) directs the 
nascent protein through the secretory pathway, that is, the ER and the 
Golgi apparatus (Earl et al., 1991; Willey et al., 1991). The leader 
sequence is removed by the signal peptidase (Fig. 3A) in the ER during 
translation, and the translocation process is stopped by a hydrophobic 
sequence of amino acids corresponding to the membrane anchorage 
region of gp41 (Fig. 3A) located at the C terminus (Hunter and 
Swanstrom, 1991). 

Early events of gp160 maturation occur in the ER. These include 
disulfide bond formation, folding into a conformation competent to 
bind CD4, addition of high-mannose oligosaccharide side chains 
through N-linked glycosylation of asparagine residues, and gp160 di- 
merization (Earl et al., 1991; Fennie and Lasky, 1989; Haseltine, 1991). 
The initially generated high-mannose structures of gp160 contain 
three glucose residues, which are removed by a-glucosidases I and I1 in 
the ER. Further trimming and addition of carbohydrates occurs in the 
Golgi complex (Elbein, 1991). Inhibitors of a-glucosidase activity have 
been shown to be effective antagonists of production of infectious 
HIV-1 (see below). 

Early events affecting gp160 in the ER occur in the following se- 
quence (Earl et al., 1991): disulfide bond formation (t,,, = 10 min), 
acquisition of CD4-binding competency (tllz = 15 min), and transient 
association with the heavy chain-binding protein (BiP, GRP78) (tl,, = 
25 mid,  which is believed to promote folding and oligomerization. In 
mammalian cells that expressed a secreted form of gp120, proper fold- 
ing and CD4 recognition occurred with a half-life of approximately 30 
min (Fennie and Lasky, 1989). Finally, dimerization of gp160 also 
takes place (tllP = 30 min) in the ER. Acquisition of CD4-binding 
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FIG. 3. HIV-1 envelope glycoproteins. (A) Linear representations of gp160 and 
gp120. (B) Hypothetical structure of a 1 2 0  and gp41 at cell or virion surface. [After 
Gallaher et al. (1989) and Leonard et al. (1990).] Amino acid numbering is according to 
Leonard et al. (1990) and begins with the first threonine residue of mature gp120. 

ability and dimerization were not affected by inhibitors of transport 
from the ER to the Golgi, proving that both events occur in the former 
compartment (Earl et al., 1991; Fennie and Lasky, 1989). 

Cleavage of gp160 and acquisition of complex carbohydrate struc- 
tures occur in the Golgi (Stein and Engleman, 1990) with an approxi- 
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mate half-life of 80 min (Earl et al., 1991). Approximately 50% of the 
gp120 cleavage product is shed by about 120 min (Earl et al., 1991). The 
lag between gp160 dimerization (tll2 = 30 min) and gp160 cleavage (t lI2 
= 80 min) thus represents a rate-limiting step of gp160 maturation 
and shedding of gp120. 

All 18 conserved cysteines of a recombinant gp120 molecule were 
shown to participate in 9 intrachain disulfide bonds forming 5 distinct 
loop structures (Leonard et al., 1990) important in tertiary structure 
(Fig. 3B). The first and fourth loops (C1 and V3) have single bonds 
whereas the loops formed by VIV2, C2, and V4C4 are maintained by 
nested disulfide bridges (Leonard et al., 1990) (Fig. 3B). When cys- 
teines at positions 266 or 301, in V3, were changed to valines, the 
resulting virus was noninfectious due to poor gp160 cleavage and im- 
pairment of CD4 binding (Tschachler et al., 1990). Alterations of 
Cys-388 in V4 or Cys-415 in C4 likewise reduced levels of binding to 
CD4. However, substitution of Cys-355, which pairs with Cys-388 to 
form a disulfide bond in V4, was less detrimental to infectiousness. 
Finally, substitution of Cys-101 in V1 or Cys-166 involved in both V1 
and V2 (Fig. 3B) yielded viruses that were both noninfectious and 
defective in syncytium-inducing ability (Tschachler et al., 1990). 

The gp120 molecule is heavily glycosylated, with approximately half 
of its mass being carbohydrate. All 24 asparagine residues of a recom- 
binant gp120, representing consensus sites for N-glycosylation (Asn- 
X-Ser/Thr), were shown to be linked to oligosaccharides (Leonard et aZ., 
1990) (Fig. 3B). However, only half of these sites were conserved 
among sequenced HIV-1 isolates (Myers, 1990). When gp160 dimers 
transit the Golgi apparatus, 13 of 24 high-mannose core oligosac- 
charides in gp120 were found to be further modified by mannosidases 
and glycosyltransferases, which trim mannose residues and add addi- 
tional N-acetylglucosamine, galactose, fucose, and sialic acid residues 
(Ellerbrok et al., 1992; Leonard et al., 1990; Ratner et al., 1991) (Fig. 
3B). The oligosaccharide side chains of gp160, gp120, and gp41 were 
also shown to be sulfated (Bernstein and Compans, 1992) by sulfo- 
transferases in the trans-Golgi, contributing to overall negative 
charge. 

The asparagine residues of the N-linked glycosylation sites of gp120 
are less critical for viral infectivity than the cysteines in disulfide 
bonds. When biologically active molecular clones of HIV-1 (HXBB) 
containing mutations in each of the asparagine residues of gp120 were 
examined for infectiousness, only five such mutants (positions 58,111, 
167, 232, and 246) showed delayed replication kinetics (Lee et al., 
1992a). In another study on the NL4-3 molecular clone of HIV-1, aspar- 
agine mutations at positions 211, 246, and 259 had no effect on viral 
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replication, whereas alteration of Asp-232 caused noninfectiousness in 
spite of the ability to bind CD4 (Willey et al., 198813). In the latter 
study, mutations at adjacent residues possessed similar phenotypes, 
suggesting that loss of the N-glycosylation site was not responsible for 
loss of infectivity. Thus, most N-linked glycosylation sites on gp120 
are dispensable for infectivity (Gabuzda et al., 1992). Consistent with 
these results is that enzymatically deglycosylated gp120 is capable of 
recognizing CD4, albeit with reduced affinity (Fenouillet et al., 1989). 
However, deglycosylation of gp120 in the presence of detergent caused 
a 50-fold lower affinity for CD4 (Matthews et al., 1987), suggesting 
that carbohydrates may be required to maintain the gp120 conforma- 
tion necessary for CD4 binding (Fennie and Lasky, 1989). 

Among a large number of aminosugar derivatives, N-butyldeoxyno- 
jirimicin, an inhibitor of ER-associated a-glucosidase I, was shown to 
have potent anti-HIV-1 activity (Karpas et al., 1988). Treatment of 
infected cells with either this compound or castanospermine, another 
a-glucosidase I inhibitor, blocked syncytium formation and yielded 
particles of diminished infectivity (Gruters et al., 1987; Montefiori et 
al., 1988; Pal et al., 1989; Ratner et al., 1991; Walker et al., 1987). This 
inhibitory effect was attributed, in part, to reduced and delayed pro- 
cessing of gp160 into gp120 and gp41, probably due to incomplete 
oligosaccharide processing (Montefiori et al., 1988; Pal et al., 1989; 
Ratner et al., 1991; Walker et al., 1987). Both gp160 and gp120 from 
drug-treated cells had higher than usual molecular weights, suggest- 
ing incomplete trimming of oligosaccharides. However, gp120 from 
such cells maintained ability to bind CD4. In contrast, inhibitors of the 
Golgi-associated mannosidases I and I1 did not possess anti-HIV-1 
properties (Gruters et al., 1987; Pal et al., 1989). Thus, N-linked oli- 
gosaccharides are most likely important for both proper folding of 
viral glycoproteins and their conformational stabilization (Paulson, 
1989). Carbohydrates on HIV-1 envelope glycoproteins may also re- 
duce their immunogenicity by masking polypeptide epitopes. 

Viral gp160 dimerizes prior to its exit from the ER (Earl et al., 1991). 
Proper folding and oligomerization of retroviral envelope precursors 
were shown to be a prerequisite for transport to  the Golgi complex 
(Hunter and Swanstrom, 1991). however, oligomerization is not suffi- 
cient to  ensure transport of viral envelope glycoproteins to  the Golgi. A 
HIV-1 proviral clone carrying a single amino acid substitution in the 
C2 domain of gp120 (Fig. 3) was reported to form a 1 6 0  oligomers that 
were blocked in the ER (Willey et al., 1991), possibly representing 
improper folding. 

Homodimers of gp160 are associated noncovalently and may further 
lead to formation of tetramers (Earl et al., 1990, 1991; Schawaller et 
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al., 1989). The oligomeric glycoprotein structures are cleaved into 
gp120 and gp41 subunits in the Golgi (Stein and Engleman, 1990) and 
are subsequently expressed at both the cell and viral surface as dimers 
or tetramers (Schawaller et al., 1989; Weiss et al., 1990) (Fig. 2). These 
oligomeric structures are capable of multimeric association with CD4, 
which may increase the avidity of HIV binding (Earl et al., 1990). The 
N-terminal ectodomain of gp41, which contains the fusion peptide of 
this molecule, also represents the oligomer assembly region (Earl et 
al., 1990; Pinter et al., 1989) (Fig. 3). HIV-1 gp160 can form hetero- 
dimers with envelope precursors of both SIV and HIV-2, indicating 
that all three primate lentiviruses possess functionally conserved en- 
velope assembly domains (Doms et al., 1990). 

Proteolytic cleavage of gp160 into gp120 and gp41 exposes the N-ter- 
minal fusion domain of the latter protein, which is essential for HIV-1 
infectivity and membrane fusion (Bosch and Pawlita, 1990; McCune et 
al., 1988; O’Hara et al., 1990; Willey et al., 1989). The last four C-ter- 
minal amino acids of gp120 (Arg-Glu-Lys-Arg) correspond to a con- 
served endoproteolytic cleavage site (Arg-X-Lys/Arg-Arg) found in 
many retroviral envelopes (McCune et al., 1988). Cleavage occurs after 
the last arginine residue. Replacement of this entire sequence, or sub- 
stitution of the last arginine residue by serine or threonine (but not 
lysine), abolished gp160 processing and syncytium formation but did 
not affect transport and cell surface expression of gp160 (Bosch and 
Pawlita, 1990; Freed et al., 1992; Guo et al., 1990; McCune et al., 1988). 
Other mutations that affected an alternative upstream cleavage site 
(Bosch and Pawlita, 1990) or residues in both cleavage sites (Willey et 
al., 1991) had similar effects on viral infectivity. 

The host enzyme that cleaves gp160 is furin, a subtilisin-like eu- 
karyotic endoprotease found in the Golgi complex (Hallenberger et al., 
1992). Furin is also responsible for cleavage of an avian influenza virus 
hemagglutinin that bears the same consensus proteolytic site as gp160 
(Hallenberger et al., 1992). Although less than 25% of gp160 is cleaved 
into gp120 and gp41 in T lymphocytes, with the remainder undergoing 
lysosomal degradation (Earl et al., 1991; Willey et al., 1988a), the effi- 
ciency of this cleavage may vary among cell types (Earl et al., 1991). 

D .  Functional Domains of gp120 and gp41 

Important functions and regions of gp120 include CD4 binding (C4), 
macrophage tropism, sensitivity to  neutralization by soluble CD4, fu- 
sion (V3), infectivity (C2), and association with gp41 (Cl, C3, C4, C5) 
(Fig. 3B). Important regions of gp41 include the hydrophobic trans- 
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membrane anchor and amino-terminal fusion domain (Fig. 3A), as 
well as the dimerization and gp120 association regions. 

1. gp120 

Comparison of several HIV-1 gp120 sequences revealed five hyper- 
variable regions (Vl-5) interspersed with conserved regions (Cl-5) 
(Fig. 3). Computer-generated models suggest that the hypervariable 
regions represent potential antigenic sites (Modrow et al., 1987; Willey 
et al., 1986). 

Site-specific mutagenesis that altered amino acids Leu-231, 
Asn-232, or Gly-233 of the C2 domain of gp120 eliminated infectious- 
ness but not binding to CD4 (Willey et aZ., 1988b). Spontaneous tissue 
culture revertants had a mutation changing Ser-98 to Asn in V1. Muta- 
genesis of the Ser-98 codon, followed by in uitro passage, generated a 
third revertant involving a change in V3 (Arg-274-Ile) (Willey et al., 
1989). Thus, following binding to CD4 all three regions (C2, V1, and 
V3) may lie in proximity or interact with one other; all three are 
apparently involved in mediating HIV-1 infectivity subsequent to re- 
ceptor binding. 

Epitope mapping involving gpl20-specific MAbs and mutagenesis 
studies have shown that a C4 region that includes amino acids 389- 
407 is essential in CD4 binding (Cordonnier et al., 1989; Kowalski et 
al., 1987; Lasky et al., 1987; Olshevsky et al., 1990). Substitution of 
Trp-397 also impaired association between gp120 and gp41, suggesting 
that alterations in tertiary structure had occurred and implicating 
(Olshevsky et al., 1990) this residue in CD4 binding through preserva- 
tion of proper conformation. Alteration of three other residues in C4, 
that is, Ala-403 (Lasky et al., 19871, Ile-390 (Cordonnier et al., 1989), 
and Asp-427 (Olshevsky et al., 19901, also diminished CD4 binding, 
although altering Asp-427 did not destroy gp120 conformation 
(Olshevsky et al., 1990). 

Mutagenesis outside of C4 did not significantly disrupt gp120 tertia- 
ry structure but decreased CD4-binding ability. Alterations of Asp-338 
and Glu-340 in C3 led to  greater than 100-fold reductions in CD4 
binding whereas changing Thr-227 in the C2 region had less dramatic 
consequences (Olshevsky et al., 1990). Thus, residues proximal to and 
including Trp-397 may be important in preserving a conformation able 
to bind CD4 whereas residues Thr-227 (C2), Asp-338 ((231, Glu-340 
((231, and Asp-427 (C4) may be proximal (on a properly folded gp120 
molecule) and directly contact CD4. Human monoclonal antibodies 
that blocked gp120-CD4 binding reacted against four discontinuous 
regions of gp120 that overlapped the discontinuous residues involved 
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in CD4 binding (Thali et al., 1992). Consistent with these epitope map- 
ping and mutagenesis studies is the observation that a truncated 
gp120 molecule could still bind CD4, in spite of deletions of 62 N-ter- 
minal residues of C1, 20 C-terminal residues of C5, and deletions of 
the V1, V2, and V3 domains (Pollard et al., 1992). 

The principal neutralizing determinant (PND) of HIV-1 is located in 
the V3 loop of gp120, deletion of which renders gp120 unable to  elicit 
neutralizing antibodies (Javaherian et al., 1989). The neutralizing de- 
terminant is located at the tip of the loop and contains a conserved 
Gly,,,-Pr~~~~-Gly,,, motif that is flanked by highly variable residues. 
Antibodies against V3 block infectivity and inhibit cell fusion but do 
not prevent gp120 binding to CD4 (Javaherian et al., 1989; Skinner et 
al., 1988). Mutations that altered either the Gly-Pro-Gly sequence or 
certain adjacent residues, including Arg-285 (depending on viral iso- 
late), abolished or greatly reduced syncytium formation and infec- 
tiousness (Freed et al., 1990; Grimaila et al., 1992; Page et al., 1992). 
However, such mutants were not impaired in either synthesis, process- 
ing, or transport of gp160, or in its ability to bind CD4, demonstrating 
the involvement of V3 in fusion. 

Several reports suggest that the tip of V3 may represent a cleavage 
site for trypsin-like proteases. First, sequence homology exists be- 
tween this site and a peptide inhibitor of trypsin-like proteases that 
block HIV-l-associated syncytium formation (Hattori et al., 1989). 
Second, the V3 loop can be cleaved by trypsin-like enzymes (Clements 
et al., 1991). Third, recombinant gp120 can sometimes be naturally 
cleaved at the tip of V3 (Stephen et al., 1990). Thus, HIV-1 attachment 
to the CD4 receptor may be followed by cleavage of the V3 loop medi- 
ated by membrane-associated proteases, leading to alterations in 
gp120 conformation and exposure of the N-terminal fusion domain of 
gp41. 

Studies have suggested a structural relationship between the V3 
loop and the C4 domain. Lysates of cells (prepared with ionic deter- 
gents) that expressed wild-type or V3-deleted HIV glycoproteins were 
treated with MAbs reactive with the discontinuous epitopes involved 
in CD4 binding. These MAbs precipitated wild-type glycoproteins less 
efficiently than did V3 loop mutants (Wyatt et al., 1992), possibly due 
to V3 loop masking of the CD4-binding region. Moreover, amino acid 
changes at the base of the V3 loop (Arg-268) or in C4 (Trp-397) re- 
sulted in increased exposure of epitopes that overlap the CD4-binding 
region (Wyatt et al., 1992). 

The V3 loop has also been shown to be the major determinant of 
macrophage and T cell line tropism and susceptibility to neutralization 
by soluble CD4 (sCD4) (Hwang et al., 1991,1992; O’Brien et al., 1992). 
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Replacement of V3 loop sequences of T cell tropic isolates with se- 
quences of macrophage-tropic isolates conferred ability to grow in mac- 
rophages (Hwang et al., 1991; O’Brien et al., 1990; Shioda et al., 1991). 
Hybrid viruses bearing only macrophage-tropic V3 loop sequences 
were more resistant than the original T cell-tropic viruses to sCD4 
neutralization, a resistance shared with primary macrophage-tropic 
HIV-1 isolates (Hwang et al., 1992; O’Brien et al., 1992). V3 loop se- 
quences of macrophage-tropic HIV-1 types, which predominate early 
in disease, resemble each other and represent a consensus sequence, 
unlike the divergent V3 loops of T cell line-tropic viruses that become 
more prevalent as disease progresses (Hwang et al., 1991). 

Amino acid insertions at the N termini of both gp120 and gp41 
disrupted association of these molecules (Kowalski et al., 1987) (Fig. 3). 
Substitution mutations in the highly conserved N-terminal C1 domain, 
encompassing residues 6 to 15 of gp120, or deletion of the N-terminal 
31 amino acids of gp120 disrupted noncovalent gp120 and gp41 asso- 
ciation (Helseth et al., 1991; Ivey-Hoyle et al., 1991). Additional resi- 
dues at  positions 461-471 located in the conserved C5 domain of the 
C-terminal end of gp120 are also important for gp41 association. Less 
dramatic dissociation of gp120 and gp41 was observed following muta- 
genesis that altered residues in both C3 (residues 350-354) and C4 
(residues 390-397 and 403-408) (Helseth et al., 1991). Mutations and 
deletions in these regions did not significantly affect gp160 processing 
or CD4 binding, suggesting that overall conformation of gp120 was not 
disrupted. Other mutations in gp120 that caused disruption of gp120- 
gp41 association also decreased gp160 processing and CD4 binding 
(Helseth et al., 1991). 

2. gP41 

Of two hydrophobic regions in gp41, one represents a trans- 
membrane anchor that causes the molecule to  span the lipid bilayer 
while the other, at  the N terminus (Fig. 3A), shares sequence homology 
with the fusion peptides of ortho- and paramyxoviruses (Bosch et al., 
1989; Gallaher, 1987). Linker insertion mutations in the N-terminal 
HIV-1 fusion domain or replacement of apolar with polar amino acids 
reduced or abolished syncytium formation (Bosch et al., 1989; Freed et 
al., 1989; Kowalski et al., 1987). One such mutation (Val-2+Glu), re- 
sulted in an envelope that dominantly interfered with wild-type enve- 
lope in this respect (Freed et al., 1990). In SIV, mutations that in- 
creased the overall hydrophobicity of the equivalent gp32 N terminus 
enhanced syncytium formation (Bosch et al., 1989). Introduction of 
mutations into the fusogenic domain of SIV gp32 abolished syncytium 
formation, perhaps by interfering with fusion peptide insertion into 



242 ROMAS GELEZIUNAS et al. 

lipid bilayers (Horth et al., 1991). Thus, the hydrophobic N terminus of 
HIV-1 gp41 (Fig. 3A) and its equivalent region in SIV gp32 are in- 
volved in membrane fusion. 

The putative structure of gp41 was predicted on the basis of TM 
protein properties and comparisons with the structure of the influenza 
virus HA, transmembrane protein (Gallaher et al., 1989) (Fig. 3B). 
Two features distinguish gp41 from other retroviral TM properties. 
First, its membrane-spanning segment, like that of certain other len- 
tiviruses, is punctuated by one or two polar residues; in the case of 
most other retroviruses, this region consists of uninterrupted apolar 
amino acids (Hunter and Swanstrom, 1991). Alteration of the two 
charged residues (Lys and Arg) in this segment abolished both syn- 
cytium formation and viral replication, without affecting other enve- 
lope properties such as binding to CD4 (Helseth et al., 1990). 

Second, the cytoplasmic domains of retroviral TM properties are 
usually short (22-38 residues); however, that of HIV-1 is relatively 
long (150 residues) (Hunter and Swanstrom, 1991). Introduction of 
deletions or termination codons in the cytoplasmic domain of gp41 
showed that this region was important for infectiousness (Dubay et al., 
1992b; Freed et al., 1991), although not for envelope glycoprotein syn- 
thesis or processing, CD4 binding, or syncytium formation. Thus, the 
cytoplasmic domain of gp41 is crucial for HIV-1 entry although not for 
receptor binding or membrane fusion. Loss of infectiousness may be 
related to reduced incorporation of truncated gp41 mutants into vir- 
ions (Dubay et al., 1992b). Vif, an auxiliary protein important in infec- 
tivity, possesses cysteine protease activity that can modify the cyto- 
plasmic domain of gp41 (Guy et al., 1991). 

Other mutational studies showed that elimination of N-linked gly- 
cosylation sites in the gp41 ectodomain reduced viral infectivity (De- 
dera et al., 1992b; Lee et al., 1992b). The gp41 ectodomain contains a 
leucine zipper-like motif that is located downstream of the fusion pep- 
tide. This motif is also found in other retroviral TM proteins and may 
be important in envelope oligomerization. Replacement of a central 
isoleucine residue of this motif by nonconservative amino acids inhib- 
ited fusion and infectivity without affecting envelope synthesis, oli- 
gomer formation, transport, and processing (Dubay et al., 1992a). 
These results demonstrate the importance of the gp41 leucine zipper 
motif in membrane fusion. The C-terminal half of this motif repre- 
sents an immunosuppressive sequence (residues 581-597) homologous 
to that found in TM proteins of other retroviruses (Ruegg and Strand, 
1990). When internalized, this peptide inhibits lymphoproliferation by 
antagonizing PKC activity (Ruegg and Strand, 1990). Two closely 
spaced cysteine residues immediately downstream of the leucine zip- 
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per motif are highly conserved among animal retroviruses; mutation 
of either residue caused loss of viral infectivity attributable to im- 
paired gp160 processing (Dedera et al., 1992a; Syu et al., 1991). 

HIV-1 infection of cells lacking LFA-1, a leukocyte adhesion mole- 
cule, was not accompanied by syncytium formation (Pantaleo et al., 
1991). Antibodies against the p subunit (CD18) of LFA-1 were shown 
to inhibit virus-induced syncytium formation (Valentin et al., 1990), 
indicating that both LFA-1 and gp41 may be required for cell fusion, 
and that interactions may be likely to occur between these two mole- 
cules. 

E.  CD4-gpl60 Complexes 

Productive HIV-1 infection leads to cell surface depletion of CD4 
(Geleziunas et aZ., 1991; Hoxie et aZ., 1986a; Salmon et al., 1988; Stev- 
enson et al., 1987; Yuille et al., 1988), rendering cells refractory to 
superinfection (Hart and Cloyd, 1990). First, treatment of chronically 
infected promyelocytic cells with tumor necrosis factor (Y (TNF-a) led 
to a dramatic increase in HIV-1 expression concomitant with a rapid 
decrease of expression of cell surface CD4 (Butera et al., 1991). Surface 
CD4 levels returned to normal when viral expression dropped, follow- 
ing TNF-a activation, but could again by' downmodulated following 
HIV reactivation. Second, treatment of a chronically HIV-l-infected T 
cell line that lacked cell surface CD4 with a Tat antagonist caused 
inhibition of viral replication and increased cell surface CD4 represen- 
tation (Shahabuddin et al., 1992). Finally, acute infection of a T cell 
line caused a progressive decline of surface CD4 over 9 days, concomi- 
tant with increasing resistance to infection by HIV-2 (Hart and Cloyd, 
1990). In each case, levels of cell surface CD4 were inversely propor- 
tional to  abundance of gp160. 

In productively infected cells, CD4 is associated intracellularly with 
gp160 and sometimes with gp120 (Bour et al., 1991; Geleziunas et al., 
1991; Hoxie et al., 1986a; Salmon et al., 1988; Shahabuddin et al., 1992; 
Yuille et al., 1988). Formation of CD4-gp160 complexes sequesters 
CD4 within the cell. The role of such complexes in cell surface CD4 
depletion was demonstrated in both lymphocytic and monocytic cells 
that were engineered to express gp160; diminished levels of surface 
CD4 were inversely correlated with levels of gp160 (Kawamura et al., 
1989; Stevenson et al., 1988). Expression of gp160 in CD4+ cells but not 
in CD4- cells resulted in cytopathic effects, leading to death in the 
absence of syncytium formation (Koga et al., 1990b). These complexes 
also include the p561ck PTK, by virtue of its association with CD4; the 
complexes are formed and retained in the ER, thus inhibiting matura- 
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tion and transport of both CD4 and gp160 (Bour et al., 1991; Crise et 
al., 1990; Crise and Rose, 1992; Jabbar and Nayak, 1990). In contrast, 
complexes between CD4 and gp120 can be efficiently transported from 
the ER (Crise et al., 1990), suggesting that membrane anchorage of 
gp160, mediated by the C-terminal transmembrane segment in gp41, 
is necessary for ER retention of CD4. These complexes have been visu- 
alized by immunoelectron microscopy near nuclear pores (Koga et al., 
1990a); they may impair transport to the nucleus of a protein that 
contains a nuclear localization signal (Koga et al., 1991). CD4-gp120 
binding can induce conformational changes in gp120 (Sattentau and 
Moore, 1991) and envelope monomers or misfolded oligomers fail to 
exit the ER (Hunter and Swanstrom, 1991). Therefore, CD4-gp160 
complexes in the ER are likely to cause conformational alterations in 
gp160 that may prevent proper oligomerization or misfolding of oli- 
gomers and impair exit from the ER. 

A potential therapeutic strategy is derived from the mutual reten- 
tion of CD4 and gp160 in the ER (Buonocore and Rose, 1990). Coex- 
pression of gp120 or gp160 with a soluble CD4 molecule, containing 
the four external Ig domains fused to the sequence Ser-Glu-Lys-Asp- 
Glu-Leu (i.e., the last four residues comprise an ER retention signal 
for secreted proteins), inhibited both secretion of gp120 and syncytium 
formation (Buonocore and Rose, 1990). In addition, HIV infection of a 
transfected high-level CDCexpressing cell line did not lead to deple- 
tion of cell surface CD4 (Marshall et al., 1992). Furthermore, infection 
of this cell line was abortive, with no syncytium formation taking 
place. This may be partly explained by the fact that the processing of 
gp160 in infected T lymphocytes is inefficient (i.e., only 5-15% of total 
gp160 is cleaved to gp120 and gp41) (Willey et al., 1988a). Thus, over- 
expression of CD4 may result in more abundant complex formation 
with gp160, eliminating both processing into mature glycoproteins and 
virus production. 

F. Vpu 

The Vpu (virion protein U) gene encodes a small, 81-amino acid 
protein of 16 kDa that is unique to HIV-1 (Cohen et al., 1988; Strebel et 
al., 1988). Several laboratory strains of HIV-1 lack functional upu 
genes due to either mutated initiation codons or premature stop codons 
(Cohen et al., 1988; Strebel et al., 1988). Thus, the upu product may be 
dispensable for HIV-1 replication in uitro. Vpu is found neither at the 
cell surface nor in virions (Klimkait et al., 1990; Strebel et al., 1988, 
1989); it has a hydrophobic N terminus and appears to be an integral 
membrane phosphoprotein that localizes to the perinuclear region of 
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the cytoplasm. Vpu shares certain structural properties, including 
size, hydropathicity, membrane association, and domain structure, 
with the influenza virus M2 protein (Klimkait et al., 1990). M2 is a 
tetrameric transmembrane protein that was reported to be a pH- 
regulated ion channel that could be blocked by amantadine (Pinto et 
al., 1992). Infection of T cells by Vpu- mutants of HIV resulted in 
accumulation of intracellular viral proteins and impaired virion re- 
lease. However, infectiousness of individual viral particles was not 
diminished. In addition, infection by Vpu- particles caused more cyto- 
toxicity and syncytium formation than that associated with Vpu+ vi- 
ruses (Klimkait et al., 1990; Strebel et al., 1988,1989; Terwilliger et al., 
1989; Yao et al., 1992). Transmission electron microscopy revealed both 
greater numbers of plasma membrane-associated virus and viral bud- 
ding into cytoplasmic vacuoles in the case of Vpu- viruses (Klimkait et 
al., 19901, a finding similar to the intracytoplasmic accumulation of 
viral particles seen in HIV-infected macrophages (Orenstein et al., 
1988). This effect of Vpu on virion release is independent of both 
envelope glycoprotein and CD4 expression (Yao et al., 1992) and sug- 
gests that Vpu may facilitate either rates of viral assembly or release. 

Finally, Vpu can induce CD4 degradation in the presence of gp160 
(Willey et al., 1992a,b). Retention of CD4 in the ER, in the form of 
gp160 complexes, is essential for this process (Willey et al., 1992b). 
Vpu-mediated degradation of CD4 was also shown to occur in the ab- 
sence of gp160 through use of a mutated CD4 with a C-terminal dele- 
tion that causes natural ER retention (Shin et al., 1991a) or by treat- 
ment of cells with brefeldin A, a compound that blocks protein export 
from the ER (Willey et al., 1992b). Thus, gp160 functions to retain CD4 
in the ER (Willey et al., 1992b); by degrading CD4, Vpu reduces the 
extent of CD4-gp160 complexes and enhances gp160 processing. 

G .  Nef 

Nef is a 27-kDa, myristylated, cell membrane-associated phospho- 
protein derived from an open reading frame at the 3’ end of the HIV-1 
genome (Fig. 2). The nef gene is conserved in both HIV-2 and SIV but is 
dispensable for HIV-1 replication in uitro. Nef is expressed during the 
early regulatory phase of HIV-1 gene expression, along with Tat and 
Rev (reviewed in Cullen, 1992b; Greene, 1990, 1991). 

Nef was reported to bind GTP and to possess both GTPase and auto- 
phosphorylation activities (Guy et al., 1987). In addition, HIV-1 Nef- 
mutants replicated to higher levels than did wild-type viruses. Nef 
may act as an HIV-1 LTRspecific transcriptional repressor, possibly by 
inhibiting induction of NF-KB (Niederman et al., 1992). However, these 
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properties of Nef are controversial and have not been confirmed by 
others (reviewed in Cullen, 1991b; Greene, 1990, 1991). Allelic varia- 
tion in the effects of Nef may help to explain these contradictory 
findings, including ability to retard or accelerate HIV-1 replication 
(Terwilliger et al., 1991; Zazopoulos and Haseltine, 1993). HIV ob- 
tained early in disease was shown to be repressed in cell lines that 
expressed Nef, whereas viruses from patients with advanced disease 
were not affected in the same host cells (Cheng-Mayer et al., 1989). The 
Nef of SIV has also been shown to be dispensable in tissue culture 
systems, but is essential for viral replication and disease progression 
in rhesus monkeys (Kestler et al., 1991). 

Expression of Nef in several, but not all CD4+ cell lines led to CD4 
surface downregulation (Cheng-Mayer et al., 1989; Gama-Sosa et al., 
1991; Garcia and Miller, 1991; Garcia et al., 1993; Guy et al., 1987). Nef 
did not affect either CD4 mRNA or protein levels. Nef also caused cell 
surface depletion of a cytoplasmic tail triple serine mutant of CD4 
(Garcia and Miller, 19911, which cannot be induced to internalize by 
phorbol esters (see above and Fig. 1). However, the cytoplasmic tail of 
CD4 was necessary for Nef-mediated CD4 downmodulation, because 
both a cytoplasmic tail deletion mutant of CD4 and a hybrid CD4/CD8 
molecule, containing only the first two N-terminal Ig domains of CD4, 
were not affected by Nef expression (Garcia et al., 1993). 

V. CONCLUSION 

There are, at  present, at least three HIV-1 gene products known to be 
involved in cell surface CD4 downmodulation. These are Nef, Vpu, and 
gp160. Whereas Nef is expressed during the early phase of HIV-1 gene 
expression, both Vpu and gp160, which appear to  act coordinately, are 
expressed during the late phase. This functional convergence of HIV-1 
proteins on cell surface CD4 downmodulation, whether specific or non- 
specific in activity, suggests that this event is of critical importance in 
the life cycle of HIV-1. Thus, a greater understanding of this phenome- 
non may provide insights into the interplay between retroviral and 
host cell proteins involved in immunological responsiveness and signal 
transduction. Such knowledge could uncover mechanisms that lead to 
virus-induced cytopathology, that are, in turn, responsible for immu- 
nodeficiency. 

In addition, further elucidation of the mechanisms that underlie 
CD4 cell surface downmodulation may lead to the development of nov- 
el strategies aimed at preventing such events, and potentially to the 
development of new therapeutic approaches. 
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