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Abstract: Amino acid transporters (AATs) are a kind of membrane proteins that mediate the transport
of amino acids across cell membranes in higher plants. The AAT proteins are involved in regulating
plant cell growth and various developmental processes. However, the biological function of this
gene family in cotton fiber development is not clear. In this study, 190, 190, 101, and 94 full-length
AAT genes were identified from Gossypium hirsutum, G. barbadense, G. arboreum, and G. raimondii. A
total of 575 AAT genes from the four cotton species were divided into two subfamilies and 12 clades
based on phylogenetic analysis. The AAT genes in the four cotton species were distributed on all
the chromosomes. All GhAAT genes contain multiple exons, and each GhAAT protein has multiple
conserved motifs. Transcriptional profiling and RT qPCR analysis showed that four GhATT genes
tend to express specifically at the fiber initiation stage. Eight genes tend to express specifically at the
fiber elongation and maturity stage, and four genes tend to express specifically at the fiber initiation
and elongation stages. Our results provide a solid basis for further elucidating the biological function
of AAT genes related to cotton fiber development and offer valuable genetic resources for crop
improvement in the future.

Keywords: AAT; gene family; fiber; gene expression profile; cotton

1. Introduction

Amino acids are essential in the growth and development of plants. Plants can absorb
amino acids from the soil (exogenous amino acid) or synthesize amino acids themselves
(endogenous amino acid). Amino acids can be absorbed and utilized directly by plant roots
and transported to root tips, flowers, growing leaves, fruits, and seeds through xylem and
phloem to sustain plant growth and development. The process of amino acid transport
usually requires the participation of amino acid transporters [1,2].

Amino acid transporters (AATs) are a kind of membrane proteins that mediate the
transport of amino acids across the cell membrane in higher plants and play an indis-
pensable role in all processes of plant growth and development. AATs participate in
long-distance amino acid transport, response to pathogens and abiotic stress, etc., [3–9].
According to the sequence similarity of AAT proteins, the AAT family in plants mainly
includes the amino acid polyamine choline transporter (APC) subfamily and the amino
acid/auxin permease (AAAP) subfamily—also known as the amino acid transporter (ATF)
subfamily. Subsequently, the APC subfamily is divided into three groups, including cationic
amino acid transporters (CATs), amino acid/choline transporters (ACTs), and polyamine
H+ symporters (PHSs). The AAAP subfamily contains at least eight groups, including
amino acid permeases (AAPs), lysine and histidine transporters (LHTs), γ-aminobutyric
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acid transporters (GATs), proline transporters (ProTs), auxin transporters (AUXs), amino
acid transporters-like (ATLs), aromatic and neutral amino acid transporters (ANTs), and
tyrosine-specific transporters (TTPs) [9–13]. The AAT gene family has been systematically
identified and analyzed in several model or crop species. At least 189 AAT genes have
been identified as members of the AAT family in soybean (Glycine max L.) [14], 296 genes
in wheat (Triticum aestivum L.) [9], 85 genes in rice (Oryza sativa L.) [15], 72 genes in potato
(Solanum tuberosum L.) [2], and 107 genes in maize (Zea mays L.) [16]. Although the AAT
family had been identified in various plants, the most detailed study of its function has
been carried out in Arabidopsis thaliana.

As far as the AAAP subfamily is concerned, eight AAPs have been found in A. thaliana,
with 9–10 transmembrane regions. Except for AtAAP7, which is in the chloroplast vesicle
membrane, others are in the plasma membrane [5]. Fischer and others first discovered
AAP gene in A. thaliana in 1995 through amino acid deletion and absorption experiments
in yeast strains [17]. AtAAP1 is expressed in roots and seeds, transports glutamic acid,
histidine, and neutral amino acids in soil, and regulates endosperm absorption of amino
acids [18,19]. AtAAP2 is expressed in phloem and transports glutamic acid (Glu) and
neutral amino acids from the xylem to phloem [17,20,21]; AtAAP3 is mainly expressed in
vascular bundles of roots, which may have the function of absorbing neutral and basic
amino acids from phloem or transporting amino acids from soil [20]; AtAAP4 is expressed
in leaves, stems and flowers and transports neutral amino acids proline (Pro) and valine
(Val) [17]. AtAAP5 is expressed in all tissues of A. thaliana and plays an essential role
in absorbing anionic, neutral, and cationic amino acids in roots [21]; AtAAP6 is mainly
expressed in xylem and transports tryptophan, proline, and neutral and acidic amino
acids [17,22]; AtAAP8 is expressed in seeds, and the mutation of this gene can reduce
the seed setting rate of A. thaliana by about 50% [23]. Like the function of AAPs in A.
thaliana, AAPs have also been studied in rice, wheat, maize, poplar, pea, broad bean, and
other plants, all of which show that AAPs play an essential role in plant growth and
development [2,24,25]. There are 10 LHT members in A. thaliana, all of which are located
in the plasma membrane. However, only two LHT members have been characterized;
AtLHT1 is highly expressed in young leaves, flowers, and pods. AtLHT1 transports neutral
and acidic amino acid [26]. AtLHT6 is mainly expressed in root and transports acidic amino
acids, glutamine, and alanine [27]. ProTs usually transport glycine, betaine, imino proline,
amino acid a-aminobutyric acid (GABA), and quaternary ammonium compounds. There
are three ProTs members in A. thaliana, all of which are located in the plasma membrane.
AtProT1 is expressed in phloem or phloem parenchyma cells, which proves that the protein
plays a role in the long-distance transport of amino acids. AtProT2 is expressed in roots and
transports proline and glycine betaine. AtProT3 is expressed in the leaf epidermis, and its
protein is involved in the transport of proline [8,22,28–30]. There are two GAT members in
A. thaliana. AtGAT1, a transporter of GABA,ω-amino fatty acids, and butylamine, is highly
expressed in flowers [31]. ANTs are a new class of amino acid transporters. There are four
ANT members in A. thaliana, which are expressed in all organs. In addition to aromatic
and neutral amino acids and arginine, the protein can also transport indole-3-acetic acid
and 2,4-dichlorophenoxyacetic acid [26].

There are 17 members of the APC family in A. thaliana, of which nine belong to the
CAT clade, five to the PHS clade, and one to the ACT clade. The CAT clade consists of nine
members with high sequence similarity, mainly located on the plasma membrane and tono-
plast, with 11–14 transmembrane domains [32]. AtCAT1 can promote the high-throughput
absorption of essential amino acids and belongs to a specific nitrogen-containing metabolite
transport gene, which is less expressed in roots and highly expressed in leaves, flowers,
and pods up-regulated rapidly after infection with pseudomonas lanceolate. It is inferred
that it may be involved in the systematic response to the attack of pathogens in plants [7,33].
AtCAT2, AtCAT4, and AtCAT9 are all located in the vesicular membrane, and AtCAT2
is related to the concentration of amino acids in leaves. It is speculated that AtCAT2 is
associated with the transport of amino acids through the tonoplast [7]. AtCAT5 is expressed
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in seeds. It is supposed that the gene may play a role in seed germination or seedling
development by transporting essential amino acids from peduncle to seeds. AtCAT3 is
located on the endoplasmic reticulum and transports cationic, neutral, or acidic amino
acids. AtCAT6 is expressed in roots and transports cationic neutral or acidic amino acids.
The expression of AtCAT8 is high in stem tip meristem and root tip meristem and transports
cationic neutral or acidic amino acids [6].

Cotton is an important cash crop that can produce natural fiber and be used in
textile [34,35]. The yield and quality of cotton fiber are the most critical factors determining
the economic value of cotton [36]. Cotton has two categories: cultivated species and wild
species. In taxonomy, cotton belongs to the Gossypium genus [37]. There are 4 subgenus
and 52 species in the genus Gossypium L., including 45 diploid cotton species (2n = 2x = 26)
with eight genomic types, A, B, C, D, E, F, G, and K, and 7 allotetraploid cotton species
(2n = 4x = 52). The genome types of allotetraploid cotton species are AD. The AD genome
is formed by interspecies hybridizing the genome A and the genome D [36,38].

Evolutionary analysis showed that the D subgenome of allotetraploid cotton species
originated from the D5 genome of G.raimondii L. The A subgenome of allotetraploid cotton
species, A1 genome of G. herbaceum L., and A2 genome of G. arboreum L. were all originated
from the A0 genome of extinct cotton [39].

There are four cultivated types of cotton: G. herbaceum L. (A1), G. arboreum L. (A2),
G. hirsutum L. ((AD) 1), and G. barbadense L. ((AD) 2). G. hirsutum L. is widely popularized
because of its high yield and strong adaptability, accounting for more than 95% of the
cultivated cotton area. G. barbadense L. has good fiber quality and low yield. It can only be
planted in a few arid areas [39,40]. There is interspecific reproductive isolation between
G. hirsutum L. and G. barbadense L. How to combine their advantages and cultivate cotton
varieties with high yield, high quality, and wide adaptability has always been a research
hotspot [41,42].

Cotton fiber cell is a single-celled trichome formed by the differentiation and growth
of ovule epidermal cells. It is the non-branching single cell with the fastest growth rate
and the longest development time in higher plants, and it is also the best model for the
study of single cells [43,44]. The development of cotton fiber consists of five overlapping
stages: fiber initiation (−3 DPA–5 DPA), elongation (5–16 DPA), transition (16–20 DPA),
secondary cell wall biosynthesis (20–40 DPA), and maturation (40–50 DPA) [45–47]. There
are two types of cotton fibers, long fiber (2.5 to 3.5 cm in length) and adherent fuzz fiber
(5 to 10 mm in length). Long fiber is the essential raw material in the textile industry,
which begins to develop on the day of anthesis (0 DPA). The fiber initiation stage of cotton
is the critical stage determining cotton yield. Because this stage determines how many
ovule epidermal cells develop into fibers. About 25% to 30% of the ovule epidermis cells
eventually differentiate into cotton fibers [47,48]. The elongation, transition, secondary
cell wall biosynthesis are the key stages determining fiber development and quality [46].
The analysis of the molecular mechanism of cotton fiber development will provide an
essential theoretical basis for increasing cotton yield and improving cotton fiber quality.
The publication of G. raimondii L., G. arboreum L., G. hirsutum L., G. herbaceum L., and
G. barbadense L. genomes [40,48–52] will provide an essential theoretical basis for our
comprehensive analysis of specific gene families.

The AAT gene family has been systematically identified in many plants [53–55]. Due
to the complex genomic structure of cotton, little is known about AAT genes in cotton.
Here, we analyzed the whole genome of the cotton AAT gene family. We identified amino
acid transport protein (AAT) genes in four cotton species: the tetraploid G. hirsutum L. and
G. barbadense L., which had 190 and 190 AAT genes respectively. Their putative extent
parental diploids G. arboreum L. and G. raimondii L. had 101 and 104 AATs, respectively.

To explore the functions of AAT genes in cotton fiber development, we analyzed the
expression profiles of GhAAT genes during cotton fiber development. We found that some
AAT genes play an important role in fiber development. The findings from this study will
lay a foundation to understand the genomic organization and functional structure of the
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AAT gene family in the available genomes of four species of cotton that will be useful in
characterization of the functional genomics.

2. Materials and Methods
2.1. Identification of AAT Genes in Cotton

The four genome files of G. arboreum (CRI, version 1.0) [50], G. raimondii (JGI, ver-
sion 2.0) [49], G. hirsutum (HAU, version 1.1) [42,52,56], and G. barbadense (ZJU, ver-
sion 1.1) [41] were downloaded from the Cotton Functional Genomics Database (Cot-
tonFGD) (https://cottonfgd.org/, accessed on 10 July 2021) [56]. The genome sequences of
A. thaliana were retrieved from JGI (https://phytozome.jgi.doe.gov/pz/portal.html, ac-
cessed on 10 July 2021). The Hidden Markov Model (HMM) profile of AA_trans (PF01490)
and AA_permease (PF00324) were downloaded from Pfam (https://pfam.xfam.org, ac-
cessed on 10 July 2021). Then we used HMMER 3.0 software (http://www.hmmer.org/,
accessed on 10 July 2021) with an e-value of 1 × 10−5 as the threshold to acquire the AAT
protein sequences who including PF01490 or PF00324, which are most probably members
of the AAT gene family. All putative AATs were confirmed by motif scanning on Pfam
(https://pfam.xfam.org, accessed on 10 July 2021), and the genes contained AA_trans do-
main or AA_permease domain was employed for further analysis. The transmembrane
domain was predicted using TMHMM Server v2.0 (http://www.cbs.dtu.dk/services/
TMHMM/, accessed on 10 July 2021). We retrieved some biochemical parameters of AAT
proteins in G. hirsutum L., such as isoelectric points (pIs), molecular weights (MWs), Grand
Average of Hydropathy, and charge by using Cotton Functional Genomic Database (Cot-
tonFGD) (https://cottonfgd.org/, accessed on 10 July 2021) [56]. We also retrieved the
exons and introns structures of AAT genes in G. hirsutum L. by using Cotton Functional
Genomic Database (CottonFGD) (https://cottonfgd.org/, accessed on 10 July 2021) [56].
For predicting the subcellular location predict of GhAAT proteins, we used the website
WOLF-PSORT (https://wolfpsort.hgc.jp/, accessed on 10 July 2021) [57].

2.2. Sequence Alignment and Phylogenetic Analysis

The full-length amino acid sequence of G. hirsutum, G. arboreum, G. raimondii, G.
barbadense, and A. thaliana encoded by AAT genes were aligned using the online ClustalW
program (https://www.genome.jp/tools-bin/clustalw, accessed on 10 July 2021) with
default settings. We constructed the maximum likelihood (ML) trees with 1000 bootstrap
replicates using the Poisson substitution model with default parameters in MEGAX [58],
and the trees were modified by the EvolVeiw (https://www.evolgenius.info/evolview,
accessed on 10 July 2021) [59].

2.3. Chromosomal Locations of AATs from Four G. Species

Genomic sequences, CDS sequences, and GFF (general feature format) information of
all four species were downloaded from Cotton Functional Genomic Database (CottonFGD)
(https://cottonfgd.org/, accessed on 10 July 2021) [56]. The physical chromosome locations
of all AATs members were visualized by TBtools software [60].

2.4. Gene Duplication and Synteny Analysis in Different G. Species

The synteny analysis between duplicated gene pairs from four cotton species, G.
hirsutum L., G. arboreum L., G. raimondii L., and G. barbadense L., was analyzed by using
MCScanX software and JCVI [61]. The results were drawn by simple Circos software
(http://circos.ca/, accessed on 10 July 2021) [62].

2.5. Calculation of Selection Pressure

The homologous gene pairs of four cotton species (G. arboreum L., G. raimondii L., G.
hirsutum L., and G. barbadense L.) were identified by MCSCanX [61]. We calculated the
non-synonymous to the synonymous mutations rate (Ka/Ks) of homologous genes to
examine the selection pressure. Selection pressure analysis was performed by calculation of
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the Ka (non-synonymous substitution rate) and Ks (synonymous substitution rate) values
of repetitive genes using KaKs_Calculator 2.0 software [63].

2.6. Analysis of the Conserved Protein Motifs and Gene Structure

The Gene Structure Display Server (GSDS) online tool (http://gsds.gao-lab.org/,
accessed on 10 July 2021) [64] was used to visualize the structures, including genomic
sequences and positions of exons and introns of GhAATs. The Multiple EM for Motif
Elicitation (MEME) program [65] was used to analyze the conserved protein motifs of the
whole protein sequences of GhAATs. The parameters of which were as follows: the optimal
motif width was between 6 and 200 residues, the maximum number of motifs was set to
20, the motif number distributed in sequences was set to 0 or 1, and the remainder of the
parameters were set to system defaults. The phylogenetic tree figure, along with gene
structure and conserved protein motifs, was drawn with TBTools software [60] using MAST
file from MEME website, NWK file from phylogenetic tree analysis, and GFF3 genome file
of G. hirsutum L.

2.7. Analysis of AATs Promoter Regions

The 5′ untranslated regions 2000 bp sequence upstream of the transcription start site
(TTS) in the genomic DNA sequence of GhAATs as promoters were extracted from the
CottonFGD database (https://cottonfgd.org/, accessed on 10 July 2021) [56]. The online
software HOMER (http://homer.ucsd.edu/homer/, accessed on 10 July 2021) was used to
predict Cis-acting elements in promotor regions of GhAAT genes [66].

2.8. Gene Ontology (GO) Annotation/Gene Enrichment Analysis

We used the Cotton functional genomic database (CottonFGD) (https://cottonfgd.org,
accessed on 10 July 2021) to determine the functional classification of GhAATs genes,
including biological process, cellular, and molecular functions [56].

2.9. Gene Expression Pattern Analysis

We collected the ovules of G. hirsutum L. TM-1 in the following six stages: −3 DPA,
−1 DPA, 0 DPA, 1 DPA, 3 DPA, and 5 DPA, and three biological repeats were collected in
each stage. We also collected the fibers of G. hirsutum L. in the following five stages: 7 DPA,
10 DPA, 15 DPA, 20 DPA, and 30 DPA, and three biological repeats were collected in each
stage. All samples were immediately frozen in liquid nitrogen and stored at −80 ◦C [47].
Total RNA was extracted by the Total RNA Extraction Kit (R1200) (Beijing Solarbio Science
& Technology Co., Ltd., Beijing, China) from all the samples. The Goldenstar™ RT6 cDNA
Synthesis Kit (Beijing Tskingke Biotech Co., Ltd., Beijing, China) was used to reverse the
extracted RNA to obtain the first-strand cDNA for transcriptomic analysis. cDNA libraries
were constructed and subjected to 101-cycle paired-end sequencing on an Illumina HiSeq
4000 platform at Berry Genomics (Beijing, China). The data were normalized using the
reads per kilobase of exon model per million mapped reads (FPKM) algorithm. The FPKM
value of all genes in G. hirsutum L. cultivar Texas Marker-1 (TM-1) during fiber development
is shown in Table S26. The GhAATs with an FPKM > 1 or log2 (1 + FPKM) > 1 at least in
one fiber development stage were thought to be expressed in ovules and fibers and were
employed for further analysis. The genes were divided into specific and nonspecific
expressions using the formula in previous study [38]. According to this formula, we wrote
a script using Python for expression and tissue specificity analysis (Additional file1). The
expression heatmaps were visualized by TBtools [60].

2.10. RNA Extraction and RT qPCR Analysis

Plant total RNA was extracted by the Total RNA Extraction Kit (R1200) (Beijing
Solarbio Science & Technology Co., Ltd., Beijing, China). The reverse transcription kit
was the PrimeScript™ II 1st Strand cDNA Synthesis Kit (TAKARA, Dalian, China). It
was used to reverse the extracted RNA to obtain the first-strand cDNA for transcriptomic
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and RT qPCR analysis. The expression heatmap was visualized by Tbtools [60]. The
fluorescent quantitative kit was the Taq Pro Universal SYBR qPCR Master Mix (Q712-
02) (Vazyme Biotech Co., Ltd, Nanjing China). The data were calculated according to
the 2−∆∆ CT method. The G. hirsutum L. the His3 (GhHis3) gene were used as reference
controls [48]. According to the candidate gene sequence, a relatively specific primer
for real-time fluorescence quantitative PCR was designed by Primer3 software, and the
amplification product was 150–300 bp. The RTqPCR primers used in this study are shown
in Table S23. All primers were synthesized by (Sangon Biotech Co., Ltd, Shanghai, China).

3. Results
3.1. Genome Wide Identification of AATs in G. raimondii L., G. arboreum L., G. hirsutum L., and
G. barbadense L.

In this study, we identified 190, 190, 101, and 94 full-length amino acid transporter
(AAT) genes from G. hirsutum L. (allotetraploid cotton), G. barbadense L. (allotetraploid cot-
ton), G. arboreum L. (diploid cotton), and G. raimondii L. (diploid cotton) respectively. It was
confirmed that the AAAP subfamily protein contained an AAT-trans domain, and the APC
subfamily protein sequence contained one or more AA_permease or AA_permease_2. Be-
sides, the CAT group belonged to the APC subfamily and specifically has an AA_permease_C
characteristic domain.

The identified AATs members of the four cotton species were named according to their
chromosomal locations. To facilitate comparison, the GhAATs are also named according
to their evolutionary relationship with A. thaliana. Gh, Gb, Ga, Gr, and At were used as
prefixes before the names of AAT genes from G. hirsutum L., G. barbadense L., G. arboreum L.,
G. raimondii L., and A. thaliana, respectively. The detailed results are shown in Tables S1–S5.

Subsequently, we determined the features of the AATs members of the G. hirsutum L.
including genomic length (bp), protein length (aa), CDS length (bp), locus ID with corre-
sponding chromosome number, strand polarity, start and end points, predicted isoelectric
points (PI), predicted masses and protein molecular weights (MW) which were shown
in Table S1. The protein length of GhAAT genes ranged from 139 (GhAAT111, localized
on Ghir_D09 chromosome) to 980 (GhLAT15, localized on Ghir_D12 chromosome) amino
acids (aa). The isoelectric point (PI) of GhAAT genes varied from 4.75 (GhAtLb8) to 9.66
(GhLHT13). The numbers of TM (transmembrane) in GhAAT family members ranged from
3 (GhAAP25) to 14 (GhAAPL2). We found all the GhAAT proteins were located in the plasma
membrane (Table S1).

3.2. Sequence Alignment and Phylogenetic Analysis

To examine the evolutionary relationships of AAT genes in G. hirsutum L., phylogenetic
analysis of all 190 GhAAT protein sequences was performed to construct the unrooted tree
based on multiple sequence alignment, using the maximum likelihood (ML) method in
MEGA X. Based on previous AAT family study in other organisms, we directly divided
GhAAT members into two main subfamilies—AAAP subfamily and APC subfamily. The
AAAP subfamily could be further divided into ten groups, including AAP, LHT, GAT, ProT,
AUX, ATLa, ANT, ATLb, AAPL, and TTP. The APC subfamily was composed mainly of
three groups—PHS, ACT, and CAT groups, respectively. The AAAP and the APC subfamily
contained 143 and 47 members, respectively. In the AAAP subfamily, we discovered that
AAP was the largest group, including 28 AAT members. AAPL and TTP were the smallest
groups, with only two AAT members each. The other groups contained 24 (LHT), 10 (GAT),
6 (ProT), 17 (AUX), 22 (ATLa), 10 (ANT), and 22 (ATL). In the APC family, we discovered
that CAT was the largest group, including 28 AAT members, ACT was the smallest group
with only four AAT members, and PHS contained 15 members (Figure S1 and Table S1).

A. thaliana contained 63 AATs (AtAATs) members. To examine the evolutionary and
orthologous relationships of AAT genes between G. hirsutum L. and A. thaliana, 63 AtAATs
and 190 GhAATs protein sequences were performed to construct the phylogenetic tree,
using the maximum likelihood (ML) method in MEGA X, which were also divided into
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13 groups (Figure 1). However, all 63 AtAATs were distributed in all groups except group
AAPL, specific for G. hirsutum L., containing only two GhAATs—GhAAPL1 and GhAAPL2.
Interestingly, when the AAT proteins of G. hirsutum L. and A. thaliana were used to construct
the phylogenetic tree, two genes GhGAT3 and GhGAT8, which initially belonged to the
GAT group, were divided into the ProT group, which indicated that GAT and ProT might
evolve in the same direction, and GhGAT3 and GhGAT8 had homology with A. thaliana and
cotton ProT group genes (Figure 1).

Figure 1. Phylogenetic tree of GhAAT (G. hirsutum L. AAT) and AtAAT (A. thaliana AAT) proteins. 190 GhAATs from G.
hirsutum L. marked by red pentagrams and 63 AtAATs from A. thaliana marked by blue cycle. The phylogenetic tree was
generated using MEGAX via the maximum likelihood (ML) method with 1000 bootstrap replicates. All 190 GhAATs and 63
AtAATs were divided into 13 subgroups which were highlighted by different colors (AAP, LHT, GAT, ProT, AUX, ATLa,
ANT, ATLb, AAPL, TTP, PHS, ACT, and CAT).
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To study the evolutionary relationship between allotetraploid G. hirsutum L. and G.
barbadense L. and diploid cotton G. arboreum L. and G. raimondii L., we used the same
method to construct a phylogenetic tree based on the protein sequences of AAT families of
four cotton species. The results showed that all cotton AAT family proteins were divided
into 12 clearly defined clades, almost consistent with the above two evolutionary trees,
each clade contained family genes from diploid and allotetraploid cotton species. The
AAPL group that existed separately in the G. hirsutum L. phylogenetic tree was divided
into the AAP family in the phylogenetic tree of four cotton species. It is suggested that the
two AAPL family genes may have similar functions to AAP group genes (Figure S2).

3.3. Chromosomal Locations of AATs from Four Gossypium Species

To better understand the distribution mechanism of AAT family genes on cotton
chromosomes, genomes, and subgenomes and analyze their structure, we mapped the
chromosomal maps of 575 AAT members of two allotetraploid cotton species, G. hirsutum
L. and G. barbadense L., and two diploid cotton species, G. raimondii L. and G. arboreum L.
Among the 190 AAT identified in G. hirsutum L., 94 genes were located on 13 chromosomes
of GhAt (A subgenome of G. hirsutum L. genome), and the remaining 96 genes were found
on 13 chromosomes of GhDt (D subgenome of G. hirsutum L. genome) (Figure 2 and
Table S6). The number of GhAATs on GhAt and GhDt was close to 1:1. The number and
distribution of GhAATs on homologous chromosomes of different subgenomes were highly
similar. GhAt05 (13) and GhDt04 (13) had the most number of AAT genes, while GhAt08
(2) and GhDt08 (3) had the least number of AAT genes, and there are 3 to 11 on other
chromosomes (Figure 2). Besides, except for (GhAt06-GhDt06), (GhAt07-GhDt07), and
(GhAt13-GhDt13), the number of genes on the chromosome of subgenome A is different
from that of the homologous chromosome of subgenome D (Figure 2 and Table S6). The
AAT gene numbers distributed on each chromosome of Gossypiums are showed in Table S6.

Among the 190 AAT genes of G. barbadense L., 189 locates on 26 chromosomes, and
the other one locates on a scaffold (Figure S3 and Table S6). GbAt (A subgenome of G.
barbadesnse genome) contains 96 genes, GbDt (D subgenome of G. barbadesnse genome)
contains 93 AATs. Like G. hirsutum L., the number of GbAATs on GbAt and GbDt was
close to 1:1, and the number and distribution of GbAATs on homologous chromosomes
of different subgenomes were highly similar. The number of genes on GbAt05 was the
most, with 14 GbAAT members, and the number of genes on GbAt07, GbDt07, and GbDt08
was the least, with only three genes (Figure S3 and Table S6). Of the 101 identified AAT
genes in G. arboreum L., 100 were mapped to 13 chromosomes, and only one AAT was
located on a scaffold (Figure S4 and Table S6). All 94 AAT genes of G. raimondii L. were
unevenly distributed on 13 chromosomes (Figure S5 and Table S6). The number of D12
and D13 genes was the most, with 13 genes, while D01, D03, and D04 genes were the
least, with only three genes. The A and D subgenomes of allotetraploid G. hirsutum L.
and G. barbadense L. were compared with their diploid G. arboreum L. and G. raimondii L.,
respectively. It was found that the number and distribution of genes on the chromosomes
of two tetraploid cotton A and D subgenomes were almost the same as those of diploid
cotton A and D genomes.
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Figure 2. Chromosomal distribution of AATs in G. hirsutum L. The scale represented megabases (Mb). The chromosome
IDs were indicated beside each vertical bar. The AATs were displayed on different chromosomes. Green bars represented
the physical maps of chromosomes in G. hirsutum L. and the purple short arc linked genes were the tandem repeat genes
in GhAATs.

3.4. Gene Duplication and Synteny Analysis in Different Gossypium Species

The gene family’s evolution has experienced three processes: whole genome duplica-
tion or polyploidization, segmental duplication, and tandem duplication. They provide
the main forces driving the formation of gene families and their evolution [9]. Based on
the open reading frame (ORF) sequence of all genes in each species, the AAT family genes
of G. hirsutum L., G. barbadense L., G. arboreum L., and G. raimondii L. were analyzed to
determine the gene duplication and collinear relationship.

A total of 202, 216, 32, and 41 gene-pairs with segmental duplication were discovered
in G. hirsutum L., G. barbadense L., G. arboretum, and G. raimondii, respectively (Figure 3
and Tables S7, S9, S11 and S13). As well, we identified 9, 5, 2, and 5 tandem duplicated
gene-pairs in corresponding species (Tables S8, S10, S12 and S14). All these results indicated
that both segmental and tandem duplication played essential roles in the expansion of AAT
family proteins in G. hirsutum L., G. barbadense L., G. arboreum L., and G. raimondii L., while
segmental duplication were predominantly present in four Gossipium species. In addition,
the distribution of genome-wide duplication gene pairs between four Gossipium species is
displayed in the Figure 4 and Tables S15–S21.



Plants 2021, 10, 2461 10 of 22

Figure 3. The syntenic relationship of GhAAT. The synteny of GhAATs in G. hirsutum L. marked with red lines. The grey
lines indicated all the synteny relationships in G. hirsutum L. genome.

Figure 4. The syntenic relationship between the AATs of four G. species. (a) The synteny of GhAATs between G. hirsutum L.
and G. arboreum L. labeled with red lines and the synteny of GhAATs between G. hirsutum L. and G. raimondii L. labeled with
blue lines. The grey lines indicated all the syntenic relationships in three G. genomes. (b) The synteny of GbAATs between G.
barbadense L. and G. arboreum L. labeled with red lines and the synteny of GbAATs between G. barbadense L. and G. raimondii
L. labeled with blue lines. The grey lines indicated all the syntenic relationships in three G. genomes. (c) The synteny of
GhAATs between G. hirsutum L. and G. barbadense L. labeled with red lines and the synteny of GbAATs between G. barbadense
L. and G. hirsutum L. labeled with blue lines. The grey lines indicated all the syntenic relationships in two G. genomes.
(d) The synteny of GaAATs between G. arboreum L. and G. raimondii L. labeled with red lines.
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3.5. Selective Pressure Analysis of AAT Genes in Cotton

Calculating the replacement rates of non-synonymous (Ka) and synonymous (Ks)
is an effective method to evaluate the homologous sequence variation of proteins in
different species or classifications with unknown evolutionary status [32]. The value
of Ka/Ks represents the ratio of Ka and Ks of two homologous protein-coding genes.
Ka/Ks > 1 indicates positive selection, while Ka/Ks = 1 indicates neutral selection, and
Ka/Ks < 1 indicates purifying or stabilizing selection. The Ka/Ks value of one pair of
GhAAT paralogous genes in G. hirsutum L. was greater than one, accounting for 0.47% of
them (1/211), the Ka/Ks values of the rest of them were in the range of 0 and 0.79. The
Ka/Ks values of 9 pairs of AAT orthologous genes between allotetraploid G. hirsutum L.
and G. barbadense L. were greater than 1, accounting for 3.05% (9/295), the Ka/Ks value
of one pair of them was greater than two, accounting for 0.34% of them (1/295), and the
Ka/Ks values of the rest of them were in the range of 0 and 0.99. The Ka/Ks values of
5 pairs of AAT orthologous genes between allotetraploid G. hirsutum L. and diploid G.
arboreum L. were greater than one, accounting for 3.47% of them (5/144), and the Ka/Ks
values of the rest of them were in the range of 0 and 0.97. The Ka/Ks values of four pairs
of AAT orthologous genes between allotetraploid G. hirsutum L. and diploid G. raimondii
L. were greater than one, accounting for 2.65% of them (4/151), the Ka/Ks values of two
pairs of them were greater than 2, accounting for 1.32% of them (2/151), and the rest were
in the range of 0 and 0.98. The Ka/Ks values of 8 pairs of AAT orthologous genes between
allotetraploid G. barbadense L. and diploid G. arboreum L. were greater than one, accounting
for 5.23% of them (8/153), and the Ka/Ks values of the rest of them were in the range of 0
and 0.97. The Ka/Ks values of 6 pairs of AAT orthologous genes between allotetraploid
G. barbadense L. and diploid G. raimondii L. were greater than one, accounting for 3.53%
of them (6/170), the Ka/Ks values of two pairs of them were great than 2, accounting for
1.18% of them (2/170), and the Ka/Ks values of the rest of them were in the range of 0 and
0.95. The Ka/Ks value of one pair of AAT paralogous genes in allotetraploid G. barbadense
L. was greater than 1, accounting for 0.45% of them (1/221), and the Ka/Ks values of the
rest of them were in the range of 0.02 and 0.88. The Ka/Ks values of AAT orthologous
genes between diploid cotton species G. arboreum L. and G. raimondii L. were in the range of
0.01 to 0.92. The Ka/Ks values of AAT paralogous genes in G. arboreum L. were in the range
of 0.02 and 0.37. The Ka/Ks values of AAT paralogous genes in G. raimondii L. ranged from
0.02 to 0.35 (Table S25).

3.6. Analysis of the Conserved Protein Motifs and Gene Structure

During the evolution of gene families, the diversification of protein domain is respon-
sible for the evolution of new protein function to acclimatize in the changing environment.
Therefore, the protein domain gene structure analysis was performed to identify the con-
served motifs present in GhAATs. Twenty possible motifs were identified in GhAAT
members by the Meme website. These motifs were regularly distributed in the 190 GhAATs.
These motifs are variable among clades but remain conservative in clades. LHT, GAT, ProT,
and AAAP clades were adjacent to each other in the evolutionary tree, and their motif
composition was similar. However, compared with LHT, GAT, and AAAP clades, ProT
clade lacked motif 7, motif 8, and motif 10. ATLa, ANT, and ATLb clades were in adjacent
positions in the evolutionary tree. Compared with other clades of the AAT family, motif 16
existed explicitly in these three clades. The motif composition of ANT and ATLb clades
was very similar. Compared with other clades of the AAT family, motif 9 and motif 19
were specific in the ATLa clade. Compared with other clades of the AAT family, motif 3,
motif 4, motif 6, motif 19, and motif 20 existed specifically in the AUX clade. The TTP clade
contained only one motif—motif 7. Motif 15 and motif 18 were ubiquitous in the three
clades of the APC clade (PHS, ACT, CAT). Unlike other clades of the AAT family, motif
13 existed specifically in the PHS clade, motif 2 existed specifically in the ACT clade, and
motif 5 existed specifically in the CAT clade (Figure 5b).
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Figure 5. Phylogenetic relationships, protein domains, and gene structure analysis of GhAATs.
(a) Phylogenetic analysis of GhAATs proteins using MEGAX via the maximum likelihood (ML)
method. (b) The conserved protein motifs of the amino acid sequences of GhAATs were analyzed
by the MEME. (c) The gene structures of GhAATs. Gene structure analysis was performed by Gene
Structure Display Server (GSDS). The CDSs, untranscipted regions (UTRs) and introns are indicated
with yellow rectangles, blue rectangles, and black lines, respectively.



Plants 2021, 10, 2461 13 of 22

Furthermore, we explored the structural diversity of GhAAT genes. The exon-intron
distribution pattern of the gene is related to the phylogeny of genes [67–69]. Gene structure
analysis showed consistent results to our phylogenetic analysis. The exon number of
GhAAT genes ranged from 1 to 12. The number of exons is different among different clades,
and the exon-intron composition of most GhAAT members in the same clade was similar
(Figure 5c and Table S1).

3.7. Gene Expression Pattern Analysis

Differential expression quantitative analysis FPKM (Fragments Per Kilobase of tran-
script per Million fragments mapped) refers to the number of fragments per thousand bases
of a gene per million fragments, which is related to the length and expression level of tran-
scripts, and can usually be used as transcript frequency or gene expression level. Among
the 190 GhAAT family genes, 121 genes were detected with FPKM > 1 in at least one stage
of the 11 stages of fiber development. Among the 121 genes, 16 genes were specifically ex-
pressed during fiber development, and the other 105 genes were nonspecific. According to
their expression patterns, 16 genes are grouped into three groups (a, b and c). Four GhAAT
genes in group A, GhLAT5, GhCAT14, GhATLb11, GhATLb18, tend to be expressed in the
early stage of ovule development (−3 DPA~1 DPA). There were 8 GhAAT genes in group
B, GhProT3, GhGAT10, GhLHT12, GhLHT24, GhATLb6, GhLAT13, GhGAT2, GhATLb2,
which were mainly expressed at fiber elongation and maturation stage (15 DPA~30 DPA).
There were four GhAAT genes in group C, GhANT9, GhAAP20, GhAAP14, GhCAT13,
which tended to be expressed at fiber initiation and elongation (3~15 DPA) (Figure 6).
We also randomly selected five genes for qPCR analysis. On the basis of transcriptomic
data and qPCR data, we confirm once again that GhProT3, GhLHT12, and GhLHT24 were
mainly expressed at fiber elongation and maturation stage (15 DPA~30 DPA). Moreover,
GhATLb11 and GhATLb18 were mainly expressed in the early stage of ovule development
(−3DPA~1 DPA). The expression trends of these genes during fiber development by qPCR
verification were consistent with those predicted by transcriptome data.

3.8. Analysis of GhAATs Promoter Regions

To illuminate the regulation network of the 16 specific expressed GhAATs, the 2000 bp
upstream regions from the transcript start site (TSS) of the 16 specific expressed and 105
nonspecific expressed GhAATs during fiber development were extracted and analyzed by
homer software. The promoters of the 105 nonspecific expressed GhAATs were used as a
background, and 23 conserved motifs were identified in most of the target gene promoters
and not in the background sequences. Previous studies have shown that bHLH, homeobox,
MYB, and WRKY transcription factors are related to cotton fiber development [46]. Among
the 23 conserved motifs, motif 7 was predicted to be bHLH transcription factor binding
site, motif 6 and motif 9 were predicted to be homeobox transcription factor binding sites,
motif 13 was predicted to be WRKY transcription factor binding site, and motif 23 was
the MYB transcription factor binding site (Table S22). These results suggested that bHLH,
homeobox, MYB and WRKY transcription factors might bind to the promoters of GhAATs,
leading to their specific expression during fiber development.
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Figure 6. Expression profiles of GhAATs during fiber development. The fiber development stages were shown on the
bottom; the gene names are shown on the right. This heatmap was clustered into three groups (A–C), which are marked
with different colors. Scale bars at the right represented log2 (FPKM + 1), Om3DPA: Ovule at minus 3 day post anthesis,
Om1DPA: Ovule at minus 1 day post anthesis, Oa0DPA: Ovule at 0 day post anthesis, Oa1DPA: Ovule at 1 day post anthesis,
Oa3DPA: Ovule at 3 day post anthesis, Oa5DPA: Ovule at 5 day post anthesis, F7DPA: Fiber at 7 day post anthesis, F10DPA:
Fiber at 10 day post anthesis, F15DPA: Fiber at 15 day post anthesis, F20DPA: Fiber at 20 day post anthesis and F30DPA:
Fiber at 30 day post anthesis.

4. Discussion

AAT family plays an essential role in plant growth and development and resistance to
stress [53]. However, it has not been reported that the AAT family is involved in cotton
fiber development. In this study, the function and expression pattern of the AAT genes in G.
hirsutum L. were analyzed systematically, and the characteristics of GhAATs were analyzed
at the genome level. In the present study, we identified and characterized members of the
AAT gene family in cotton through genome-wide analyses and studied their evolutionary
model and gene expression patterns during cotton fiber development. This study will help
us better understand the GhAAT genes and further study their function in the future.

According to previous reports, there are 85 AAT genes in rice (Oryza sativa L.) [15],
296 in wheat (Triticum aestivum L.) [9], 107 in maize (Zea mays L.) [16], 189 in soybean
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(Glycine max L.) [14], 63 in A. thaliana [15], and 72 in potato (Solanum tuberosum L.) [2].
Compared with other reported plants, allotetraploid cotton had more numerous amino
acid transporter genes, resulting from its allotetraploid genome and complex evolution.
For example, a total of 190 AAT genes were identified in cotton, and the number of GhAAT
genes was much more than that of other plants. Still, the number of AAT family genes of
G. hirsutum L. and G. barbadense L. was the same as that of allotetraploid soybean (Glycine
max L.) (Supplementary Tables S1 and S2) [14], which indicated that the AAT family genes
of allotetraploid G. hirsutum L. and G. barbadense L. expanded in the process of evolution
like other polyploid species [9]. Moreover, the number of AAT genes in two allotetraploid
cotton species, G. hirsutum L. (Gh) and G. barbadense L. (Gb) were about twice as many as
G. arboreum L. (Ga) and G. raimondii L. (Gr) (Supplementary Tables S1–S4). These results
indicated that the AAT gene family in allotetraploid cotton maybe undergo a large-scale
expansion in the process of evolution [9,68,70].

The gene structure and GhAAT protein motifs showed remarkable changes. Still,
the members of the same clade showed relative conservancy of gene structure in gene
structure and protein motifs, which provided some reference for follow-up functional
analysis (Figure 5). This also confirms that the AAT gene comes from the same ancestor
and may gradually evolve or and their amount in the genome may amplify.

The event of gene segmental duplication is significant in the process of gene family
amplification [71,72]. Previous studies in other plants have found that segmental duplica-
tion events are the main driving force for the evolution of AAT genes [9,73]. In this study,
it was found that most of the AAT genes in the four cotton species showed segmental
duplication. Still, few tandem repeats were found in cotton chromosomes, indicating that
segmental duplication plays a critical role in the amplification of the cotton AAT genes
(Supplementary Tables S7–S14) [74]. Taking G. hirsutum L. as an example, the collinear
analysis of G. hirsutum L. GhAAT genes showed 202 pairs of segmental duplication and
nine pairs of tandem repeats (Supplementary Tables S7 and S8). Based on these results,
it was speculated that in polyploidy, paralogous gene pairs are usually produced from
segmental duplication, and segmental duplication is the most critical factor in evolution.
There were genome-wide duplication gene pairs between G. arboreum and G. raimondii
(Supplementary Table S19). We speculated that these genes might be present in G. arboreum
L. and G. raimondii L. before the differentiation of genome A and D.

Our results found that some AAT genes in the allotetraploid subgenome A or subgenome
D were collinear with those in the diploid G. arboreum L. (A genome) or G. raimondii L. (D
genome), respectively. However, some AAT genes in subgenome A or subgenome D were
collinear with those in diploid G. raimondii L. (D genome) or G. arboreum L. (A genome),
respectively (Figure 4). We speculated that it might be that transposition events occurred
between subgenome A and subgenome D after the formation of allotetraploid cotton.

According to the sequence homology and classification of A. thaliana AAT family
genes [1], the 190 GhAAT proteins in G. hirsutum L. can be divided into 13 groups (Figure
S1). The AAT proteins from A. thaliana and G. hirsutum L. were distributed on the same
clade confirming that the main features of the AAT family had formed before these species
differentiated (Figure 1). Similarly, the AAT family genes of diploid cotton, G. arboreum
L., and G. raimondii L. were split into 12 groups by phylogenetic analysis (Figure S2).
These data suggest that AAT protein grouping was formed before diploid cotton evolved
into tetraploid cotton [9]. The classification of the GhAAT family was further confirmed
by protein conserved motif analysis. There are significant differences in the number
and distribution of conserved motif of AAT genes in different groups. In some groups,
there are some unique motif, almost conserved motifs, and the conserved motif of AAT
proteins in the same clade are highly similar, which indicates that these motifs are related
to the phylogeny of AAT genes (Figure 5). Although the conserved motifs of GhAAT
proteins are similar, there are also many differences in chemical and physical characteristics
(Supplementary Table S1). These differences may be due to the amino acid differences in
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the non-conserved regions of GhAAT proteins, which means that different GhAAT proteins
may evolve in different rates.

We analyzed the homologous sequence variation of four cotton species by calculat-
ing the replacement rates of non-synonymous (Ka) and synonymous (Ks). The results
showed that the Ka/Ks ratio of more than 95% of the homologous gene pairs of AAT
genes in four cotton species was less than one (Supplementary Table S25), indicating a
strong purifying or stabilizing selection in the evolution process of AAT genes in genus
Gossypium and the genes evolution in these plants was slow [75]. We found GhAAP16,
GhAAP18, GhANT4, GhANT9, GhATLa2, GhATLb19, GhATLb20, GhATLb4, GhATLb5,
GhATLb6, GhATLb9, GhCAT12, GhCAT13, GhCAT9, GhGAT5, GhGAT9, GhLAT13, Gh-
LAT5, GhLHT12, GhLHT4, GhProT2 and GhTTP2 were positive selected. GhLHT12,
GhANT9, GhATLb6, GhLAT5, GhLAT13, GhCAT13 tend to express specifically during
fiber development (Supplementary Tables S1 and S26). These results suggest that the genes
with positive selection may have experienced functional differentiation.

Gene expression pattern analysis can promote the identification of gene function.
To study the expression profile of AAT genes during fiber development in G. hirsutum
L., ovules or fibers at different developmental stages were sampled. The transcriptome
analysis of the GhAAT genes was carried out in G. hirsutum L. (Supplementary Table S26).
The results showed that among the 190 GhAAT family genes, 121 genes were expressed
during fiber development, and 16 genes were specifically expressed during fiber devel-
opment, while the other 105 genes were nonspecific (Figure 6). To verify the reliability
of the transcriptome data, we selected 5 of the 16 genes for qPCR verification, and the
expression trends were consistent with the transcriptome data (Figure 7). Among the 16
genes specifically expressed during fiber development, four genes tended to be expressed
at the early stage of ovule development (−3 DPA~1 DPA), eight genes were mainly ex-
pressed at fiber elongation and maturation stage (15 DPA~30 DPA), and four genes tended
to be expressed at fiber initiation and fiber elongation stage (3~15 DPA). It is worth noting
that there are differences in the process of phylogeny of some GhAAT genes, which are
closely related to the expression levels during fiber development. For example, among
the 16 genes specifically expressed during fiber development, the ATLb group contains
the most (four), but they are expressed explicitly at different fiber development stages.
GhATLb11 and GhATLb18 tend to express specifically at the fiber initiation stage, while
GhATLb6 and GhATLb2 genes are mainly expressed at the fiber elongation and maturity
stage. These results suggest that GhATLb group genes may play an important role in
fiber development and may be involved in the whole process from initiation, growth to
maturation of cotton fibers.

By analyzing the promoters of AAT family genes that are highly expressed during
G. hirsutum L. fiber development, we identified binding sites for transcription factors that
play an important role in fiber development, such as bHLH, Homeobox, MYB, and WRKY
transcription factors. These results suggest that the highly expressed AAT genes are likely
to be regulated by these transcription factors and participate in the biological process of
cotton fiber development (Supplementary Table S7).
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Figure 7. Expression patterns of AATs in different fiber development stages via RT qPCR. (a–e) Represent the expression
patterns of GhProT3, GhLHT12, GhLHT24, GhATLb11, GhATLb18 genes in different fiber development stages. Note: −3 DPA
to 30 DPA indicated by −3, −1, 0, 1, 3, 5, 7, 10, 15, 18, 26, 30 DPA. The error bars showed the standard deviation of three
biological replicates.

5. Conclusions

To sum up, we identified 190, 190, 101, and 94 full-length AAT genes from G. hirsutum
L., G. barbadense L., G. arboreum L., and G. raimondii L., respectively, and systematically
analyzed the AAT family genes, including gene evolution, gene structure, protein motif,
collinear relationship, cis-acting elements, GO, KEGG, and gene expression patterns. Be-
sides, we also obtained the expression patterns of AAT genes during fiber development in
G. hirsutum. We found 16 genes specifically expressed during fiber development, of which
four genes tended to be expressed explicitly at the fiber initiation stage, eight genes tended
to be expressed explicitly at the fiber elongation and maturity stage. Four genes tended
to be expressed explicitly at the fiber initiation and elongation stage (3~15 DPA). These
results laid a foundation for further elucidating the biological function of the AAT gene in
cotton, especially during cotton fiber development. These results also laid a foundation for
further studying the molecular mechanism of the AAT gene during fiber development in G.
hirsutum L.
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Abbreviations

AAT amino acid transporter
−3 DPA or Om3DPA Ovule at minus 3 day post anthesis
−1 DPA or Om1DPA Ovule at minus 1 day post anthesis
0 DPA or Oa0DPA Ovule at 0 day post anthesis
1 DPA or Oa1DPA Ovule at 1 day post anthesis
3 DPA or Oa3DPA Ovule at 3 day post anthesis
5 DPA or Oa5DPA Ovule at 5 day post anthesis
7 DPA or F7DPA Fiber at 7 day post anthesis
10 DPA or F10DPA Fiber at 10 day post anthesis
15 DPA or F15DPA Fiber at 15 day post anthesis
18 DPA or F18DPA Fiber at 18 day post anthesis
20 DPA or F20DPA Fiber at 20 day post anthesis
26 DPA or F26DPA Fiber at 26 day post anthesis
30 DPA or F30DPA Fiber at 30 day post anthesis.
G. Gossypium
Ka The replacement rate of non-synonymous
Ks The replacement rate of synonymous
RT qPCR Reverse transcription quantitative real-time PCR
FPKM Fragments Per Kilobase of transcript per Million fragments mapped
GhAt A genome of G. hirsutum L.
GhDt D genome of G. hirsutum L.G.
GbAt A genome of G. barbadense L.
GbDt D genome of G. barbadense L.
A. thaliana Arabidopsis thaliana
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