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The aryl hydrocarbon receptor (AHR) is a vertebrate protein that mediates the toxic and adaptive responses to dioxins
and related environmental pollutants. In an effort to better understand the details of this signal transduction pathway,
we employed the yeast S. cerevisiae as a model system. Through the use of arrayed yeast strains harboring ordered
deletions of open reading frames, we determined that 54 out of the 4,507 yeast genes examined significantly influence
AHR signal transduction. In an effort to describe the relationship between these modifying genes, we constructed a
network map based upon their known protein and genetic interactions. Monte Carlo simulations demonstrated that
this network represented a description of AHR signaling that was distinct from those generated by random chance. The
network map was then explored with a number of computational and experimental annotations. These analyses
revealed that the AHR signaling pathway is defined by at least five distinct signaling steps that are regulated by
functional modules of interacting modifiers. These modules can be described as mediating receptor folding, nuclear
translocation, transcriptional activation, receptor level, and a previously undescribed nuclear step related to the

receptor’s Per-Arnt-Sim domain.

Introduction

The aryl hydrocarbon receptor (AHR) is a ligand-activated
transcription factor found in a variety of vertebrate species.
The AHR is a prototype member of the Per-Arnt-Sim (PAS)
superfamily of signaling molecules. Members of this super-
family regulate cellular responses to a variety of environ-
mental stimuli, including pollutants, hypoxia, and external
light cues (Gu et al. 2000). Our initial interest in AHR biology
arose from its pivotal role in mediating the adaptive
metabolic response to both polycyclic aromatic hydrocarbons
(PAHs) and the toxic effects of more potent agonists like the
halogenated dioxins (Schmidt and Bradfield 1996; Whitlock
1999). More recently, it has been observed that the AHR plays
an important role in normal vascular development, suggest-
ing the existence of an endogenous ligand (Lahvis et al. 2000).
From the broader perspective, the AHR can be viewed as a
prototype of all PAS protein signaling. That is, what we learn
about AHR biology will have a direct influence on how we
think about PAS-mediated hypoxia, circadian, and devel-
opmental pathways.

An initial understanding of AHR signal transduction has
resulted from the biochemical and molecular studies that
have been performed over the past two decades (Schmidt and
Bradfield 1996; Whitlock 1999). The resultant model holds
that the unliganded AHR resides in the cytoplasm, where it is
associated with a dimer of the chaperone protein Hsp90 and
cochaperones such as ARA9/XAP2 and p23 (Pongratz et al.
1992; Carver and Bradfield 1997; Ma and Whitlock 1997;
Meyer et al. 1998; Kazlauskas et al. 1999). Upon binding
ligands, the cytoplasmic AHR translocates to the nucleus,
where it dimerizes with another PAS protein known as ARNT.
The AHR-ARNT heterodimer then binds to specific dioxin-
responsive enhancers (DREs) and transactivates a battery of
genes encoding xenobiotic-metabolizing enzymes, most nota-
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bly CYPIAI, CYPIA2, and CYPIBI (Schmidt and Bradfield
1996; Whitlock 1999). Transactivation of target genes has
been shown to be mediated through a variety of histone
acetyltransferases (HATs) and SWI/SNF coactivators, such as
SRC, p300/CBP, and BRG-1 (Kobayashi et al. 1997; Beischlag
et al. 2002; Wang and Hankinson 2002).

Although the initial model of AHR signaling provides a
valuable framework, its completeness has not yet been
assessed. That is, we have no estimates of the total number
of gene products involved in AHR signaling, nor can we be
sure we have identified all the important steps. Without these
estimates, it is difficult to gauge how much or how little we
understand about this pathway. In an effort to address these
issues, we employed the comprehensive set of gene deletions
available in a yeast model system to systematically identify
gene products that influence AHR function. We then
employed a protein interaction network (PIN) strategy to
provide a framework to describe AHR signaling. By coupling
both computational and experimental annotations, we were
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able to deduce the minimum number of genetic loci and
signaling events required for AHR signaling.

Results

Rationale

A number of laboratories have demonstrated that the yeast
Saccharomyces cerevisiae is a valuable model system for the study
of signaling by mammalian nuclear receptors (Garabedian
and Yamamoto 1992; McEwan 2001). Although there is no
yeast ortholog of the AHR, it has been also shown that AHR
signaling can be recapitulated in yeast and that this system
can be used to identify novel players in AHR biology (Carver
et al. 1994; Whitelaw et al. 1995). The experimental
advantages of S. cerevisiae as a tool to study AHR signaling
are related to the yeast’s fundamental similarities with
mammalian systems, the more thorough characterization of
its smaller genome, and the availability of its specific genomic
tools, such as arrayed deletions of each individual open
reading frame (ORF) and large-scale databases describing
protein and genetic interactions (Winzeler et al. 1999;
Resnick and Cox 2000; Kennedy 2002; Mewes et al. 2002;
Xenarios et al. 2002). These convenient genomic tools allowed
us to employ a systematic approach to identify gene products
involved in the AHR pathway and to interpret them in the
context of a protein interaction network. Owing to a lack of
corresponding reagents/databases, such an approach is not
yet feasible for the study of AHR signaling in more complex
eukaryotic systems such as human or mouse.

Identification of AHR Modifiers by a High-Throughput
Deletion Array Screen

In earlier attempts to identify AHR modifiers in yeast, it
was demonstrated that genetic screens can be performed
more efficiently by using an AHR construct that is fused to
the DNA-binding domain of the bacterial LexA protein
(AHR-LexA) (Carver et al. 1994; Whitelaw et al. 1995). This
chimeric system removes the requirement for ARNT and
allows our screens to be more specific for those mutations/
modifiers that directly influence AHR function. Using this
system, we set out to identify gene products that play
important roles in AHR signaling (Figure 1A).

To accomplish this screen, we employed the yeast deletion
strains made available by the Saccharomyces Genome Deletion
Project (Winzeler et al. 1999). We developed a high-
throughput approach to efficiently transform each deletion
strain with two plasmids, one harboring the AHR-LexA
chimera (pCEN-AHR) and the other, a LexA operator-driven
LacZ reporter. Of the 4,695 available deletion strains, 4,507
(96 %) were successfully transformed with the complete AHR
signaling system (i.e., both plasmids). In the primary screen,
we selected transformants that exhibited a 4-fold or greater
change in AHR response as compared to the wild-type (wt)
BY4742 strain (p < 10™%). To minimize false positives, we
selected clones that influenced signaling at no less than two of
the six concentrations of agonist tested. In addition, we
retested each positive strain in a secondary screen with
another AHR system containing the same LacZ reporter and
a high-copy AHR-LexA chimera (pAHR) (Carver 1996). By
these criteria, 92 deletion strains were identified that
reproducibly displayed a significant change in AHR signaling
as compared to the wt strain (Table S1I).
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Figure 1. High-Throughput Deletion Array Screen for AHR Modifiers

(A) The flow chart of the deletion array screen. Each individual
deletion strain was transformed with the AHR-LexA chimera and
LacZ reporter constructs using a 96-well microtiter plate trans-
formation approach. The AHR-dependent reporter activity of each
deletion strain was examined with a 384-well plate-based fluorescence
assay method. A total of 92 deletion strains were identified that
displayed AHR signaling significantly different from the wt¢ control.
(B) Identification of “AHR-specific” modifiers. The effect of modifier
deletions on the AHR pathway was compared with their effect on a
Gal4TAD control pathway. It was found that 54 deletions influenced
AHR signaling specifically, whereas 38 deletions corresponded to
general factors. See text for details.

DOTI: 10.1371/journal.pbio.0020065.g001

To eliminate those deletions that influenced the AHR
pathway in a nonspecific manner, each of the 92 deletion
strains was examined with a control plasmid pGal4TAD (see
Materials and Methods). This construct harbors the tran-
scriptional activation domain (TAD) of Gal4p fused to the
LexA DNA-binding domain and was cotransformed into each
deletion strain with the LacZ reporter (Figure 1B). Of the 92
deletions, 38 were observed to also influence pGal4TAD
signaling. We concluded that these deletions either repre-
sented general players in both pathways or exhibited non-
specific effects through their influence on, e.g., the common
LexA domain, plasmid maintenance, or cell growth rate.
Therefore, the inclusion of the pGal4TAD control led us to
eliminate 38 nonspecific factors and identify 54 deletions that
appeared to influence the AHR pathway in a specific manner.

Of these “AHR-specific” factors, Hsc82p and Cpr7p were
previously described AHR modifiers, and the other 52 were
novel (Carver et al. 1994; Whitelaw et al. 1995; Miller 2002)
(Table S2). The analysis of the annotated function of these
AHR modifiers revealed that they were associated with a great
variety of cellular functions (Table S3). For many of these
annotations, their direct association with AHR signaling
appeared elusive. Therefore, in order to appreciate the
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Figure 2. AHR-PIN versus Random PINs

(A-D) AHR-PINSs at various D, levels. AHR modifiers are highlighted with bigger green nodes. A total of 48, 46, 34, and three AHR modifiers
are interconnected in the AHR-PINs with D, values of 4, 3, 2, and 1, respectively.

(E-H) Distribution of random PINs at various D, levels in histogram. Each distribution graph represents 5,000 randomly generated PINs. The
density estimation curve (in red) is plotted on top of the histogram where applicable. The number of M-nodes in the AHR-PIN and the average

number of M-nodes in random networks are marked in each distribution graph. See text for details.

DOI: 10.1371/journal.pbio.0020065.g002

function of identified modifiers in the AHR pathway, an
information framework was required to put them in context.

Portrayal of the AHR-PIN

Recent experiments from a number of laboratories have
provided data to support the idea that protein interaction
network (PIN) can be used to portray the workings of
complex biological systems (Schwikowski et al. 2000; Ge et
al. 2001; Ideker et al. 2001; Tong et al. 2002). To investigate
how identified modifiers and their interactions influence
AHR signaling, we constructed a modifier network (AHR-
PIN) based on known protein and genetic interactions
derived from the DIP and MIPS databases (Mewes et al.
2002; Xenarios et al. 2002). Our AHR-PIN map is comprised
of “nodes” and “links.” A “node” is a graphic depiction of a
protein or locus, and a “link” is a line between two nodes in
the map that depicts the known interaction between them. As
yeast protein-protein interactions identified to date are still
far from saturating and are heavily biased towards proteins of
high abundance, genetic interactions were also included in
the network building as a complement (Tong et al. 2002; von
Mering et al. 2002). In the AHR-PIN, protein interactions are
depicted with black lines, and genetic interactions are labeled
in red. In addition, nodes also come in two types, “M-nodes”
and “I-nodes.” We refer to the protein or locus that has an
identified effect on the AHR pathway as the “M-node,” or
modifier node, and refer to the nonmodifier node that is
required on a path to connect two M-nodes as the “I-node,”
or intervening node.
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In an effort to determine the most informative PIN, we
examined how the structure and complexity of the map was
influenced by the choice of the maximally allowed number of
links between any two M-nodes (we refer to this value as
Dohax)- One common feature of AHR-PINs with D, values
greater than 1 was that the majority of M-nodes were
interconnected in a single large network with no breaks
(Figure 2A-2C). For convenience, we refer to this single large
network simply as the AHR-PIN in following discussions.
When D,,,x was set at low stringency (Dpy.x = 3), the
representation of M-nodes in AHR-PIN was high. For
example, at Dy, = 3, 46 of 54 M-nodes were included.
However, AHR-PINs resulting from these inclusive, yet low-
stringency conditions exhibited high complexity, which made
it impossible to assess the interactions visually (Figure 2A and
2B). When D, was set at higher stringency (Dy,.x = 2), the
resultant AHR-PIN now comprised 34 closely interconnected
M-nodes and was much easier to visualize (Figure 2C; Table
S4). Further simplification of the AHR-PIN with Dy,,x = 1
was of little utility because it resulted in a large proportion of
isolated M-nodes, with the largest cluster containing only
three M-nodes (Figure 2D).

The AHR-PIN Is Distinct from Random PINs

To examine the statistical significance of the AHR-PINs,
we tested whether they could have been generated by random
chance. If the AHR-PIN represents a valid description of the
AHR pathway, it should comprise significantly more inter-
connected M-nodes than would be interconnected by
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random chance. To test this idea, a Monte Carlo simulation
was conducted by generating 5,000 random PINs at each
Dynax setting. Each of these test PINs was constructed based
on 54 mock M-nodes randomly selected from genes
contained in the entire deletion set. To estimate the
statistical significance of the AHR-PIN, the random graph
was defined as the null distribution, and the p value for the
AHR-PIN at each D,,,x was calculated from the fraction of
trials with a higher number of interconnected M-nodes
(Figure 2E-2H). The AHR-PIN at D, = 1 was not
statistically significant compared to those generated at
random chance (p < 0.08; Figure 2H). However, at Dy, =
2, Diax = 3, and Dy« = 4, the number of interconnected M-
nodes in the AHR-PIN was significantly larger than that of
random PINs (p < 107, 107, and 3 X 107, respectively;
Figure 2E-2G). These observations were consistent with the
idea that AHR-PINs at these settings provide a biologically
meaningful description of AHR signaling.

For further exploration, we chose to focus on the network
with the greatest statistical significance, i.e., the PIN
generated at Dy,,x = 2. In this AHR-PIN, 63.0% of the M-
nodes (34/54) are interconnected, while in corresponding
random PINs with mock M-nodes, this number drops to
18.5% (10/54). Although the AHR-PINs at Dy.x = 3 and
Dpax = 4 also exhibited statistically significant differences
from random PINs, these AHR-PINs were not considered
further for two reasons. First, these networks were visually
complex and could not be simply annotated in two
dimensions. Second, the ratios of interconnected M-nodes
in these AHR-PINs to those of random PINs were quite low
(1.3 and 1.2 for Dy« = 3 and Dy, = 4, respectively). This
observation suggests a much greater potential for displaying
false positive interactions at these settings as compared to the
AHR-PIN at D,,,.x = 2, where this ratio was 3.4 (34/10).

Modular Organization of AHR-PIN as Revealed by
Network Clustering

Our next objective was to use the PIN to enumerate and
define steps in AHR signaling. It has been suggested that PINs
exhibit a modular nature, with each module comprising
highly interconnected proteins of related cellular functions
(Hartwell et al. 1999; Schwikowski et al. 2000). Our hypothesis
was that functional modules in the AHR-PIN would
correspond to discrete steps in the mechanism of signaling.
To test this idea, we attempted to define the functional
modules using a number of computational and experimental
annotation approaches.

As a strictly computational approach, we attempted to
identify the functional modules in the AHR-PIN by a
network-clustering method (Rives and Galitski 2003). In brief,
an all-pairs-shortest-path distance matrix was generated for
every pair of nodes within the AHR-PIN (D,,,x = 2). Each
distance (d) in the matrix refers to the length of the shortest
path between a pair of nodes in the full network space of
yeast genomic PIN and was transformed into an “association”
value (1/d%). The resultant pairwise association matrix was
used to identify network clusters in the AHR-PIN by a
hierarchical average-linkage clustering algorithm (Eisen et al.
1998; Rives and Galitski 2003). The cluster boundaries were
delimited by using a similar “tree-depth threshold” that was
set low enough to separate the largest cluster from others
(Figure 3A) (Rives and Galitski 2003). If we define a network
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cluster to include at least two M-nodes, ten such clusters can
be identified (Figure 3A). Consistent with the modular PIN
hypothesis, we found that these clusters overlapped with ten
local areas (modules) in the AHR-PIN, with each module
comprised of two to six M-nodes (Figure 3B).

In an effort to define the function of these proposed
network modules, we asked whether each individual module
could be best described by a particular annotation. A module
is considered to be enriched for a given annotation if the
number of components known to have that function within
the module exceeds the number that could be expected from
random chance. It has been proposed that the degree of
enrichment for a given annotation can be measured by its
hypergeometric distribution (Tavazoie et al. 1999). Using this
approach, we calculated the annotation enrichment for each
of the ten protein modules in the AHR-PIN with the FunSpec
program (Table S5) (Robinson et al. 2002). As shown in Figure
3B, it was found that the AHR-PIN is organized by protein
modules that perform distinct cellular functions (e.g., protein
folding and chromatin modification).

Functional Modules as Revealed by Their Influence on
Different AHR Domains

In an effort to test the predicted modules and define how
they influence AHR signaling, we annotated the AHR-PIN
using a number of independent functional tests. First, we
examined whether functional modules could be identified
based upon their influence on different domains of the AHR.
To this end, we examined the influence of each modifier on
the signaling of a partial-deletion mutant, pAHRAPASB,
which contains the AHR’s transcriptionally active domain but
is missing those domains responsible for ligand binding and
Hsp90 interaction (Figure 4A). Of the 53 modifier deletions
successfully transformed with the pAHRAPASB system, we
found that 25 deletions affected both the parent AHR and
the deletion mutant. This observation indicated that these 25
modifiers had an influence on the shared C-terminal TAD
region and not on the PASB domain (Figure 4A). These
modifiers were referred to as the “TAD influence group.”
The remaining 28 deletions, which required the PASB
domain for their effect, were referred to as the “PASB
influence group.”

When the AHR-PIN was annotated according to the
domain influence of each modifier, it was found that
modifiers from the same domain influence group closely
interacted in the map. That is, the PASB influence group
resided in a single connected region, whereas the TAD
influence group occupied two peripheral regions (Figure 4B).
Interestingly, the PASB module was found to overlap with the
computationally identified clusters 1, 3, 5, 8, 9, and 10. For the
two TAD modules, one overlapped with cluster 6, and the
other with clusters 4 and 7. This overlap supported both the
computational and experimental annotations. For example,
the “chromatin modification cluster,” 6, identified and
annotated computationally, was found to be associated with
the TAD influence group, defined experimentally. Similarly,
the “protein folding cluster,” 5, was associated with the PASB
domain influence group. The PASB domain is known to
interact with the chaperone protein Hsp90, which plays a
significant role in the folding of the mammalian AHR
(Pongratz et al. 1992; Carver et al. 1994; Whitelaw et al. 1995).

March 2004 | Volume 2 | Issue 3 | Page 0358



W 2N -

cytoplasmic and nuclear
degradation (10-3)

non-selective
vesicle coating

. no significant
assembly of protein  4nnotation

complexes (3x10°°)

Functional Modules as Revealed by Their Effect on AHR
Pharmacology

To further annotate the AHR-PIN, each of the 54 modifiers
was tested for its influence on AHR signaling (pAHR system)
at various agonist concentrations, times, and temperatures, as
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Figure 3. Functional Modules Identified by
Network Clustering

(A) Network clustering of AHR-PIN.
Protein nodes in the AHR-PIN (D,,.
= 2) were clustered by a hierarchical
clustering algorithm. A tree-depth
threshold was set to delimit cluster
boundaries (Rives and Galitski 2003).
Clusters with at least two M-nodes are
shown. See text for details.

(B) Overlay of the network clusters on
the AHR-PIN. The ten network clusters
correspond to ten local areas in the
AHR-PIN. Each network cluster (local
area) is labeled with its significant func-
tional enrichment as calculated using the
FunSpec program (Robinson et al. 2002).
Color scheme. Nodes: modifier deletions
that incurred down- and up-regulation
of AHR signaling are marked in green
and red, respectively. For intervening
nodes, essential genes are marked in gray
and nonessential genes in white. Links:
physical interactions are labeled in black
and genetic interactions in red. If both
interactions are available for a given
link, only the physical interaction is
shown. This color scheme is also applied
to Figures 4-7.

DOI: 10.1371/journal.pbio.0020065.g003
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well as after exposure to two distinct AHR agonists, o-
naphthoflavone (aNF) and B-naphthoflavone (BNF). The
relationship between each modifier and signaling was then
examined using a hierarchical average-linkage clustering
algorithm (Eisen et al. 1998) (Figure 5A). It was found that
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the five major clusters corresponded to five closely intra-
connected local areas in the map, designated A, B, C, D, and E
(Figure 5B). Among them, modules A and C exhibited
significant functional enrichment of protein folding and
transcriptional control, respectively (data not shown). When
the clustering result was overlaid upon the previous maps, it
was found that modules A, D, and E corresponded to the
PASB influence module, and modules B and C corresponded
to the TAD influence module (Figure 5B).

Functional Modules as Revealed by Their Influence on
AHR Localization

Lastly, we examined each modifier’s influence on AHR’s
subcellular localization. This was accomplished using an
AHR-GFP fusion protein (pAHRGFP). When the wt strain
was transformed with the plasmid pAHRGFP, it was found
that the fusion protein was evenly distributed in the cell in
the absence of AHR agonist. In the presence of the agonist
BNF, the AHR-GFP protein translocated to the nucleus
(Figure 6A). To examine the influence of each modifier on
this translocation process, the pAHRGFP construct was
transformed into each of the 54 modifier deletion strains
and its localization was examined by fluorescence microscopy
in the presence of agonist. Four localization phenotypes were
identified (Figure 6B). About 50% of the deletion strains
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Figure 4. Functional Modules Identified by
the “Domain Influence”

(A) Identification of domain influencing
groups. The effects of modifier deletions
on the signaling of AHR and AHRAPASB
were compared in parallel. It was found
that 28 modifiers were required for the
function of the PASB domain (i.e., their
deletions affected the AHR, but not the
AHRAPASB). The other 25 modifiers
were found to be required for the shared
TAD region (i.e., their deletions affected
the signaling of both AHR and
AHRAPASB).

(B) Overlay of the “domain influence”
layer (blue boundary) and the network-
clustering layer (shadowed) on the AHR-
PIN. The PASB influence group corre-
sponds to a central region in the AHR-
PIN. The TAD influence group corre-
sponds to two peripheral areas. Occa-
sional outlier nodes are marked with
their corresponding module names.
DOI: 10.1871/journal.pbio.0020065.g004

TAD influence group

exhibited AHR translocation similar to that observed in the
wt strain (group I). Approximately 30% of the strains were
found to contain a marked reduction in the level of AHR
protein in the cell (group II). Approximately 10% of the
deletion strains displayed receptor aggregates in the cell
(group III). The final 10% of the deletion strains displayed a
normal level of AHR protein, but the receptor failed to
translocate into the nucleus in the presence of agonist (group
IV). When overlaid with the previously determined exper-
imental layers, group I was found to overlap with the modules
of C and D, and groups II, III, and IV corresponded to
modules B, A, and E, respectively (Figure 6C). According to
this overlap, module B can be further described as being
associated with the regulation of receptor level in the cell,
and module E is associated with the regulation of nuclear
translocation of the AHR (Figure 6C).

Discussion

Modifier Identification

Our initial objective was to identify the number of loci that
are required for AHR signal transduction. In this regard, our
high-throughput deletion screen identified 52 novel and two
known AHR modifiers. Although this is a surprisingly large
number of modifiers for the function of a single protein, it is
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Figure 5. Functional Modules Revealed by
Effect on AHR Pharmacology

(A) Cluster analysis of the effect of
modifier deletion on AHR pharmacol-
ogy. AHR signaling was examined at
various doses, timepoints, and temper-
atures, and with the two AHR agonists
BNF and aNF. The influence of modifier
deletion on the dose-response of the
AHR was analyzed by a hierarchical
clustering algorithm. Rows in the clus-
tering diagram represent modifier dele-
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(B) Overlay of the “pharmacology clus-
tering” layer (shadowed, black boundary)
and “domain influence” layer (blue
boundary) on the AHR-PIN. The major
pharmacology clusters are coincident
with five local areas in the AHR-PIN.
In addition, clusters A, D, and E corre-
spond to the PASB influence module,
and clusters B and C correspond to the
TAD influence module. Functional an-
notations determined by pharmacology
clustering are indicated in black, and
those derived from domain influencing
are indicated in blue. Occasional outlier
nodes are marked with their correspond-
ing module designation. See the legend
of Figure 3 for the color scheme of the
nodes and links.

DOL: 10.1371/journal.pbio.0020065.g005

1
1 |

: N

: @ \\\‘_\

I ;\TPu A S

] i 1

\ > ) (TAD influence)
~ -

probably an underestimate since the deletion screen cannot
identify modifiers that are encoded by essential genes.
Moreover, our criteria of including only strong modifiers
(influence of 4-fold compared to control) may have caused us
to miss some important modifiers of this pathway. Never-
theless, the number of AHR modifier loci reported here is
approximately 10-fold greater than what has been reported
using mammalian cell culture and animal models (Schmidt
and Bradfield 1996; Whitlock 1999).

Once we identified these AHR modifiers in yeast, we sought
a way to position and characterize them in the context of the
AHR pathway. Given the idea that PINs can be used to
portray the cellular workings, we attempted to use our
deletion data to generate and annotate an AHR-PIN
(Hartwell et al. 1999; Schwikowski et al. 2000; Ge et al. 2001;
Ideker et al. 2001; Tong et al. 2002). To construct the AHR-
PIN, the yeast genomic PIN was decomposed by extracting
those nodes/links relevant to AHR modifiers. To test the
utility of the resultant AHR-PIN, a series of Monte Carlo
simulations were carried out. It was demonstrated that when
D.ax was set at 2, 3, or 4, the resultant AHR-PIN was of a
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complexity that could not have resulted from random chance.
Furthermore, the comparison of various simulations at
different D,,x settings guided us to select the linking
parameter at D,,,, = 2. This setting of intervening links
resulted in the highest level of statistical significance,
displayed the lowest potential for false positive interactions,
and decreased the map’s visual complexity to a level that was
readily understood in a two-dimensional map.

The Modular Structure of AHR-PIN Reveals Five Discrete
Steps in Signaling

Our analysis of the AHR-PIN revealed an underlying
modular structure. That is, there are areas in the AHR-PIN
that display high interconnectedness of nodes, and these
regions represent functionally related modifiers. The modu-
larity of AHR-PIN was revealed by both computational and
functional tests. In our initial computational approach, a
total of ten clusters were identified, and the functional
enrichment of each cluster was calculated by hypergeometric
distribution (Tavazoie et al. 1999; Robinson et al. 2002).

Although the computational approaches of module iden-
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tification and annotation were useful in hypothesis gener-
ation, they did not provide a direct description of AHR
signaling. Therefore, we set out to annotate the AHR-PIN
with a number of functional tests. In our first annotation
experiment (“domain influence”), we found that the AHR-
PIN could be divided into three discrete functional modules
(i.e., one module that influenced the PASB domain and two
modules that influenced the C-terminal domain we referred
to as TAD). Additionally, each of these modules was found to
overlap with one to several network clusters (see Figure 4).
This tight overlay of functional data with highly intercon-
nected regions in the AHR-PIN also held true when we
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Figure 6. Functional Modules Identified by
the “Localization Influence”

(A) The AHR-GFP fusion protein trans-
locates to nucleus in the presence of
agonist PNF. Nucleus position in the cell
was confirmed by DAPI staining (data
not shown). Dimethyl sulfoxide (DMSO)
is a vehicle control for BNF.

(B) Classification of modifier deletion
strains according to AHR-GFP pheno-
type (with BNF). Group I displays wt
phenotype. Group II contains decreased
level of receptor protein. Group III
contains aggregated misfolded receptor.
Group IV displays the AHR that is not
capable of translocating to the nucleus.
(C) Overlay of “localization influence”
layer (shadowed, red boundary) and the
“pharmacology clustering” layer (black
boundary) on the AHR-PIN. Group I
corresponds to modules C and D.
Groups 1I, 1II, and IV overlap with
modules of B, A, and E, respectively.
Functional annotations determined by
localization influence are indicated in
red, and those derived from pharmacol-
ogy clustering and domain influencing
studies are indicated in black. Occa-
sional outlier nodes are noted with their
corresponding module designation. See
the legend of Figure 3 for the color
scheme of the nodes and links.

DOI: 10.1371/journal.pbio.0020065.g006
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applied annotations for pharmacological clustering and
subcellular localization studies (see Figures 5 and 6). Given
the overlay of these annotations derived from both functional
and computational tests, we conclude that the AHR-PIN
provides a biologically meaningful representation of the
regulatory network of AHR signaling (Figure 7A). Moreover,
based upon the combined annotations for each individual
module, we propose that AHR signal transduction is
regulated at five discrete steps: (1) receptor folding, (2)
receptor translocation, (3) receptor transcriptional activa-
tion, (4) receptor level, and (5) a previously undescribed
signaling event related to the PASB domain (Figure 7B).
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The AHR Folding Module

A module that regulates AHR folding was identified by the
known activities of its constituents, as well as the appearance
of receptor aggregates when these modifiers were absent (see
Figure 6B, group III). Given that AHR folding has been well
studied over the past 15 years, examination of this module
provided insight into the fidelity of our screen and the
transference of our observations to the mammalian system.
For example, two known modifiers were identified by our
high-throughput screen: Hsc82p (homolog of human Hsp90)
and Cpr7p (homolog of human Cyp40) (Pongratz et al. 1992;
Miller 2002). In addition, we identified a previously unknown
player in the AHR folding pathway, the chaperone protein
Stilp (homolog of human p60/HOP). Stilp/p60 has been
shown to be an essential component of the glucocorticoid
receptor signaling pathway, where it is required to form an
Hsp90 chaperone complex (Chang et al. 1997; Dittmar and
Pratt 1997). By analogy, we propose that Stilp/p60 is involved
in the formation of an Hsp90-cochaperone complex that is
essential for the proper folding of the AHR. Finally, our
analysis of this module suggests that a number of proteins not
known to be chaperones are involved in receptor folding.
These proteins include Sec28p and possibly Rpl19b.

The AHR folding module can also be used to explain the
existence of I-nodes within a functional module. Given their
“linker” position and the observation that they often share
similar annotated function with their neighboring M-nodes
(data not shown), it is a logical prediction that I-nodes play a
role in AHR signaling that is functionally similar to their
modifier neighbors. We propose that I-nodes most commonly
arise as the result of their essential gene nature (gray nodes in
the figure; nontestable in the deletion screen) or because they
represent a redundant gene product (white nodes in the
figures). We offer two examples that support this idea. First,
one essential gene I-node in the folding module, Cnslp, has
recently been reported to be involved in AHR signaling
(Miller 2002). Second, the possibility that white nodes may
often result from redundancy is supported by what we know
about Hsp90. The Hsc82p and Hsp82p proteins are yeast
orthologs of human Hsp90, a well-studied chaperone re-
quired for proper AHR folding (Pongratz et al. 1992; Carver
et al. 1994; Whitelaw et al. 1995). Under normal growth
conditions, Hsp82p and Hsc82p account for 7% and 93% of
the total “Hsp90 level,” respectively (Borkovich et al. 1989).
Thus, it is not surprising that Hsp82p was not identified as a
modifier, since its deletion would have had little effect on the
total Hsp90 level in the cell (Figure 7A). Finally, white I-nodes
can also arise from weak modifiers that influenced AHR
signaling by less than 4-fold, e.g., Sbalp (ortholog of human
AHR modifier p23) (Kazlauskas et al. 1999). In this regard,
although a choice of 4-fold was somewhat arbitrary, we found
that lowering the cutoff greatly increased the network
complexity without enhancing the statistical significance of
the AHR-PIN (as compared with random PINs; data not
shown).

The AHR Employs a Multistep Transcriptional Mechanism

The composition of the transcriptional activation module
suggests that the AHR activates target genes via the
coordination of histone acetylation, ATP-dependent chro-
matin remodeling, and direct recruitment of basal RNA
polymerase II transcriptional apparatus (see Figure 7). We
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base this idea on the observation that this functional module
is composed of components of the histone acetyltransferase
SAGA complex (homolog of the mammalian PCAF com-
plex)—Genbp, Spt3p, and Spt8p; components of the SWI/SNF
chromatin-remodeling complex—Snfl2p and Swi3p; and a
subunit of the Srb-mediator complex—Srb2p (Grant et al.
1998; Myers et al. 1998; Peterson et al. 1998). This
interdependent requirement of three distinct classes of
transcriptionally relevant proteins is consistent with obser-
vations from mammalian cells, where the involvement of both
HAT and SWI/SNF coactivators in AHR signaling has been
reported, as has the direct interaction of the AHR with basal
transcriptional factors TBP, TFIIF, and TFIIB (Rowlands et al.
1996; Kobayashi et al. 1997; Swanson and Yang 1998;
Beischlag et al. 2002; Wang and Hankinson 2002). These
collective data support the idea that AHR transactivation is
mediated by a multicomponent, synergistic process.

Nuclear Translocation of the AHR

Our network analysis has also identified a functional
module that regulates the ligand-dependent translocation of
the AHR (see Figure 7). This nuclear translocation module
appears to be associated with the PASB domain, which is
known to play roles in both ligand binding and interaction
with chaperones (see Figure 4A). This observation is
consistent with the idea that ligand exposure releases the
AHR from the cytosolic chaperone anchors (Kazlauskas et al.
2001; Petrulis et al. 2003). Although the mechanism for this
translocation event remains unclear, it is interesting to note
that the “translocation module” overlaps with a protein
degradation cluster, cluster 10 (see Figure 7A). This observa-
tion suggests that the underlying control of subcellular
localization of the AHR might be related to the selective
degradation of certain tethering factors by ubiquitination,
possibly mediated by Doalp and other members in this
module (Hochstrasser and Varshavsky 1990).

Regulation of AHR Expression

A module that regulates the amount of receptor protein
was also identified in our AHR-PIN (see Figure 7). This
module is associated with the C-terminal domain of the AHR
(see Figure 4A). Although we have commonly referred to this
region as the TAD domain, these data suggest that other
functions are also encoded here. We base this assessment on
two observations. First, members of this module are not
known to play direct roles in transcription (see Table S4).
Second, this module influences receptor level in a manner
that is upstream of the AHR’s activity as a transcription
factor. Our interpretation of this module is that these
modifiers are associated with a domain that is proximal to
or overlaps with the receptor’s TAD and that this domain
plays a role in the regulation of receptor level (see Figure 4A).
At the present time it is not clear whether this module
influences the AHR at its mRNA or protein level.

A Novel Step Defined by the PASB Module

A novel PASB-dependent step in AHR signaling appears to
have been revealed by this network analysis (see Figure 7,
PASB-related module). Given that corresponding deletions of
this PASB-related module did not impair the receptor’s
nuclear translocation (see Figure 6, group I), we conclude that
this module must influence either a downstream nuclear
event or some cytosolic event that is not revealed until the

March 2004 | Volume 2 | Issue 3 | Page 0363



The AHR Network

A o - g e e o i e ] 1 Fe————— a
I 1 1 I | [}
i { i TR i i i
I e i | - @ |
b o o o o o e e e d e e e s e e e - }l @ i
y B | i
| T |
@ | i !
Translocation &0 @ @ e &®». 20T
(localization IV, PASB influence, cluster E) "\,\ 10

E

"\-';'_E_E?J'F.':-v—q

Receptor folding @™ <

(localization Ill, PASB influence, cluster A)

receptor is within the nuclear compartment. On the other
hand, this module did not appear to be involved in the final
transactivation step, as it was distinct from the trans-
activation module according to our functional annotations
(see Figures 4 and 5). Taken in sum, there must exist a PASB-
dependent event that is posttranslocation and pretransacti-
vation. Such an event could be related to the receptor’s
dimerization, DNA binding, or an as-yet-undefined nuclear
event, such as the unfolding of a transcriptionally active
domain (Sun et al. 1997; Heid et al. 2000). Interestingly, the
existence of this PAS-related signaling is consistent with the
previous observation that the DNA binding ability of the
AHR can be impaired by a point mutation within its PAS
domain (Sun et al. 1997). Lastly, the fact that this PASB-
related module overlaps with multiple network clusters (1, 2,
8, 9) suggests a cooperative mechanism that involves more
than one cellular function (see Figure 7A).

Conclusion

We began this study with the objective of defining the AHR
signal transduction pathway in a manner that would allow us
to quantify the number of loci and enumerate the steps
involved in signaling. By integrating our deletion screen with
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the PIN framework and through subsequent computational
and experimental annotations, we were able to identify
modifier modules that regulate five distinct AHR signaling
steps. In this regard, we found that the integration of multiple
annotation approaches is vital for the reconstruction of the
final picture by connecting and cross-validating individual
information pieces. As interaction datasets become more
fully developed and annotated, such a map will steadily
improve and provide more accurate description of AHR
signaling. Lastly, the systematic strategy that we developed in
this work should be readily applicable to the study of most
mammalian proteins to reconstruct corresponding modifier
networks that regulate their signaling.

Materials and Methods

Strains and plasmids. A set of deletion derivatives of S. cerevisiae
strain BY4742 (MATo, his3A1, leu2A40, lys240, ura340) was used in this
study. This deletion set was obtained from Research Genetics (now a
part of Invitrogen, Carlsbad, California, United States) in a 96-well
arrayed format. The plasmid pCEN-AHR (PL1605) was constructed
by replacing the TRPI autotrophic marker of PL883 (Hogenesch
1999) with a HIS3 marker using a “marker swap” method (Cross
1997). This CEN-based plasmid contains the LexA-AHR chimera
c¢DNA (LexA-AHRNA166) under the control of an alcohol dehydro-
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genase I (ADHI) promoter. LexA-AHRNAL166 is a chimeric AHR, with
its amino acid residues 1-166 replaced by residues 1-202 of bacterial
repressor LexA, and is referred to in the Results section simply as
“AHR” for convenience. The reporter plasmid pSH18-34 (PL623)
(Clontech, Palo Alto, California, United States) is a 2u-based, URA3-
selectable vector that contains the bacterial LacZ gene, as a reporter,
under the control of eight LexA-binding sites. The plasmid pEG202
(Clontech, Palo Alto, California, United States) is a 2p-based, HIS3-
selectable plasmid containing the LexA;_ gy sequence under the
control of the ADHI promoter. The plasmid pAHR (PL700) has been
described previously (Carver 1996). This plasmid contains the
AHRNA166 sequence inserted into the EcoRI site of pEG202. The
pGal4TAD control plasmid (PL1573) (Display Systems Biotech, now
NeuroSearch A/S, Ballerup, Denmark) contains the transcription
activation domain of yeast GAL4 inserted into the EcoRI site of
pEG202. The control plasmid pAHRAPASB (PL1799) is the same as
PAHR except for the removal of the C-terminal half of the PAS
domain. This pAHRAPASB plasmid was constructed by subcloning
the EcoRI fragment of PL248 (Carver et al. 1998) into the EcoRI site
of pEG202. The plasmid pAHRGFP (PL1890) was constructed as
follows: the GFPS65T cassette (Heim et al. 1995) was amplified by PCR
from pRSETBGFPS65T (PL1803) (a generous gift from Dr. Catherine
Fox, University of Wisconsin-Madison) using primers OL4125 (5'-
ACAGCTCTGAAATTCCAGGTTCTCAGGCATTCCTAAG-
CAAGGTGCAGAGTGGTCGGGATCTGTACGACGAT-3") and
OL4126 (5'-TTAGCTTGGCTGCAGGTCGACTCGAGCGGCCGC-
CATGGTCGACGGATCCCACCAGCTGCAGATCTCGAGCT-3"). The
amplicon was cloned into the Dralll-digested pAHR by a gap repair
method (Lundblad and Zhou 1997). The resulting plasmid was
designated PL1855. The coding sequence for amino acids 1-166 of
the AHR was amplified by PCR from PL65 (Dolwick et al. 1993) using
primers OL4176 (5'-GCTATACCAAGCATACAATCAACTCCAAGC-
TTGAATTAATTCCGGGCGGAATGAGCAGCGGCGCCAACAT-3")
and OL4177 (5'-CCTTGTGCAGAGTCTGGGTTTAGAGCCCAGTG-
AAGCTGGCGCTGGAATTCCGCCCGGTCTTCTGTATGGA-3"). The
amplicon was cloned into the Pmel/Mlul-digested PL1855 by gap
repair. The resultant plasmid was designated pAHRGFP (PL1890).
High throughput yeast deletion array transformation. A high-
throughput protocol was developed for 96-well transformation based
on work previously described (Chen et al. 1992). Unless otherwise
noted, all steps were performed with a Hydra 96-channel dispenser
(Robbins Scientific, Sunnyvale, California, United States) and a vortex
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Figure 7. Regulatory Network of AHR
Signaling

(A) The summary map of AHR-PIN.
Functional modules were determined
by the overlapped annotations from
three experimental layers (domain influ-
ence, pharmacology clustering, and lo-
calization influence) as well as from
network clustering. For each functional
module, the main “stacking pattern” of
experimental layers is noted in italics.
Modifiers initially left outside the single

PASB-RELATED
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i ?ng;;ﬂ:msm large cluster of the AHR-PIN were
! NAP1 I NAPILA assigned to cor.respondi.ng' functiopal
F  NBP2 diiarisi modules by sharlng the similar stacking
! RPN10/pswips pattern ther§ applicable. See the legend
| of Figure 3 for the color scheme of the
; NEW1 nodes and links.

i TYET /mite (B) An expanded model of AHR signal-
i CIN8/knsLt ing. The AHR signaling pathway is
i  PEP8/mcC10485 regulated by at least five functional
i STBS modules that are involved in the control
i SWI3/smarcca of receptor folding, nuclear transloca-
i LSM1/Lsmi tion, transcriptional activation, receptor
i PCP1/ParL level, and a PASB-related nuclear event.
boILmi Within each functional module, modi-
1 MSHS5 1 MsHs fers intially enclosed in the single large
i YKRO74W cluster of the AHR-PIN are highlighted
' DBR1 /DBR1 in bold. Known human homologs of the

modifiers are noted at the side with a
smaller font (Costanzo et al. 2001) .
ARNT is dimmed because modifiers were
identified in this study from an “ARNT-
free” chimeric AHR system. See text for
details.

mixer with a microwell plate adaptor (#¥12-812 and #12-812C, Fisher
Scientific, Hampton, New Hampshire, United States). Deletion strains
were stored in a stack of 96-well plates (-80 °C). For transformation,
each stock plate was thawed and cells were gently resuspended by
vortexing. About 0.5 pl of each strain culture was transferred to a 96-
well round bottom target plate (Costar #3795, Corning Inc., Acton,
Massachusetts, United States) containing 96 pl per well of yeast
extract-peptone-dextrose (YPD) medium plus G418 (200 mg/l). This
transfer was accomplished with a 96-pin disposable replicator
(GenomeSystems, now Incyte Genomics, Palo Alto, California, United
States). The inoculum was incubated at 30°C without shaking until the
ODyg absorbance of individual wells reached 0.2-0.7 (approximately
18 h). The ODgy was measured using a SpectraMax 250 microplate
reader (Molecular Devices, Sunnyvale, California, United States).
Cells were then subjected to centrifugation at 3,500 rpm for 8 min,
and the supernatant was decanted. The 96-well plates were placed
upside-down on a stack of paper towels for 10 min to drain residual
medium. For transformation, each plate was vortexed at maximal
speed for 15 s before dispensing 22 pl of DNA in “OneStep” buffer
(Vinm Liac: V309 pEG 3350 = 1:4, with BME added to 0.77% V before use)
into each well. To make the DNA in “OneStep” buffer, one volume of
DNA (5 pg/ul ssDNA, 0.1 pg/ul each plasmid DNA) was mixed
vigorously by vortexing with ten volumes of “OneStep” buffer. After
DNA was dispensed, the plate was quickly vortexed again at maximal
speed for 10 s to resuspend the cells, followed by incubation at 45°C
for 40 min. After this “heat shock” step, 5 pl of the transformation
mix from each well was inoculated into a fresh 96-well flat-bottomed
plate containing 96 pl per well of dropout medium without Trp, Ura,
and His (dropout minus TUH medium) plus G418. The inoculum was
gently mixed by vortexing and incubated at 30°C for about 4 d until
transformants grew out.

The 384-well fluorescence assay for LacZ reporter. To perform the
LacZ reporter assay, transformants from the 96-well plates were
rearrayed into 384-well stock plates containing 30 pl per well of
dropout minus TUH medium. The inoculum was incubated at 30°C
for 2-3 d to allow cell growth. For the LacZ reporter assay at each
agonist concentration, 0.5 ul of cell culture was transferred from the
384-well stock plate (30°C) into a clear-bottomed/black-walled 384-
well assay plate (Falcon #353962, Becton Dickinson, Franklin Lakes,
New Jersey, United States) using a disposable 384-pin replicator
(GenomeSystems/Incyte Genomics). In the 384-well assay plate, each
well contained 18 pl of dropout minus TUH medium (diluted 1:4 in
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water) plus agonist at the tested concentration. The plates were then
incubated at 30°C for 48 h to allow all strains to reach stationary
phase. Cell growth was monitored by measuring the ODg, of each
well using a SpectraMax Plus microplate reader (Molecular
Devices). To initiate the fluorescence assay, 18 pl of lysis/assay buffer
was added to each well. Lysis/assay buffer contained a mixture of CUG
substrate (#F-2905, Molecular Probes, Eugene, Oregon, United
States), 10% SDS, 1 M NaPO,, and 25X TAE in the ratio of
1:1.4:350:17.5. For assays with pCEN-AHR transformants, no TAE
was required. Plates were vortexed at medium speed for 1 min and
left at room temperature for 20 min. The reaction was stopped by
dispensing 6.5 pl of 25X TAE to each well and vortexing at medium
speed for 1 min. The fluorescence emission of each well was detected
using a Wallac “VICTOR V” microplate reader (Perkin-Elmer,
Boston, Massachusetts, United States). The fluorescence reading was
normalized to the corresponding ODg value to obtain the LacZ
reporter activity of each deletion strain.

In vivo microscopic analysis of AHR-GFP localization. Selected
deletion strains were transformed with the plasmid pAHRGFP.
Transformants were incubated in a 96-well microtiter plate contain-
ing 100 pl per well of dropout minus TH medium at room
temperature. Given that we have observed that small temperature
shifts can affect AHR’s localization, we found it more convenient to
both grow and examine cells at the same temperature. For some
samples, assays were repeated at 30°C using a heating chamber
attached to the microscope. Such results were found to be
comparable to those obtained at room temperature. For strains that
reached early log phase, 0.5 ul of culture was mounted on a glass slide,
and the AHR-GFP subcellular localization was examined using a Zeiss
(Oberkochen, Germany) Axiovert 200M microscope (o Plan-FLUAR
100X objective). Images were captured using an AxioCam HR digital
microscope camera (Zeiss). To stain the nucleus in living cells, 4,6-
diamidino-2-phenylindole (DAPI) was added to the dropout minus
TH medium to a final concentration of 5 pg/ml.

Modifier identification and network analysis. To identify deletions
that modify AHR signaling, the LacZ reporter activity of each deletion
strain was compared to the average of wt BY4742 strain controls
included in the same plate, and the fold change was obtained and logy
transformed. These data-processing steps, as well as subsequent
modifier selection, were performed automatically using Perl scripts
written “in house.” In brief, for the primary screen involving 4,507
deletion strains with low-copy pCEN-AHR system, a stringent cutoff
of 4-fold change over wt control was chosen for selecting a pool of
most significant AHR signaling mutants. This cutoff corresponds to a
p value of less than 107 at all six assessed concentrations (null
distribution: wt control). The initial positives were subject to
validation and characterization in secondary screens with high-copy
pAHR and control systems. The cutoffs for control pathways
pGal4TAD and pAHRAPASB in the secondary screens were chosen
at 2-fold change over wt control, which corresponds to p values of 3.3
X 1072 and 5.6 X 10™* (null distribution: wt control), respectively.

For PIN construction, the main physical interaction table was
downloaded from the DIP database (http://dip.doe-mbi.ucla.edu) and
the genetic interaction table from the MIPS database (http://
mips.gsf.de/projlyeast/). Perl scripts, written “in house,” were used
to search the combined physical and genetic interaction database and
identify all valid paths (less than or equal to D,,,s) that linked each
pair of modifiers. The network graph was rendered using the
Graphviz tool kit (http:/lwww.research.att.com/sw/tools/graphviz/) (Ell-
son et al. 2004).

Within experimental annotation layers of the AHR-PIN, the
region corresponding to each functional module was outlined by a
closed line (boundary) drawn manually on the network map. This
boundary was delineated to include the maximal number of modifier
nodes that are members of the corresponding functional module and
the minimal number of modifier nodes that are nonmembers. This
boundary was also defined in such a way that all enclosed modifier
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nodes were interconnected via paths within the enclosed region or
through at most one modifier node outside. When defining func-
tional modules in the summary AHR-PIN, the highest weight was
given to the results from the localization influence experiments
because these results provided the most direct indication of a
modifier’s effect on AHR signaling, and the lowest weight was given to
the pharmacology clustering result because this result was highly
sensitive to the choice of clustering algorithm.

Supporting Information
Table S1. Significant AHR Modifiers

This table contains all of the ORFs whose corresponding deletion
strains reproducibly displayed a significant change in AHR signaling
compared to wt BY4742 strain. Also shown are their known gene
names, products, gene descriptions, and Gene Ontology (GO)
annotations (Ashburner et al. 2000; Issel-Tarver et al. 2002).

Found at DOL 10.1371/journal.pbio.0020065.st001 (35 KB XLS).

Table S2. AHR-Specific Modifiers

This table contains all of the ORFs that were observed to influence
the signaling of the AHR but not the pGal4TAD control. Also shown
are their known gene names, products, gene descriptions, and GO
annotations (Ashburner et al. 2000; Issel-Tarver et al. 2002).

Found at DOIL 10.1371/journal.pbio.0020065.st002 (27 KB XLS).
Table S3. YPD Annotation of AHR Modifiers

This table summarizes the annotation on cellular functions of AHR
modifiers. The annotation was derived from the YPD database, as of
May 2002 (Costanzo et al. 2001) .

Found at DOL 10.1371/journal.pbio.0020065.st003 (23 KB XLS).
Table S4. M-Nodes in the AHR-PIN

This table contains all of the AHR modifiers that were interconnected
in the AHR-PIN (Dy,,.x = 2). Also shown are their known gene names,
products, gene descriptions, and GO annotations (Ashburner et al.
2000; Issel-Tarver et al. 2002).

Found at DOIL 10.1371/journal.pbio.0020065.st004 (24 KB XLS).

Table S5. Functional Enrichment of Network Clusters

This table summarizes the functional enrichment of each network
cluster as calculated by the hypergeometric distribution of MIPS and
GO annotations. For each cluster, the functional enrichment is
determined by using M-nodes alone and both M- and I-nodes,
respectively. In each case, the annotation that corresponds to the
largest number of nodes in the cluster and the smallest p value is
shown (k, number of genes from the query cluster in the given
category; f, total number of genes in the given category).

Found at DOT: 10.1371/journal.pbio.0020065.st005 (22 KB XLS).
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