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Abstract: The insula plays a critical role in many neuropsychological disorders. Research investi-
gating its neurochemistry with magnetic resonance spectroscopy (MRS) has been limited compared
with cortical regions. Here, we investigate the within-session and between-session reproducibil-
ity of metabolite measurements in the insula on a 3T scanner. We measure N-acetylaspartate +
N-acetylaspartylglutamate (tNAA), creatine + phosphocreatine (tCr), glycerophosphocholine + phos-
phocholine (tCho), myo-inositol (Ins), glutamate + glutamine (Glx), and γ-aminobutyric acid (GABA)
in one cohort using a j-edited MEGA-PRESS sequence. We measure tNAA, tCr, tCho, Ins, and Glx
in another cohort with a standard short-TE PRESS sequence as a reference for the reproducibility
metrics. All participants were scanned 4 times identically: 2 back-to-back scans each day, on 2 days.
Preprocessing was done using LCModel and Gannet. Reproducibility was determined using Pear-
son’s r, intraclass-correlation coefficients (ICC), coefficients of variation (CV%), and Bland–Altman
plots. A MEGA-PRESS protocol requiring averaged results over two 6:45-min scans yielded repro-
ducible GABA measurements (CV% = 7.15%). This averaging also yielded reproducibility metrics
comparable to those from PRESS for the other metabolites. Voxel placement inconsistencies did not
affect reproducibility, and no sex differences were found. The data suggest that MEGA-PRESS can
reliably measure standard metabolites and GABA in the insula.

Keywords: insula; gamma-aminobutyric acid; GABA; LCModel; MEGA-PRESS; PRESS; magnetic
resonance spectroscopy; MRS; reproducibility

1. Introduction

The insula, a bilateral region of the cerebral cortex, plays a major role in human
cognition, interoception, sensorimotor, and socio-emotional processing [1]. Due to its
location deep within the lateral sulcus, the insula had largely been overlooked until
recent decades, where technological advances provide new insights on its contribution to
neuropathologies. Clinical studies have demonstrated its implication in neuropsychiatric
disorders, including addiction, schizophrenia, mood, panic, post-traumatic stress, and
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obsessive-compulsive disorders [2–9]. The insula has also become a subject of interest
in addiction research following the discovery that insular damage facilitated smoking
cessations [10,11].

One approach to studying the insula involves understanding its neurochemistry.
Magnetic Resonance Spectroscopy (MRS) allows non-invasive in-vivo metabolite measure-
ments of a particular brain region. Using MRS, altered metabolite concentrations in the
insula were reported in fibromyalgia [12], epilepsy [13–15], schizophrenia [16], anxiety
disorders [17], major depression [18], and drug addiction [8].

MRS uses magnetic fields to excite a localized region of the brain and specialized
head coils to receive the signal from the nucleus of interest at a given time referred to
as the echo time (TE). For 1H-MRS, the hydrogen atoms in the various metabolites of
interest produce a particular molecule-specific signature, for the given TE. The collected
spectrum is a superposition of all the signatures of 1H-containing molecules (including
water). LCModel [19] software uses a linear combination of reference metabolite signatures,
collected or simulated, to fit the spectrum produced using a standard MRS technique, such
as PRESS (Point RESolved Spectroscopy). The commonly measured metabolites using this
method, at a short TE (e.g., TE = 35 ms), are: N-acetylaspartate + N-acetylaspartylglutamate
(NAA + NAAG), that will be referred to as total NAA (tNAA); creatine + phosphocreatine
(Cr + PCr), that will be referred to as total Cr (tCr); glutamate + glutamine, commonly
referred to as Glx (Glx = Glu + Gln); glycerophosphocholine + phosphocholine (GPC +
PCh), that will be referred to as total Cho (tCh), and myo-inositol (Ins). We will refer to
these five metabolites tNAA, tCr, Glx, tCh, and Ins as the standard metabolites because they
can be measured using standard MRS sequences (such as PRESS).

More recently, γ-aminobutyric acid (GABA), a primary inhibitory metabolite in the
central nervous system, has become a focus of interest in many neuropsychiatric studies.
Levels of GABA have been shown to be altered in the insula for various diseased states,
including PTSD [2] and chronic pain [2,20,21]. Due to the low concentration and some-
what spread-out signature of GABA with multiple peaks coinciding with those of other
metabolites, advanced specialized MRS sequences have been required to enable GABA
measurements. The MEGA-PRESS (MEscher- GArwood Point RESolved Spectroscopy)
sequence uses editing pulses to specifically alter the signature of GABA. By acquiring
alternating edit-ON and edit-OFF lines of data, averaging and then subtracting these we
can produce the difference spectrum (MEGA-PRESSdiff) [22]. The sought GABA peak can
be revealed and quantified by specialized software [23]. Furthermore, the data from the
edit-OFF lines can be collected and processed as a regular PRESS sequence with LCModel,
albeit with a longer TE. We will refer to this spectrum as the MEGA-PRESSeditOFF spectrum
to be distinguished from the MEGA-PRESSdiff spectrum.

For any methodology, such as MRS, various factors, internal (e.g., physiology and
motion) and external (e.g., scanner stability), can have detrimental impacts on the ability to
make accurate and precise measurements [24]. Since accuracy of MRS measurements is very
difficult to assess in vivo [24], reproducibility has become the focus of many methodological
papers. Assessing the reproducibility (also referred to as repeatability and reliability [25])
is critical in order to enable power calculations and proper study design.

Recent improvements in head coil hardware include an increase in the number of
phased-array coils because these have been shown to increase the signal-to-noise (SNR).
However, these advances have mostly benefitted measurements in cortical regions; the
insula, which is further away from the coils, does not see the same increase in SNR. This
may also explain the relatively fewer attempts to measure neurochemistry in this region,
relative to the cortical regions, such as the dorsolateral prefrontal cortex (DLPFC) and
the anterior cingulate cortex (ACC) [25,26]. In addition, there is a large discrepancy in
the voxel sizes and placements in MRS insula studies. Furthermore, there is a lack of
reproducibility measurements for the metabolites of interest here (standard five + GABA).
The goal of this paper is to assess the reproducibility of the measurements of GABA
and other standard metabolite concentrations in the insula. We will measure within
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session/back-to-back (B2B, on Day1 and Day2, separately) and between session/day-to-
day (D2D) reproducibility. GABA will be obtained from the MEGA-PRESSdiff spectrum
and the other five aforementioned standard metabolites, will be obtained from MEGA-
PRESSeditOFF. As a reference, we will compare the resulting reproducibility metrics to those
obtained for a generally accepted short-TE PRESS sequence with all parameters equal other
than the TE and the edited pulse. In doing so, we will determine if a short-TE PRESS
sequence is necessary for the measurement of any of the five standard metabolites, given a
MEGA-PRESS GABA scan is already being performed. This will also provide a reference
for the GABA reproducibility metrics.

2. Materials and Methods
2.1. Participants

Twenty-nine healthy volunteers for MEGA-PRESS scans (age 24± 3 years, 20–32 years,
14M/15F) and 17 healthy volunteers for PRESS scans (age 25 ± 4 years, 19–33 years,
7M/10F) were recruited by word-of-mouth as approved by our institution’s Research
Ethics Board (REB) for this study. Only healthy subjects, 18 years of age and older, were
included if they could keep coffee and alcohol intake and general activities consistent on
both scan days. Healthy participants were considered those who self-reported to never
being diagnosed with a psychiatric or major neurological illness, including severe learning
disabilities and migraines, in addition to never experiencing a major brain trauma (e.g.,
epilepsy, stroke, seizures). Other exclusion criteria were: metal or electronic implanted
devices, severe claustrophobia, and pregnancy.

2.2. Scanning Procedures

MEGA-PRESS and PRESS participants were scanned in separate arms of the study,
using the same localization procedure and scanning schedule. All subjects were scanned
four times. The first two scans were conducted back-to-back (B2B) in a single session to
minimize physiological variability and capture scanner stability. Another set of B2B scans
was conducted 1–3 days later at a similar time of the day to capture day-to-day variability
in addition to scanner stability across sessions/days (D2D).

All 1H MRS measurements were performed on a 3T, GE MR 750 scanner (General
Electric, Waukesha, WI, USA) with a 32-channel head coil (Nova Medical Inc., Wilmington,
MA, USA). The scanning protocol included an anatomical T1-weighted image using a stock
3D IR-prepared fast spoiled-gradient (FSPGR) sequence (BRAVO, TE = 3.0 ms, TR = 6.7 ms,
T1 = 650 ms, flip angle = 8◦, resolution = 0.9 mm3, scan time = approximately 5 min).
T1-weighted images were acquired for MRS voxel placement and for grey matter (GM),
white matter (WM), and cerebral spinal fluid (CSF) segmentation to enable partial volume
correction (see below). Anatomical landmarks were used as a reference to ensure the
reproducibility of the voxel placement on the right insula. Initially, axial and coronal
images were reformatted from the sagittal BRAVO T1-weighted scan. A voxel was then
placed on an oblique axial image parallel to lateral/Sylvian fissure, while ensuring that the
voxel stayed on the sagittal plane above the temporal lobe. The voxel was kept away from
the caudate and temporal gyrus on the axial and coronal plane. The insula voxel extended
12 mm (right-left), 55 mm (anterior-posterior), and 25 mm (superior and inferior), for a
total volume of 16.5 mL (Figure 1).
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and 25 mm in superior-inferior direction (with 16.5 mL total volume). The voxel placement is presented in (a) sagittal, (b) 
axial, and (c) coronal views. 
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mine (Glx) are also edited alongside GABA (co-editing) and are observed at 3.75 ppm in 
the difference spectrum. Additionally, macromolecule (MM) resonances reside by 1.9 
ppm and are co-edited, resulting in a MM peak at 3.0 ppm. This means that the GABA 
peak we observe in the difference spectrum is contaminated with MM signal; thus, we 
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Figure 1. Images illustrating voxel placement of the insula. Voxel is placed 55 mm in anterior-posterior, 12 mm right-left,
and 25 mm in superior-inferior direction (with 16.5 mL total volume). The voxel placement is presented in (a) sagittal,
(b) axial, and (c) coronal views.

1H MRS data was acquired using two different sequences: a single voxel (SV) PRESS
(Point Resolved Spectroscopy) sequence [27] and a MEGA-PRESS (Meshcher-Garwood
Point Resolved Spectroscopy) [22,28] sequence which uses the J-difference editing technique
for the measurement of GABA. J-difference editing involves an interleaved acquisition of
spectra with two differing conditions, both with a pair of frequency selective “editing” RF
pulses (pulse width = 14.4 ms) applied: edit-ON, where the editing RF pulses placed at
1.9 ppm invert the GABA-H3 spins located at 1.89 ppm (which refocuses the evolution of
J-coupled GABA-H4 spins at 3.0 ppm); and edit-OFF where the editing RF pulses are placed
at 7.5 ppm, where no metabolite resonances are located (equivalent to having no editing
pulse applied). The subtraction of the two conditions results in a difference spectrum where
the GABA resonant peak can now be observed, which is otherwise obscured by the larger
creatine resonant peak at 3.0 ppm.

Due to its close proximity to the edit-ON RF pulse at 1.9 ppm, glutamate and glutamine
(Glx) are also edited alongside GABA (co-editing) and are observed at 3.75 ppm in the
difference spectrum. Additionally, macromolecule (MM) resonances reside by 1.9 ppm
and are co-edited, resulting in a MM peak at 3.0 ppm. This means that the GABA peak
we observe in the difference spectrum is contaminated with MM signal; thus, we will
refer to our measurement of GABA as GABA+ (GABA + MM) throughout the rest of this
manuscript.

Previous work [29,30] showed that Glx measured from the edit-OFF spectra (MEGA-
PRESSeditOFF) is more reproducible (i.e., lower CV%); thus, the Glx peak in the difference
spectra (MEGA-PRESSdiff), although fit by Gannet, will not be further analyzed here. A
CHESS (Chemical Shift Selective Saturation) sequence [31] was applied for optimal water
suppression in both cases. The water suppressed data was acquired subsequent to the
acquisition of 16 water unsuppressed lines, which are used to perform internal tissue water
referencing. Shimming was performed using the manufacturer’s automated shimming
routine (AUTOSHIM), to achieve a full-width at half maximum (FWHM) ≤ 12 Hz at the
time of scanning. Other scanning parameters are outlined in Table 1.
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Table 1. PRESS and MEGA-PRESS sequence parameters. For MEGA-PRESS, there were 128 acquisi-
tions with editON and 128 acquisitions with editOFF. Both sequences had 16 water unsuppressed
acquisitions at the very beginning as is standard for PRESS on a GE scanner.

Scan Parameters PRESS MEGA-PRESS

Echo Time (TE) 35 ms 68 ms
Repetition time (TR) 1500 ms 1500 ms

Number of Acquisitions 128 256
Number if Excitations (NEX) 8 8

Number of Points 4096 4096
Spectral Width 5000 Hz 5000 Hz

Scan Time 3 min 36 s 6 min 46 s

2.3. MRS Data Analysis

The PRESS and MEGA-PRESSeditOFF data were analyzed using LCModel (Linear
Combination of Model Spectra) software (version 6.3-0E) [32] to obtain concentration
values for the five standard metabolites at two different TE values (TE = 35 ms for PRESS
and TE = 68 ms for MEGA-PRESS). Data for MEGA-PRESSeditOFF spectra were parsed,
frequency corrected, and combined using the FID-A toolkit [33] prior to LCModel analysis.
For PRESS data, the included LCModel gamma simulated basis set for TE = 35 ms was
used for analysis. For the MEGA-PRESSeditOFF data, basis spectra were acquired from
chemical phantoms for TE = 68 ms.

GABA+ was fitted and quantified in the difference spectra using Gannet 3.1 [23].
Modifications to GannetFit.m were required to omit the sinusoidal and linear baseline
fitting terms, which would occasionally result in obviously underestimated GABA+ and
overestimated Glx areas. Gannet and SPM 12 (www.fil.ion.ucl.ac.uk/spm, accessed on
1 June 2021) were used for voxel to T1 weighted image registration. Figure 2a–c show
the LCModel outputs for PRESS and MEGA-PRESSeditOFF, and the results generated by
Gannet with the fitted Glx and GABA+ peaks, respectively.
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Figure 2. LCModel MRS Spectra from (a) PRESS and (b) MEGA-PRESS sequence. (c) Modeling of GABA signal: GABA-
edited spectrum is shown in blue, while the model of best fit is displayed in red. Gannet software uses a simple Gaussian
model by default. The black lines demonstrate the residual between the blue and red lines.

All metabolites are reported in institutional units (IU), where the unsuppressed water
signal was used as internal water reference. The results were corrected for water relaxation
and density in the tissue compartments [34] using CSF/GM/WM fractions in the voxel,
resulting from the tissue segmentation obtained with the “fast” algorithm from FSL [35].
The percentage of voxel overlaps for D2D was also determined with FSL. We performed
a first quality control step using standard criteria for LCModel data inclusion: SNR > 10,
FWHM < 0.1 ppm, CRLB < 15%, and looking for poor quality upon inspection of the
PRESS and MEGA-PRESSeditOFF spectra given by the LCModel output. GABA+ data was
inspected for any outliers (based on standard deviations and the mean across all subjects)

www.fil.ion.ucl.ac.uk/spm
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of the relevant metrics for data quality/goodness-of-fit output by Gannet: H2O-FWHM,
H2O-FitError, GABA-FWHM, and GABA-FitError, as per ref. Kurcyus et al., 2018 [36].

2.4. Statistical Analysis

Statistical analysis was performed with SPSS version 25 (IBM, Chicago, IL, USA).
Metabolite concentrations were expressed in terms of means and standard deviations.
Reproducibility, both back-to-back (B2B) and day-to-day (D2D) were calculated using
Pearson’s correlation r and its p-value by assuming the two-tailed distribution. Coefficients
of variations (CV% = (M/SD) × 100%, where M = mean, and SD = standard deviation)
were computed to assess repeatability, indicating within-subject variance because the
means and standard deviations were for two within-subject test-retest values [25,26]. To
identify any biases, we used Bland–Altman plots for our test-retest data for B2B and D2D
comparisons [37]. We expect D2D metrics to show poorer reproducibility as the D2D
variations from physiological sources and voxel placement are included, in addition to any
scanner instabilities (and minimal physiological variations) captured by the B2B metrics.
We computed correlations between the D2D voxel overlap and D2D reproducibility metrics
to see if voxel placement was driving any of the effects.

In the case of poor B2B reproducibility for the relatively short scan time (<7 min)
for GABA+ measurements, we plan to average the two B2B scans to get a result that
would be equivalent to that obtained with a scan that is twice as long (2 × 6:46 min
= 13.5 min). In such a case, we will assess D2D metrics for the averaged B2B values for all
the standard metabolites, as well as GABA+, to make use of all the edit-OFF data acquired
for a reproducible GABA+ scan. Averaging would not be performed for the 3.5 min PRESS
data which is used as a reference here. Intraclass correlation coefficient (ICC) was used for
measuring reliability, depending on both within- and between-subject variance [25]. Using
SPSS, single-rating, absolute-agreement for two-way fixed-effects ICC was calculated [38],
while assuming the following convention: poor (ICC < 0.4), moderate (0.4 < ICC < 0.59),
good (0.6 < ICC < 0.74), and excellent (ICC > 0.75) [26].

3. Results
3.1. Within and between Session Reproducibility

Reproducibility metrics for PRESS and MEGA-PRESSeditOFF are shown in Tables 2 and 3.
All data derived from the PRESS scans (n = 17) met quality criteria. For MEGA-PRESSeditOFF,
two participant datasets were removed from analysis (n = 27) upon screening for excessive
movements during the scans, as noted by the MR technologist at the time of scanning and
corroborated by the spectral quality check: one dataset had large lipid contamination in the
LCModel outputs of the MEGA-PRESSeditOFF spectra for both scans on Day2 (likely due to
motion between the anatomical scan used for voxel placement and the MRS scan, resulting in
poor voxel placement); the second dataset had one scan with excessive head motion resulting
in excessive noise visible on one of the four MEGA-PRESSeditOFF spectra output by LCModel.
Although the latter case reached standard LCModel criteria (SNR = 17, FWHM = 0.086) these
values were considered poor for the given scan, particularly the FWHM, where average
values of SNR and FWHM were 21.90 and 0.04 ppm, respectively (See Section 3.3). Based on
the CRLB% cut-off criteria for the MEGA-PRESSeditOFF spectra, two additional data points
were removed from Day1 for Glx (n = 25) and one from Day2 for each of Ins (n = 26) and
Glx (n = 26), resulting in D2D group sizes of n = 26 and n = 24 for Ins and Glx, respectively.
Interestingly, the poorly fitted Glx were reported for different participants on different days
and there was no overlap of subjects with poor fits of the two metabolites, Glx and Ins, so
these spurious effects were not subject-dependent. B2B correlation metrics (r and ICC) were
significant in all cases, across both scans, for the standard metabolites. B2B correlations were
only significant for GABA+ measurements on Day2 (more on this in the Discussion section).
Percentage changes for these metrics (Day2 relative to Day1) are indicated in Table 2, for all
significant cases (all metabolites, except GABA+). In addition, the CV% values shown in
Table 2 are not statistically significantly different across days.
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Table 2. B2B reproducibility metrics comparison: PRESS data (left white column) and MEGA-PRESS data (right grey
column). CV% are quoted as mean (M) and standard deviations (SD) across all subjects. Large SD values result due to
some very large outliers for CV%. Pearson’s correlation, r, and ICC values are denoted with */**, depending on the level of
significance. Percentage changes (Day2 relative to Day1) for significant r and ICC values are shown in the square brackets.

B2B Metabolite n r [% Difference from Day1] CV% M (SD) ICC [% Difference from Day1]

Day1

Ins 17 27 0.59 * 0.83 ** 5.30 (4.98) 5.85 (3.60) 0.57 ** 0.84 **
Glx 17 25 0.88 ** 0.66 ** 2.63 (1.87) 7.19 (4.29) 0.87 ** 0.64 **

tNAA 17 27 0.71 ** 0.93 ** 3.23 (2.48) 2.59 (2.21) 0.69 ** 0.91 **
tCho 17 27 0.64 ** 0.91 ** 5.50 (6.00) 4.55 (3.79) 0.60 ** 0.87 **
tCr 17 27 0.74 ** 0.95 ** 4.33 (4.03) 2.74 (2.50) 0.70 ** 0.93 **

GABA+ – 27 – 0.20 – 8.41 (6.84) – 0.19

Day2

Ins 17 26 0.79 ** [↑ 34%] 0.70 ** [↓ 16%] 4.10 (2.21) 6.92 (5.55) 0.74 ** [↑ 29%] 0.70 ** [↓ 17%]
Glx 17 24 0.73 ** [↓ 17%] 0.79 ** [↑ 17%] 3.09 (2.25) 5.70 (3.90) 0.81 ** [↓ 7%] 0.74 ** [↑ 16%]

tNAA 17 27 0.87 ** [↑ 23%] 0.89 ** [↓ 17%] 2.72 (1.85) 3.01 (2.30) 0.84 ** [↑ 22%] 0.88 ** [↓ 3%]
tCho 17 27 0.80 ** [↑ 25%] 0.91 ** [↑ 0%] 3.70 (2.95) 3.95 (4.31) 0.74 ** [↑ 23%] 0.89 ** [↑ 2%]
tCr 17 27 0.83 ** [↑ 12%] 0.94 ** [↓ 1%] 3.35 (1.98) 2.82 (2.95) 0.73 ** [↑ 4%] 0.92 ** [↓ 1%]

GABA+ – 27 – 0.65 ** – 7.18 (5.47) – 0.62 **

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).

Table 3. PRESS and MEGA-PRESS D2D reproducibility metrics comparison. CV% includes mean (SD) and range of the four
sets of D2D comparisons (D2D-S1; D2D-S2; D1S1D2S2; D1S2D2S1). The Min and Max r and ICC values, for the four sets of
D2D comparisons, are reported, and their significance is given by the */** level. Only r and ICC values that are significant
are included in the reported ranges.

D2D Metabolite n
CV% r ICC

Mean (SD) Range Min. Max. Min. Max

PRESS

Ins 17 5.73 (1.15) 4.76–7.39 0.48 * 0.62 ** 0.46 * 0.62 **
Glx 17 3.75 (0.49) 3.06–4.20 0.66 ** 0.79 ** 0.66 ** 0.79 **

tNAA 17 4.16 (0.34) 3.90–4.65 0.52 * 0.60 * 0.51 * 0.61 *
tCho 17 6.05 (0.80) 4.91–6.63 0.55 * 0.75 ** 0.46 * 0.70 **
tCr 17 5.42 (0.85) 4.8–5.18 0.56 * 0.64 ** 0.47 * 0.59 *

MEGA-
PRESS

Ins 26 7.24 (0.94) 5.83–7.84 0.58 * 0.73 ** 0.58 * 0.74 **
Glx 24 6.87 (0.20) 6.63–7.12 0.54 * 0.71 ** 0.55 * 0.67 **

tNAA 27 4.47 (0.60) 3.81–5.26 0.64 ** 0.74 ** 0.65 * 0.75 **
tCho 27 7.52 (0.37) 7.08–7.96 0.53 * 0.58 ** 0.51 * 0.58 *
tCr 27 4.66 (0.28) 4.35–5.02 0.81 ** 0.84 ** 0.77 ** 0.84 **

GABA+ 27 9.24 (1.24) 7.69–10.32 0.41 * 0.41 * 0.38 0.38

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).

Across session D2D, reproducibility metrics include the following four pair-wise com-
parisons: (i) D2D-S1, (ii) D2D-S2, (iii) D1S1-D2S2, and (iv) D1S2- D2S1, where D# represents
Day#, and S# represents scan # of B2B scans (# = 1,2). Reproducibility for D2D scans are
compared across PRESS and MEGA-PRESS in Table 3. Here, we also report the data range
from the 4 sets of D2D scan comparisons and the average and standard deviation of the four
D2D values of CV% (average is shown by dashed horizontal line in Figure 3). Datapoints
that did not have significant correlations (r and ICC) were excluded from the reported data
range for r and ICC. For PRESS, two Ins datasets (D2D-S2, p = 0.05; D1S1-D2S2, p = 0.3)
and one tCr dataset (D1S1-D2S2, p = 0.07) were excluded from the r and ICC range. For
MEGA-PRESSeditOFF data, there were significant correlations (r) for all 5 standard metabo-
lite measurements obtained using LCModel for D2D scans (r = 0.53–0.84; p = <0.01). ICC
values were also significant in all cases for MEGA-PRESSeditOFF data (ICC = 0.51–0.84).
For MEGA-PRESS, GABA+ only had one D2D pair with significant r and ICC (D2D-S1,
p = 0.035).
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For both PRESS and MEGA-PRESS sequence, B2B CV% are, on average, lower than
D2D CV% for all 5 standard metabolites, as indicated by the dashed horizontal lines in
Figure 3. While B2B and D2D CV% for MEGA-PRESS were higher than PRESS for Ins,
Glx, and tCho, they were comparable. In addition, we noted lower B2B (on Day1 and
Day2) and all D2D CV% for tCr in MEGA-PRESSeditOFF (B2B: 2.74% and 2.82%; D2D:
4.35%, 4.72%, 5.02%, and 4.55%) compared to PRESS (B2B: 4.33% and 3.35%; D2D: 5.04%,
4.79%, 6.67%, and 5.18%) (Figure 3). MEGA-PRESSeditOFF also appears to have higher ICC
overall compared to PRESS, with an average of 0.80 across the five standard metabolites
for MEGA-PRESSeditOFF and 0.70 for PRESS. In addition, no notable biases were identified
using BA plots for any of the comparisons (data not shown).

GABA+ measurements were inspected for any outliers (>3 SDs from the mean) of
the relevant data quality metrics output by Gannet: H2O-FWHM, H2O-FitError, GABA-
FWHM, and GABA-FitError [36]. This resulted in a single outlier for H2O-FWHM and
a single outlier for GABA-FitError. However, removal of these outliers did not result in
significant changes to reproducibility metrics; thus, these values are not excluded in the
presented data (more on this in the Discussion section).

3.2. Voxel Overlap and Metabolite Concentration

By co-registering the two T1-weighted images with positioned MRS insula voxel on
each scan day, we were able to compute the percentage voxel overlap. There was an average
%voxel overlap of 82.3% ± 8.9% between Day1 and Day2 scans for PRESS and MEGA-
PRESS. The difference between %CSF/GM/WM composition for Day1 and Day2 scans
was 0.6%, 0.2%, and 0.8%, respectively (data not shown), indicating there were minimal
changes to voxel composition. The degree of voxel overlap also did not correlate with
reproducibility values or affect metabolite measurements (p > 0.05), suggesting there were
no significant changes in the neurochemistry related to voxel placement or CSF/GM/WM
composition. This is consistent with what has been observed in other work [39]. The
metabolite concentrations reported for TE = 68 ms were lower than those reported for
TE = 35 ms, as expected due to the longer TE (Table 4). The reductions were close to 30%
for Ins and tCho and closer to 10% for tNAA and tCr. However, the measurement of Glx
was drastically reduced by more than 60% (more on this in the Discussion section). We are
not reporting the differences in these mean metabolite concentrations across days because
we found that these were not statistically significantly different.



Brain Sci. 2021, 11, 1538 9 of 17

Table 4. Means (standard deviations) of metabolite concentration (IU) in the insula with PRESS and
MEGA-PRESS, averaged across B2B values for each scan day.

Metabolite PRESS MEGA-PRESS

Day1 Average

Ins 8.88 (0.91) 6.42 (1.00)
Glx 25.42 (2.09) 9.85 (1.29)

tNAA 16.52 (1.10) 14.87 (1.61)
tCho 3.58 (0.42) 2.70 (0.40)
tCr 11.60 (1.17) 10.50 (1.35)

GABA+ – 1.48 (0.09)

Day2 Average

Ins 8.96 (0.74) 6.39 (0.94)
Glx 25.79 (2.00) 9.85 (1.22)

tNAA 16.70 (1.27) 15.06 (1.56)
tCho 3.52 (0.29) 2.71 (0.46)
tCr 11.64 (0.81) 10.59 (1.46)

GABA+ – 1.50 (0.20)

3.3. FWHM, Signal-to-Noise Ratio, and Tissue Heterogeneity

To evaluate spectral quality and to control for potential group differences, here, we
report the FWHM, SNR, CRLB%, and the composition of CSF, GM, and WM across PRESS
and MEGA-PRESS. The two groups did not significantly differ in FWHM values nor in
the composition of CSF, GM, and WM in the insula voxel (Table 5). Both groups reported
good spectral quality overall. The CRLB% for the standard metabolites are also comparable
between PRESS and MEGA-PRESSeditOFF for tNAA, tCho, and tCr (which are all very low,
<3.0). However, the CRLB% are almost double for Glx and Ins for MEGA-PRESSeditOFF
versus PRESS data but still well within the cut-off value of 15%, on average.

Table 5. Data quality values ((means (standard deviations)): Full-width at half maximum (FWHM), signal-to-noise
ratios (SNR), CRLB% for the five metabolites, and voxel composition (fractions of CSF/GM/WM adding up to 1). For
GM/WM/CSF, average fractions across days were taken for obtaining M(SD).

FWHM
(ppm)

SNR CRLB% CSF GM WM

Ins Glx tNAA tCho tCr

PRESS
(n = 17)

0.05
(0.01)

34.29
(3.04) 4.0 (0.4) 4.0 (0.4) 2.0 (0.0) 2.0 (0.0) 2.0 (0.3) 0.17

(0.03)
0.63

(0.03)
0.19

(0.03)
MEGA-
PRESS
(n = 27)

0.04
(0.01)

21.90
(5.66) 9.0 (1.3) 8.0 (1.7) 2.0 (0.3) 3.0 (0.3) 2.0 (0.4) 0.18

(0.03)
0.63

(0.04)
0.18

(0.03)

3.4. Sex Differences

Sex differences in metabolite concentration have previously been reported. For in-
stance, GABA+ and Glx concentration were found to be significantly higher in males
dorsolateral prefrontal cortex [40], whereas, in the anterior cingulate cortex, females had
higher levels of tCr, NAA, and glutathione and lower levels of glutamine [41,42]. To
date, no sex dependent differences in metabolite concentrations have been reported in
the insula [43]. We investigated whether there were sex differences between metabolite
concentration in the insula using data from MEGA-PRESSeditOFF. Overall, we detected no
significant metabolite variations between the male (n = 12) and female (n = 15) groups (all
p > 0.05; Supplementary Table S3).

4. Discussion

This study has been designed to assess reproducibility of metabolite concentration
measurements using a MEGA-PRESS scan with parameters optimized for the measurement
of GABA+ in a 16 mL long and narrow voxel in the insula. We measured reproducibility
both within session (B2B) and across sessions that were 1–3 days apart (D2D), with the
assumption that the B2B reproducibility metrics (CV%, r, and ICC) would capture scanner-
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based instabilities with minimal physiological changes. Therefore, the B2B values are used
as a reference to determine how much day-to-day physiological variations and possible
inconsistencies in voxel placement affect the reproducibility of our measurements. This is
helpful because, although there is some consensus in the literature to use these metrics to
measure reproducibility, there is still no gold standard for what constitutes a good value
for CV. This is in contrast to Pearson’s r and ICC which, when significant (p < 0.05), can be
associated with levels of correlation strength (e.g., r > 0.7 is considered a strong correlation,
and ICC > 0.75 is considered excellent reliability). Here, we use Pearson’s r to assess if the
test-retest values are meaningful. Because ICC is dependent on the intra- and inter-subject
variability, it reflects the measurement variability in relation to the variability in the cohort
being sampled. Given that our groups are healthy and within a fairly tight age range (most
are in their 20s, with only 2 subjects > 30 years), we can interpret high ICC values (>0.7) to
reflect highly reproducible measurements. If we get moderate to good correlations, we can
look at CV% across sessions in relation to the CV% within session. It is well-appreciated
that the value will be dependent on voxel size, location, and scanning parameters, such as
TE and TR, since these values will not only affect the amount of noise in the measurement
but also the mean metabolite concentrations, which are used to compute CV%. This is
also why we expect to obtain varying CV% for the different metabolites, which are at very
different concentrations. With the addition of the high quality short-TE PRESS scan in the
same voxel, and also sampled within and across sessions, the design of this study provides
a reference value for the CV% for D2D reproducibility.

4.1. Mean Concentration Values and CRLB

The average concentrations (in IU) for the five standard metabolites and GABA+ are
given in Table 4, and average CRLB% (LCModel output) is given in Table 5. Given that
CRLB are shown as a relative amount (% relative to the average metabolite concentration),
we can compute approximate absolute CRLB values (CRLBabs) as: CRLBabs = CRLB%
× average (concentration). Using this on all average values reported in Tables 4 and 5
and comparing results for PRESS/MEGA-PRESS data gives: CRLBabs = 0.36/0.58 for Ins,
1.02/0.79 for Glx, 0.33/0.30 for tNAA, 0.07/0.08 for tCho, and 0.23/0.21 for tCr. Thus, we
can see that only in the case of Ins, MEGA-PRESS gives a larger absolute error/uncertainty
in the fit than PRESS. This may explain the one MEGA-PRESSeditOFF spectrum that did not
meet the cut-off criterion (CRLB% > 15%) for Ins. In fact, for Glx, the error/uncertainty
is lower for MEGA-PRESS than PRESS, and it would appear that the exclusion criteria
(CRLB% < 15% which led to the exclusion of three data points) may have been too restrictive
in this case as the higher CRLB% values appear to be due to low concentrations of Glx
rather than a poor fit.

Although T2 is expected to vary across metabolites (see values given in Table 1 of
Dhamala et al., 2019 [24]) and regions [44], with shortest value expected for tCr (e.g., 158 ms
in cortical GM) and the longest value expected for tNAA (e.g., 288 ms in cortical GM), the
relative amount of metabolites, across the TE values used here, is not expected to vary
drastically. Given the values in Table 4, we see similar ratios of metabolite concentrations
across our 2 sequences (across our 2 different groups): tNAA/tCr = 1.42 for both MEGA-
PRESS and PRESS, tCho/tCr = 0.26 and 0.31 for MEGA-PRESS and PRESS, respectively,
and Ins/tCr = 0.76 and 0.61 for MEGA-PRESS and PRESS, respectively. However, the
value for Glx/tCr changes drastically, from 2.19 for PRESS to 0.94 for MEGA-PRESS. This
inconsistency in the relative amount of Glx across TE values has been noted previously
[26,29,45], where both PRESS and MEGA-PRESS scans, with similar scanning parameters
to those used in this study, were performed on the same subjects, back-to-back. In fact,
these studies found a lack of correlation for the Glx values measured using the different
sequences and the Glx measurement derived from the MEGA-PRESSeditOFF spectra resulted
in approximately half the amount of Glx concentration as that derived for PRESS (we
observe an even larger reduction of 9.85/25.42 = 0.39). This lack of concordance across
sequences has been noted as “surprising”, and, despite some efforts to explain possible
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sources for these differences (e.g., contributions from macromolecules at lower TE or
effects of the editing pulse on the Glx to macromolecule ratio [29,45]), this discrepancy
remains poorly understood. Furthermore, in these studies, the Glx measurement taken
from the MEGA-PRESSdiff spectra appears to be closer to the PRESS measurement (i.e.,
less reduced), but the values are still not correlated across sequences. Although we cannot
compute correlations across scans because we did not scan the same subjects with PRESS
and MEGA-PRESS, the large change in Glx concentration at the longer TE is very relevant
to this study: It is an important source of the reduction in the reproducibility values for Glx
we see when comparing measurements from MEGA-PRESS to those from PRESS.

4.2. B2B Reproducibility

We obtained significant Pearson’s correlation r-values and ICC for all our PRESS B2B
comparisons, with strong correlations (r > 0.7 and ICC > 0.75) for all metabolites, except
one instance (Day1) for Ins (r = 0.59, ICC = 0.57) and one instance (Day1) for tCho (r = 0.64,
ICC = 0.60). The CV% values ranged from 2.63% to 5.30%, with lowest values for Glx
and tNAA (metabolites in highest concentrations) and highest values for Ins and tCho
(metabolites in lowest concentrations). We also obtained significant Pearson’s correlation
r-values and ICC for all our MEGA-PRESSeditoFF B2B comparisons, with strong correlations
for all metabolites, except one instance (Day1) for Glx (r = 0.66, ICC = 0.64) and one instance
(Day2) for Ins (r = 0.70, ICC = 0.70). The r and ICC values tended to be higher in the
MEGA-PRESSeditOFF dataset, compared to PRESS, and the percentage difference in these
metrics across days was lower for MEGA-PRESSeditOFF (0–17%) than for PRESS (4–34%),
which indicates better stability in the single measurements for MEGA-PRESSeditOFF. For
MEGA-PRESSeditOFF B2B data, the CV% values ranged from 2.59% to 7.19%, with the
values ranked in increasing order for tNAA, tCr, tCho, and Ins, the same as for PRESS. The
only change was that Glx had highest CV% for MEGA-PRESSeditOFF, whereas it had lowest
CV% for PRESS, but this is likely just a reflection of the marked decrease in concentration
of Glx for the longer TE of MEGA-PRESSeditOFF.

For GABA+, we only obtained significant Pearson’s r and ICC values for the B2B scans
on Day2 with moderately high values (r > 0.6 and ICC > 0.6). The poor B2B correlations
for Day1 could not be explained as driven by poor GABA+ fitting/data quality, identified
by a quality check performed on the Gannet output [36]. There were only 2 GABA+ data
points that exceeded the thresholds obtained this way, and elimination of the outlier on
Day1 did not improve our B2B correlations for Day1 (still non-significant: r = 0.15, p = 0.46).
In fact, closer observation showed that the CV% for the corresponding subject on Day1
was 10.17%, and it was not responsible for the lack of significant correlation. Based on the
CV% values per subject, we were able to identify two subjects with CV% = 28.24% and
CV% = 21.51% on Day1 that were driving the lack of correlation; when these two subjects
were removed from the GABA+ dataset, a significant B2B correlation for n = 25 ((r,p) = (0.41,
0.04)) was obtained; see Figure 4a. We also looked at all the data pooled (for both days)
because, if we assume that B2B measurements exclusively capture scanner instabilities, the
data on different days could be considered independent. This resulted in significant B2B
correlations for n = 54 (2 × 27), albeit with low strength: r = 0.45, p = 0.001(see Figure 4a).
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which of the two B2B scans is problematic. The fact that the GABA+ quality check method 
was not able to identify any of the 4 spectra associated with these two problematic data 
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Figure 4. (a) GABA+ concentrations (in IU) for B2B data plotted as Scan2 versus Scan1 on both days. Using all data (n = 27)
on Day2 gives a very significant correlation (r = 0.65, p = 0.003). Using all data (n = 27) on Day1 gives an insignificant
correlation (r = 0.20, p = 0.31), but, if we remove the 2 outliers identified based on large CV% values, we get a significant,
albeit low, correlation (r = 0.41, p = 0.04) for Day1 (n = 25). The 2 data points indicated by the arrows were identified as
outliers for exceeding 3 × SDs away from the mean values of H2O-FWHM and GABA+-FitError (Gannet output). Removal
of these did not improve the significance of the correlation. (b) D2D correlations of GABA+ concentrations when B2B
measurements are averaged (r = 0.43, p = 0.024), plotted as Day2 (average of Day2 within session values) versus Day1
(average of Day1 within session values).

The B2B data for GABA+ can, therefore, be considered too noisy to produce re-
producible GABA+ measurements, suggesting that a scan time longer than 6:46 min is
necessary. It is important to note that, although r and ICC values were non-significant
for Day1, the CV% was 8.41%, which is only slightly higher than that obtained for Day2
(7.81%), indicating that CV% alone cannot identify the level of reproducibility of the data.
The poor B2B reproducibility measured for GABA+ on Day1 was found to be driven by
two subjects with extremely large values for CV% relative to the others (also identified on
Bland–Altman plots). This outlier identification is not ideal for two reasons: (i) it requires
B2B measurements to compute CV% and these are not usually available, and (ii) it cannot
identify which of the two B2B scans is problematic. The fact that the GABA+ quality check
method was not able to identify any of the 4 spectra associated with these two problematic
data points, demonstrates a lack of adequate measures to assess the quality of GABA+
results on a single spectrum basis. This highlights the need to develop better quality check
criteria for the evaluation of GABA+ results from Gannet in the future.

4.3. D2D Reproducibility

All D2D correlations (r and ICC) were significant for PRESS data, except for a single
case for tCr and two cases for Ins. Significant r and ICC values were in the moderate range
for most metabolites, with the exception of Glx, which had ICC in the good to excellent
range. For MEGA-PRESSeditOFF data, all D2D paired scans were significantly correlated
with r and ICC values in the moderate to excellent range, with stronger correlations for
tNAA and tCr and lower correlations for Glx and tCho (related to their concentrations).
GABA+, D2D correlations were only significant in one case out of the four. This is not
surprising given the poor B2B correlations.

In terms of CV%, data are shown in Figure 3 as bar graphs since there was some
variation in the values that depended on which pair of scans was used to compute the D2D
metric. In all cases, the CV% increased from B2B to D2D values, as can be appreciated by
looking at the dashed lines in Figure 3. This consistent step increase from B2B to D2D CV%
is expected because the D2D repeatability will be equal to the B2B repeatability, at best,
given that it includes additional day-to-day physiological and voxel placement sources of
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instability. In general, the CV% followed the metabolite concentrations as expected (given
that it is a relative measure) with lower values for: tNAA, tCr, and Glx for PRESS, and
tNAA and tCr for MEGA-PRESSeditOFF. In addition, PRESS and MEGA-PRESSeditOFF data
had comparable CV% for all metabolites except Glx, which was much lower for PRESS
(given the change in concentration). GABA+ had CV% values that are higher than any of
the PRESS and MEGA-PRESSeditOFF data, indicative of poor reproducibility for a 6:46 min
scan time.

Due to the poor correlations for the B2B and D2D scans for GABA+ and higher
CV% values, it can be concluded that a longer scan time than 6:46 min is required for
reproducible GABA+ measurements. Consequently, we computed the average metabolite
concentration within session (average of B2B scan results for each subject) of all metabolites
obtained using the MEGA-PRESS sequence. The average within session values required
a scan time of 13.5 min (shown in Table 6). D2D correlation for averaged within session
GABA+ concentration is shown in Figure 4b (r = 0.43, p = 0.024). Averaged within session
scans resulted in significant D2D correlations (r and ICC) for all metabolites, with good to
excellent correlations for all metabolites, except for tCho, which was moderate (r = 0.58,
ICC = 0.58), and GABA+ which was poor (r = 0.43, ICC = 0.41). The D2D CV% values
obtained from the averaged within session values were lower than the average D2D values
(listed in Table 3 and shown by the horizontal dashed lines in Figure 3), and they fall within
the range of values observed for PRESS data for each metabolite (except Glx, due to the
large decrease in concentration). Using the average within session GABA+ measurements,
we had a D2D CV% of 7.15%, which is lower than the B2B CV% values obtained for GABA+
on either day. This D2D CV% is also within the range of D2D CV% measured with PRESS
for Ins (see Table 3). This confirms that a scan time of 13.5 min for MEGA-PRESS allows for
reproducible measures of GABA+ and the other five standard metabolites.

Table 6. Reproducibility metrics obtained for D2D when the average B2B values are used; thus, these are values for an
equivalent of 13.5 min scan time. CV is given as M(SD)) with values computed across subjects. Correlation metrics, r, and
ICC, are given, with their significance indicated by the */**.

MEGA-PRESS

Metabolite n r p (2-Tailed) CV% M (SD) ICC

D2D
13.5 min

Ins 26 0.74 ** <0.001 6.13 (4.24) 0.75 **
Glx 24 0.74 ** <0.001 5.06 (3.75) 0.74 **

tNAA 27 0.74 ** <0.001 4.09 (3.21) 0.74 **
tCho 27 0.58 ** 0.002 6.64 (6.68) 0.58 **
tCr 27 0.84 ** <0.001 4.03 (3.07) 0.85 **

GABA Ave 27 0.43 * 0.024 7.15 (4.03) 0.41 *

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).

4.4. Limitations

Several limitations can be identified with this study. First, the sample sizes across the
two cohorts (MEGA-PRESS and PRESS) were not matched for practical reasons, favoring
more subjects scanned with the less standard sequence (MEGA-PRESS). We do not expect
this to have a significant effect on our results due to the fact that computing r-adjusted
values (see Baeshen et al. [26]) for r in the range 0.4–0.8 for n = 17 and n = 29 gives a
difference in r that is less than 1%. Given the close agreement in reproducibility metrics
across PRESS and MEGA-PRESS for the standard metabolites, this is not likely an issue here.

A technical limitation of this study is that different basis sets were used by the
LCModel for the different TEs. The TE = 68 ms basis set used has missing signatures
with respect to the TE = 35 ms basis set: tCh does not include PCh, just GPC, and tNAA
does not include NAAG (just NAA). That does not seem to be a problem since the LCModel
did not detect those signatures in the short-TE PRESS spectra (i.e., PCh and NAAG were
rarely fit with any non-zero/negligible values). The more notable difference is that the
TE = 68 ms basis set did not have PCr (only Cr) since both PCr and Cr are detected by
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LCModel in the short-TE PRESS spectra, in general. However, the signatures of these
two metabolites consist of a single large peak for each, and these peaks largely overlap
the same ppm range. Thus, they are likely being absorbed into a single peak for the
MEGA-PRESSeditOFF fits without any loss of concentration. This is corroborated by noting
that tNAA/tCr and tCho/tCr are comparable across scans (PRESS versus MEGA-PRESS)
despite the difference in TE values across scans, T2 values across metabolites [24], and
basis sets.

Another limitation of this study is that we only looked at Glx from the MEGA-
PRESSeditOFF spectra due to the expectation that this would provide a more reproducible
measurement [30]. However, Glx is also automatically fit by Gannet when fitting GABA+
in the difference spectra (see Figure 2c); thus, future work should involve investigating the
resulting Glx values and comparing them with those reported here.

One main limitation is that we only examined a fixed scan time for GABA+ of 6:46 min.
This scan time was chosen because we determined that it produced data with sufficient
quality to provide decent fits to the difference spectra with Gannet. Given the voxel size of
16.5 mL and the fact that the insula is not as close to the coils, we expected that reproducible
data would necessitate a longer scan time for this voxel than for voxels in cortical regions:
anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC), which have
been investigated more often. Those usually require a minimum of 10 min scan time. By
using two B2B scans of 6:46 min, we tested the ability to obtain good B2B results from this
short scan time, with the option of averaging two within session results [26], to improve
D2D reproducibility. Although our results show that the within session averaging produced
good D2D GABA+ reproducibility, otherwise not observed with the 6:46-min scan time,
reproducible D2D scans may be obtained with a shorter scan time (somewhere between
6:46 min and 13.5 min). Thus, the focus of our future investigations will be to gradually
merge transients to produce spectra equivalent to scanning from 6:46 min to 13.5 min,
as proposed by Brix et al. [46]. The process of merging transients will be conducted for
all MEGA-PRESS scans to optimize the reproducibility of all metabolites examined. In
addition, we expect that, by merging transients to obtain a single spectrum to be fit once,
we will improve upon the values reported here, where a simple averaging of B2B fitting
results was performed.

5. Conclusions

We have shown that, by using the MEGA-PRESS protocol requiring 13.5 min of
scan time, we obtain D2D reproducibility metrics for GABA+ that are comparable to the
reproducibility metrics we get for standard metabolites with a 3.5-min short-TE PRESS
scan. We have shown that tNAA and tCr, which have the highest concentrations, have
equal or better reproducibility when extracting the D2D metrics from the within session
average values. For tCho and Ins, with lower concentrations but peaked signatures,
the D2D reproducibility values are comparable to those for the short-TE PRESS scan,
albeit with an increase in absolute CRLB for Ins. For Glx, there is a large loss in relative
concentration for TE = 68 ms versus TE = 35 ms that warrants further investigation. The
change in Glx concentration results in higher CV% and CRLB% for MEGA-PRESS than
for PRESS (although CRLBabs was found to be lower for MEGA-PRESS). Nonetheless,
D2D reproducibility values for Glx obtained from averaging the within session results
from MEGA-PRESSeditOFF fits are comparable to those obtained for other metabolites (e.g.,
Ins) with a short-TE PRESS scan. In short, an additional PRESS scan is not necessary, for
reproducible data, if a 13.5 min MEGA-PRESS protocol is being used in the insula. However,
the Glx values should be taken with caution as the discrepancy in Glx measurements
across methods (short-TE PRESS, MEGA-PRESSeditOFF, MEGA-PRESSdiff) remains poorly
understood [29,45]. Our data has also shown that voxel placement is not a critical factor in
obtaining highly reproducible data, and we were not able to detect any sex differences of
any of the metabolites in the insula of our young and healthy cohort.
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