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Research

Childhood mortality in sub-Saharan
Africa: cross-sectional insight into
small-scale geographical inequalities

from Census data

Lawrence Kazembe,' Aileen Clarke,? Ngianga-Bakwin Kandala®*

ABSTRACT

Objectives: To estimate and quantify childhood
mortality, its spatial correlates and the impact of
potential correlates using recent census data from
three sub-Saharan African countries (Rwanda, Senegal
and Uganda), where evidence is lacking.

Design: Cross-sectional.

Setting: Nation-wide census samples from three
African countries participating in the 2010 African
Census round. All three countries have conducted
recent censuses and have information on mortality of
children under 5 years.

Participants: 111 288 children under the age of

5 years in three countries.

Primary and secondary outcome measures:
Under-five mortality was assessed alongside potential
correlates including geographical location (where
children live), and environmental, bio-demographic and
socioeconomic variables.

Results: Multivariate analysis indicates that in all three
countries the overall risk of child death in the first

5 years of life has decreased in recent years (Rwanda:
HR=0.04, 95% CI 0.02 to 0.09; Senegal: HR=0.02
(95% Cl 0.02 to 0.05); Uganda: HR=0.011 (95% CI
0.006 to 0.018). In Rwanda, lower deaths were
associated with living in urban areas (0.79, 0.73,
0.83), children with living mother (HR=0.16, 95% ClI
0.15 to 0.17) or living father (HR=0.38, 95% Cl 0.36
to 0.39). Higher death was associated with male
children (HR=1.06, 95% CI 1.02 to 1.08) and Christian
children (HR=1.14, 95% CI 1.05 to 1.27). Children less
than 1 year were associated with higher risk of death
compared to older children in the three countries. Also,
there were significant spatial variations showing
inequalities in children mortality by geographic
location. In Uganda, for example, areas of high risk are
in the south-west and north-west and Kampala district
showed a significantly reduced risk.

Conclusions: We provide clear evidence of
considerable geographical variation of under-five
mortality which is unexplained by factors considered in
the data. The resulting under-five mortality maps can
be used as a practical tool for monitoring progress
within countries for the Millennium Development Goal
4 to reduce under-five mortality in half by 2015.

ARTICLE SUMMARY

Article focus

= Census and household data contain small-area geo-
graphical information, such as the residence of a
child at the time of death. The impact of such
spatial effects on mortality is of substantive interest.

= Mortality data in the census and household are also
subject to recall bias and heaping effects. The event
of deaths is also censored at the time of the survey.
We use recent statistical techniques to account for
the survival nature of the data in the analysis.

= \We use data from recent census/household data from
three sub-Saharan Africa (Rwanda, Senegal and
Uganda) to investigate the importance of country-
specific geographical factors on under-five mortality.

Key messages

= Our results provide clear evidence of considerable
geographical inequalities of under-five mortality that
is unexplained by socio-economic factors consid-
ered in the data.

= Our findings indicate that public health interventions
and health promotion to reduce under-five mortality,
should take into account both individual and area vari-
ation to account for the diversity of settings.

= Planning and intervention measures could have dif-
ferent outcomes in terms of effectiveness in areas
with a high degree of variability. Homogeneous
policy intervention strategies may not give the
required outcomes as suggested by large significant
inequalities in of under-five mortality within and
between countries in our study.

Strengths and limitations of this study

= Our study seems the only one that has attempted to
investigate geographical inequalities of under-five
mortality beyond individual and household factors
using merged census and household data from
sub-Saharan Africa countries.

= The major strength is the use of census and nationally
representative household survey to investigate and
explain district-level inequalities in under-five mortality
using a novel approach that accounts simultaneously
for individual, household and area factors.

= The major limitation of this study is the cross-
sectional nature of the data, which does not permit
one to draw causal association between under-five
mortality and the associated spatial effects including
individual and household factors.
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INTRODUCTION

There have been considerable gains in child survival in
the world over the past 10 years. Recent reports on the
‘State of the World’s Children’ indicate an overall
decline in child mortality from 100/1000 children in
1999 to 72/1000 children in 2010.! A number of coun-
tries in North Africa, Eastern Europe, south-east Asia
and Latin America have reduced under-five child mor-
tality by half in the period between 1990 and 2010." In
contrast, countries in sub-Saharan Africa (SSA) have
remarkably high rates and were ranked the top worst
performers in reduction of child mortality, with very few
making progress and the majority experiencing no
change or a reversal in gains made some 10 or so years
previously. In Ethiopia, Malawi and Namibia the decline
in under-five child mortality has been substantial despite
meagre resources, while in other SSA countries it has
remained the same. A case in point is DR Congo which
posted an underfive mortality of 199/1000 children in
1999 and the same again in 2009. In countries such as
Chad, there has been an increase from 201/1000 chil-
dren born in 1999 to 209/1000 children in 2009. In
short, even with known solutions and international assist-
ance, the transition from high mortality to low mortality
is highly uneven in the SSA region.

Several studies have shown that child survival in the
first 5years of life is influenced by a myriad of risk
factors. For instance, Becher et af® quantified the effect
of risk factors for childhood mortality in a typical rural
setting of Burkina Faso. They performed a survival ana-
lysis of births within a population from a demographic
surveillance system in 39 villages. In another study in
rural Tanzania, Armstrong-Schellenberg ¢t al® conducted
a community-based nested case—control study of post-
neonatal deaths in children under 5 years, in which they
investigated demographic and socio-economic factors,
health-seeking behaviour, the household environment
including accessibility to healthcare and individual child
care factors. A similar population-based case—control
study was carried out to investigate potential risk factors
for postneonatal and child mortality in northern
Ghana.* Child mortality demonstrated gender-based dis-
parities,” varied with socio-economic inequalities® and
was influenced by variation in coverage of interven-
tions.* At times, living in either urban or rural areas can
disadvantage under-five children’s health.® The general
picture is that major causes of childhood mortality, sum-
marised as disease and malnutrition, are exacerbated by
socio-economic differences and varied intervention
coverage,” and these risk factors apply at both individual
and community levels.®

Many of these studies have been conducted at subna-
tional or national level. Our search showed that relatively
few studies have considered between country or cross-
national analyses of childhood health and associated
determinants. Magadi® examined the risk factors of mal-
nutrition among children whose mothers are infected

with HIV in SSA. She applied a multilevel logistic regres-
sion to the Demographic and Health Survey (DHS) data
from 18 countries for the period 2003-2008. Another
across-countries study was conducted by Kandala et al’
in which they considered geographical and socio-
economic determinants of child undernutrition in
Malawi, Zambia and Tanzania. This identified regional
patterns which transcend national boundaries. In a
similar study, Sherbinin'® reported on biophysical and
geographical correlates of child malnutrition in Africa.
Wang,"' using data from 60 countries, explored the
global pattern of child mortality and investigated the
determinants both at national and subnational level.

While tackling the issue of determinants of child mor-
tality, it is common that sample survey data have been
used. Only a few studies have considered census data,
mostly to analyse demographic indicators such as
fertility, yet with very limited statistical modelling of
childhood mortality.'* Census data provide a large cross-
sectional database that would allow investigation of the
association between mortality or health outcomes and
risk factors. Because census data are a complete enumer-
ation of all individuals in a country, the statistical analysis
is likely to have more power than data derived from a
survey. Further the censuses provide a picture of the
country at any given time, therefore allowing a better
understanding of risk factors, critical in explaining varia-
tions and crucial for implementing interventions in
child mortality, thus.

OVERVIEW OF THE ANALYSIS OF MORTALITY DATA

A number of statistical models have been proposed
when analysing the risk of child mortality in the first
5years of life and its determinants. Most popular have
been logistic regression models which assume child sur-
vival as a binary response (either the child lived beyond
HSyears or died before the fifth birthday). In such
models one estimates the probability of a child surviving
and can include risk factors. The coefficients of risk
factors can be interpreted as ORs. These models, never-
theless, ignore the time to event (death), and therefore
fail to capture exposure to the risk of dying or conceal
the evolution of the subject’s state over time.'” More
appropriately, survival models can be used to analyse the
hazards of child survival. Both logistic and survival ana-
lysis can be implemented within the basic generalised
linear models (GLM) framework.

Research on survival analysis in demography and
related fields has increased since the seminal work by
Cox in the 1970s,"* with application in child mortality or
survival appearing in the 1990s and 20003,15_17 involving
both standard proportional hazard models'® and
complex models."® Precursor to the use of Cox regres-
sion, life tables have been used to estimate the probabil-
ities of survival of a given cohort.'” The Cox regression
and recent modern survival techniques, in contrast,
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permit effects of risk factors (determinants) to be esti-
mated, which is critical for designing interventions. Cox
and other survival regression models have other advan-
tages including analysis of censored and truncated
response data, and time-varying effects.”

Two important extensions in survival regression models
that have received considerable attention recently are the
inclusion of random effects and flexible modelling
through semiparametric and nonparametric approach.!
Such analyses have an added advantage compared to
ordinary GLM. Models that incorporate random effects
are commonly called generalised linear mixed models
(GLMM), and those that account for non-linearity are
referred to as generalised additive models (GAM) and
when extended to include random effects they are known
as generalised additive mixed models (GAMM).

The inclusion of random effects permits modelling of
unmeasured and unobserved contextual factors in the
models. These may act at family, community, district,
regional or national levels since the underlying causes of
neonatal mortality are multisectoral and interwoven.® !”
Those operating at individual, family, community and
regional levels can have a direct or intermediary effect
on the outcome. Regionally, expenditure on health ser-
vices and cultural differences can also affect the survival
status of children. In survival models, unobserved factors
are considered as frailties, which adjust for hierarchical
clustering of survival data. In essence, frailties are group
specific factors acting on child survival, which together
with individual factors may protect or accelerate death.*?
Studies on child mortality by Sastry'® employed nested
frailty models to analyse child survival data clustered at
community and family levels. Another study by Bolstad
and Manda'® showed significant heterogeneity at com-
munity level, which can be attributed to differential
availability of resources at community level.

Recent studies have assumed that such unobserved
factors vary spatially to give spatial frailty survival models.
Banerjee et al® developed parametric frailty specifications
based on both areal (lattice) and on pointreferenced
(geostatistical) spatial models, and compared them with
traditional independent and identically distributed frailty
and non-railty approaches under a Weibull baseline
hazard function in the context of county-level infant mor-
tality data. Bastos and Gamerman®* used a dynamic sur-
vival model with spatial frailty to handle time-varying
covariates in the presence of spatial effects. In another
study, Li and Ryan® used a semiparametric frailty model
to analyse spatial survival models. In the above studies, a
single modelling framework was used to model the spatial
and time-varying effects simultaneously. Moreover, some of
the risk factors may be geographically varying, leading
child mortality to vary in space,® '® #® with well documen-
ted space-time interactions.”” In another study, Kandala
et af applied a geo-additive model where spatial, non-
linear and fixed effects were simultaneously modelled in a
single framework. Again, none of these considered the
census data.

Childhood mortality in sub-Saharan Africa

The main objective of this study is to analyse small-scale
geographical variability in underfive mortality in the
sub-Saharan region, by applying existing spatial statistical
methodology. Our aim is to extend the standard Cox
regression model to a random-effects model to permit
spatial clustering and heterogeneity using census data
from a number of countries. Specifically, we apply GLMM
with spatially correlated random effects proposed by
Hennerfeind et al?® and used it to analyse factors asso-
ciated with child survival in the first 5 years of life. This
modelling approach falls within a group termed structured
additive regression (STAR) models, introduced by
Kamman and Wand.?® STAR models are a comprehensive
class of models which permit simultaneous estimation of
nonlinear effects of continuous covariates, with both spa-
tially unstructured and structured components, together
with the usual fixed effects in the predictor.”’

Table 1 Summary of selected covariates used in the
model

Covariate = Rwanda Senegal Uganda
Residence
Rural 38154 (8.1) 23490 (10.6) 29410 (4.4)
Urban 6215 (5.5) 10036 (6.5) 4028 (3.3)
Religion
Christian 40650 (7.9) 977 (6.9) 28567 (4.4)
Muslim 837 (8.2) 32378 (9.4) 4167 (4.0)
Others 4369 (7.1) 171 (10.5) 689 (2.7)
Age of the child
<1 year 10516 (16.1) 4806 (15.5) 9440 (10.1)
1 year 7710 (11.1) 5276 (16.1) 9307 (1.8)
2 years 7853 (5.0) 6278 (11.5) 6937 (0.8)
3 years 6128 (3.7) 5628 (6.4) 3613 (0.4)
4 years 5701 (2.6) 5780 (4.5) 2303 (0.5)
5 years 6461 (2.1) 5811 (3.4) 1553 (9.8)
Sex of child
Male 22189 (8.5) 16722 (8.2) 17056 (4.4)
Female 22 146 (6.9) 16793 (10.2) 16382 (4.2)
Electronic Index
Least 762 (3.0) 10004 (9.8) 2373 (2.3)
Less 22 250 (8.7) 3261 (10.8) 15881 (4.9)
Medium 619 (2.9) 8789 (11.2) 173 (1.7)
More 19249 (7.3) 4753 (8.5) 14104 (4.1)
Most 1489 (5.0) 6719 (6.2) 907 (3.0)
Shelter index
Lowest 8168 (7.0) 6688 (5.4) 6644 (3.2)
Low 10904 (7.3) 6785 (9.2) 6647 (3.9)
Medium 7706 (8.3) 6743 (10.5) 7461 (4.0)
High 8434 (8.9) 6162 (10.9) 5571 (5.7)
Highest 9157 (7.5) 7248 (10.8) 7169 (4.9)
Mother alive
Yes 39687 (1.0) 25501 (4.1)
No 1247 (10.1) 7937 (5.1)
Father alive
Yes 37133 (0.7) 19637 (4.0)
No 3200 (8.5) 13801 (4.7)

Given in the table are the counts (and proportion dead) across
covariates, N(%).
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The spatial analysis can be approached in various ways,
one based on the stationary Gaussian random fields,
which applies when the place of residence is known
exactly, given by geographical x—y coordinates, and the
principle originates from geostatistics.”® These can also be
interpreted as two-dimensional surface smoothers based
on radial basis functions, and have been employed by
Kammann and Wand®® to model the spatial component in
Gaussian regression models. Another option is to use two-
dimensional P-splines described in more detail in Brezger
et al® The advantage of these approaches is that they
allow prediction of risk for locations where there are no
data, thus allowing us to quantify small-scale variability. If
observations are aggregated in geographical regions,
spatial effects can be estimated using the Markov random
field (MRF) approach, widely used in disease mapping.®®
Modelling and inference can use a fully Bayesian
approach. However, the empirical Bayesian approach via
penalised likelihood techniques is also possible.*

A detailed description of the statistical methodology
used is in the appendix. In this study, we provide simula-
tion studies and apply these techniques to the 2000-
2010 Census data from selected SSA countries whose
under-five death rates are at relatively similar ranking.
Rwanda and Uganda are ranked 31st and 27th in the
world respectively with regard to improvement in
under-five mortality, while Senegal is ranked at 42nd.
Rwanda and Uganda have an estimated under-five mor-
tality of 91 and 99/1000 live births respectively, as of
2010, reduced from 163 and 175/1000, respectively, esti-
mated in 1990. Senegal has a rate of 75, estimate of

2010 compared to 139, estimated in 1990. Infant mortal-
ity rates, estimated at 2010, are 59, 63 and 50 for
Rwanda, Uganda and Senegal, respectively. More details
on child survival can be found at UNICEE.'

DATA AND METHODS

Data

Data were analysed from three countries, Rwanda, Uganda
and Senegal purposively selected because relevant census
variables were available to carry out survival analyses for
the first 5 years of life (under-five mortality: 5q0).

For Rwanda, we analysed census 2001 data, while for
Uganda and Senegal we used data from the 2002 round of
the census. For all countries, data analysed were limited to
an approximate 1% random sample of the census data,
mainly due the complexity of the models fitted. Total
samples considered were 44 000 for Rwanda, 33 500 for
Senegal and 33 400 for Uganda. While the censuses have
limited numbers of variables, each child record, derived
from selfreported information given by the household
head, consisted of age at time of death, and whether a
child was alive or dead at the time of census, as well as
other covariates which may influence child mortality. Our
analysis was restricted to children below the age of 5 years.
Since no information was available as to whether the child
was alive at the census prior to the current enumeration,
the survival information was right-censored. Factors influ-
encing child mortality varied from country to country, and
questions were not uniform across the three countries. To
enable comparability of the results we selected similar

Table 2 Model comparison values based on Deviance Information Criterion (DIC) for the models

Model Description D Pp DIC
Rwanda
MO Province (RR) 24.060.2 12.4 24.084.9
Mia Fixed effects only 10256.7 21.9 10300.7
M1b Fixed+ Province (RE) 10184.8 29.3 10240.3
M2a Unstructured random effects (District)P,, 19911.4 22.4 19956.2
M2b Structured spatial effects (District) only 19212.3 25.7 19963.5
MB3a Structured effects (District)+ Unstructured (Province) 19870.3 249 19920.3
M3b Fixed 1 structured effects (District) Unstructured (Province) 7667.2 449 7756.1
Senegal
MO Province (RE) 20536.7 10.4 20557.5
M1ia Fixed effects only 19361.8 28.4 19418.7
M1b Fixed+Province (RE) 19362.7 28.4 19419.1
M2a Unstructured random effects (District) 15284.5 54.2 15356.8
MB3a Structured effects (District)+ unstructured (Province) 15284.6 56.4 15361.5
M3b Fixed+structured effects (District)—unstructured (Province) 14574.1.6 68.6 147111
Uganda
MO Province (RE) 11681.1 63.3 11807.5
Mia Fixed effects only 10613.0 20.1 10653.1
M1b Fixed 1 Province (RE) 10425.9 76.8 10606.6
M2a Unstructured random effects (District) 11735.7 30.0 11795.7
M2d Fixed effects+struclured spatial effects (District) 10484.6 49.5 10588.5
M3a Structured effects (District)+ unstructured (Province) 11691.7 48.5 11788.7
M3b Fixed+structured effects (District)—unstructured (Province) 10468.9 59.6 10588.1
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covariates. We considered the following individual socio-
demographic variables in the analysis as determinants of
child mortality: region and place of residence, education
level of mother, occupation of father, number of
underfive children in household, whether the previous
child died, whether the father or mother was alive, and
ownership of dwelling unit. We constructed two indices:
(1) shelter, for the following characteristics: specifically the
type of dwelling unit (permanent, semipermanent, trad-
itional), type of roof, wall and floor and type of toilet;
(2) electronics for the following electronic assets: radio,
cell phone, television, phone, iron and fridge. For spatial
analysis, we used provinces and districts as units of analysis.
Table 1 gives a summary of the variables used.

Statistical analysis

We examined spatial variation in under-five mortality
with a flexible geo-additive semiparametric mixed model
while simultaneously controlling for spatial dependence
and possibly non-linear effects of covariates within a sim-
ultaneous, coherent regression framework. Individual
data records were constructed for children in each
country.

A more general spatial Cox regression model, accord-
ing to Hennerfeind et af’ which captures a wide range
of issues including spatial frailties was adapted and
applied to determine factors associated with the risk of
early childhood mortality. We applied a fully Bayesian
approach based on Markov priors and using Markov
Chain Monte Carlo (MCMC) techniques for inference
and model checking. For model choice, we used the
Deviance Information Criterion (DIC) developed as a
measure of fit and model complexity.

The analysis was carried out using V.1.4 of the BayesX
software package,” which permits Bayesian inference
based on MCMC simulation techniques. For all models,
25000 iterations were run with the initial 5000 dis-
carded and every 20th sample stored to give a final
sample of 1000 for parameter estimation. Convergence
was evaluated by inspecting trace and autocorrelation
plots of samples for each chain, as well as through
numerical summaries such as the \/E diagnostic statistic
of Brooks and Gelman.”'After 5000 iterations, all para-
meters showed signs of convergence in the trace plots.
The values of v/R also quickly approached 1 and were
all below the value of 1.12, which indicated convergence
of both pooled and within-interval widths to stability.
Statistical methods have also been discussed in more
detail in the appendix.

RESULTS

Table 1 gives a summary of the selected covariates across
the three countries. There are evident disparities by
place of residence for all three countries, with rural chil-
dren slightly disadvantaged in mortality. The same
picture was observed by age, with children less than

Childhood mortality in sub-Saharan Africa

1 year disadvantaged compared to older children, with
the proportion dying diminishing with increasing age.
Children without a living mother or father were likely to
die in their first 5 years of life. However, there was no
clear pattern in relation to the shelter or electronics
indices, or with religion or sex of the child. Similar
results were obtained in the bivariate analyses presented
in tables 3, 4, 5.

In table 2, model selection values are given for the
discrete-time survival models with different specifications
of the covariates for the three countries. For all
the three datasets the models which combined fixed
and random effects were better than those that did not
combine effects, indicating the importance of both sets
of factors at explaining child survival. For Rwanda data,
the best model was model M3b, which combines fixed
effects at individual and household levels and random
effects at district and provincial levels. The DIC for
model M3b was 7756.1 compared to the nearest model,
M1b, with DIC=10240.3. Moving to Senegal data, again
the model that combined fixed and random effects

Table 3 Fixed effects for Rwanda child survival

Variable Bivariate analysis Multivariate analysis
HR (95% CI) HR (95% CI)
Intercept 0.04 (0.02 to 0.09)
Place of residence
Urban 0.67 (0.60 to 0.75) 0.79 (0.73 to 0.83)
Rural 1.00 1.00
Dwelling ownership
Yes 0.99 (0.89to 1.11)
No 1.00
Religion

Christian 1.19 (1.0310 1.38)  1.14 (1.05 to 1.27)

Muslim  1.28 (0.97 to 1.68) 0.95 (0.81 to 1.12)
Others 1.00 1.00

Sex of child
Male 1.20 (1.12 to 1.28) 1.06 (1.02 to 1.08)
Female 1.00 1.00

Electronic index
Least 1.00 1.00
Less 2.96 (1.96 to 4.46) 1.29 (1.16 to 1.51)

Medium 0.74 (0.38to 1.44)  0.64 (0.46 to 0.89)

More 2.45 (1.62 to 3.69) 1.31 (1.16 to 1.51)

Most 1.64 (1.03 to 2.62) 1.15 (0.99 to 1.35)
Shelter index

Lowest 1.00 1.00

Low 1.06 (0.95 to 1.18) 0.96 (0.88 to 1.01)

Medium 1.20 (1.07 to 1.34) 0.98 (0.92 to 1.05)

High 1.28 (1.15 to 1.43) 1.05 (0.98 to 1.13)

Highest 1.09 (0.98 to 1.22) 1.09 (1.03 to 1.19)
Mother alive
Yes 0.012 (0.011 t0 0.013) 0.16 (0.15 to 0.17)
No 1.00 1.00
Father alive
Yes 0.016 (0.014 to 0.018) 0.38 (0.36 to 0.39)
No 1.00 1.00
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Table 4 Fixed effects for Senegal child survival

Variable

Bivariate analysis
HR (95% CI)

Multivariate analysis

HR (95% CI)

Intercept

Place of residence

Urban
Rural

0.63 (0.58 to 0.69)
1.00

Dwelling ownership

0.024 (0.015 to 0.045)

1.01 (0.97 to 1.05)
0

Yes 1.55 (1.40 to 1.73) 1.19 (1.09 to 1.28)
No 1.00 0

Religion
Christian  0.61 (0.36 to 1.03)  0.84 (0.56 to 1.18)
Muslim 0.8590.53 to 1.35) 0.99 (0.71 to 1.42)
Others 1.00 1.00

Sex of child
Male 0.78 (0.7310 0.84) 0.88 (0.85 to 0.91)
Female 1.00 1.00

Electronic index
Least 1.00 1.00
Less 1.12 (0.99 to 1.27) 1.04 (0.99 to 1.12)
Medium 1.16 (1.06 to 1.27) 1.02 (0.98 to 1.06)
More 0.90 (0.80 to 1.01) 1.001 (0.94 to 1.05)
Most 0.66 (0.591t0 0.73) 0.93 (0.87 to 1.01)

Shelter index
Lowest 1.00 1.00
Low 1.63 (1.43 to 1.86) 1.01 (0.95 to 1.07)
Medium 1.96 (1.69 to 2.18) 1.01 (0.95 to 1.06)
High 1.94 (1.71to 2.21)  0.99 (0.93 to 1.04)
Highest 1.95 (1.72t0 2.21)  0.96 (0.96 to 1.09)

produced the best fit (model M3b). Model M3b had a
DIC=14711.1 which is smaller compared to model M3a
(DIC=15361.5; table 2). Similar results are obtained for
the Uganda data with model M3b emerging as best fit,
although model M2d was indistinguishable (see table 2).
Tables 3, 4, 5 present estimates of fixed risk factors
resulting from the models with the best fit. For Rwanda
(table 3), there was an overall decrease of risk of a child
dying in the first 5 years of life (HR=0.04, 95% CI 0.02
to 0.09). Children in urban areas were less likely to die
than those in rural areas (HR=0.79, 95% CI 0.73 to
0.83). The relationship of child dying and household
electronic assets was nonlinear. At level 2 compared to
level 1, the risk was higher with HR=1.29 (95% CI 1.16
to 1.51), while at level 3 we observed a lower risk with
HR=0.64 (95% CI 0.46 to 0.89) and this is reversed at
level 4 with HR=1.31, 95% CI: 1.16 to 1.51. For the
shelter index, the risk was reduced at lower levels and
increased at higher levels of the index, although this
relationship was not significant at p<0.05. It is interesting
to note that a child with a living mother and father had
a reduced risk of dying (table 3). Children up to 1 year
of age were at increased hazard relative to those aged
5 years or older. At less than 1 year of age the log hazard
was 0.77 (95% CI: 0.71 to 0.83), while at 1 year the log
hazard was 0.48 (95%CI 0.42 to 0.55). As age increased,
the hazard reduced. For example, those aged 2—4 years
the log hazard was —0.02, —0.22 and —0.46, respectively.

Table 5 Fixed effects for Uganda child survival

Variable

Bivariate analysis
HRs (95% CI)

Multivariate analysis

HRs (95% Cl)

Intercept

Place of residence

0.011 (0.006 to 0.017)

Urban 0.68 (0.57 t0 0.81)  1.04 (0.92 t0 1.17)
Rural 1.00 1.00
Employed
Yes 0.94 (0.85t0 1.05) 1.01 (0.91 to 1.13)
No 1.00
Under 5
None 3.74 (1.41 10 10.40) 4.18 (2.92 to 5.81)
1-3 0.92 (0.33t0 2.41) 0.54 (0.39t0 0.73)
children
>4 1.00 1.00
Married
Yes 1.14 (1.04t0 1.23) 2.10 (1.78 to 2.42)
No 1.00 1.00
Polygamy
Yes 1.003 (0.84 to 1.19) 1.02 (0.95 to 1.12)
No 1.00 1.00

Sex of last birth

Male 0.98 (0.89t0 1.08) 1.02 (0.92 to 1.17)
Female 1.00 1.00
Education
None 1.26 (1.10to 1.45) 1.48 (1.28 to 1.70)
Lower 1.02 (0.89to 1.16) 1.21 (1.05 to 1.45)
primary
Upper 0.66 (0.54 to 0.81) 0.84 (0.70 to 0.95)
primary
0.38 (0.32t0 0.62) 0.57 (0.36 to 0.81)
Secondary
Tertiary 1.00 1.00
Electronic index
Least 1.00 1.00
Less 2.36 (1.75t0 3.10)  1.58 (1.15 to 2.16)
Medium 0.84 (0.36t0 2.65) 0.53 (0.16 to 1.27)
More 1.99 (1.51 t0 2.64) 1.36 (1.01 to 1.90)
Most 1.27 (0.80t0 2.16) 1.14 (0.84 to 1.68)
Shelter index
Lowest 1.00 1.00
Low 1.27 (1.06 to 1.52) 0.92 (0.83 to 1.03)
Medium 1.31 (1.09 to 1.563) 0.88 (0.81 to 0.99)
High 1.97 (1.67t02.36) 1.32 (1.151t0 1.51)
Highest 1.68 (1.42t01.99) 1.12(0.97 to 1.23)

The spatial variability of risk of dying is shown in
figure 1, with log hazard ranging between —8.23 and
3.14. There were a number of areas that were associated
with increased risk of death compared to the overall
mean. These areas are identified by the right map, with
a white colour and appear in the south, west and at the
centre of the country. There are also areas of reduced
risk shown by a black colour.

In table 4 we present results for Senegal. Overall the
risk of death decreases with HR=0.024 (95% CI: 0.015 to
0.045). The risk significantly varied with ownership of
dwelling unit, electronic assets, sex and age of the child.
Ownership of a dwelling unit was associated with
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Left: structured spatial effects, at district level in Rwanda, of child surviva (model M3b). Shown are the posterior

means. Right: corresponding posterior probabilities at 80% nominal level, white denotes region regions with strictly positive
credible intervals, black denotes regions with strictly positive credible intervals and grey depicts regions of non-significant effects.

increased risk (HR=1.19, 95%CI 1.09 to 1.28) compared
to those households without a dwelling unit. Male chil-
dren were more likely to survive the first 5 years com-
pared to female children (HR=0.88, 95% CI 0.85 to
0.91). The risk of dying was positively associated with all
ages, however, this risk decreased with age, ranging from
2.48 at age less that 1year to 1.13 at age of 4 compared
to those aged 5 years or more. For ownership of elec-
tronic assets, the risk was higher for those at the lowest
level (level 1) and decreased with increasing electronic
assets, although the relationship was marginally signifi-
cant at p<0.1 for levels 2, 3 and 4(results not shown).

Nevertheless, the results were significant, at p<0.05 for
the level 5 category when compared with those at level 1
(HR=0.93, 95% CI 0.87 to 0.99). Turning to the spatial
distribution of risk in figure 2, there was substantial vari-
ation, with estimates of log hazard ranging from -3.44
to 5.87 (left map). The right map defined areas asso-
ciated with significantly high risk (shaded white) as well
as those of significantly low risk (black shading). We
could not identify a clear pattern to the risk by region.
Results for Ugandan data are given in table 5. Again
the overall risk of death decreases (HR=0.011, 95% CI
0.006 to 0.017). Risk factors associated with under-five

laxo3 S 57583

Figure 2 Left: unstructured spatial effects, at district level in Senegal, of child survival (model M3b). Shown are the posterior
means. Right: corresponding posterior probabilities at 80% nominal level, white denotes regions with strictly negative credible
intervals, black denotes regions with strictly positive credible intervals and grey depicts regions of nonsignificant effects.
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Figure 3 Left: structured spatial effects, at district level in Uganda, of child survival (model M3b). Shown are the posterior
means. Right: corresponding posterior probabilities at 80% nominal level, white denotes regions with strictly negative credible
intervals, black denotes regions with strictly positive credible intervals and grey depicts regions of non-significant effects.

mortality were identified to be number of under-five
children in the household, marital status, education
level of mother, ownership of electronic assets and
shelter characteristics. Families with fewer under-five
children predisposed children to a high mortality risk
compared to those with 4 or more children (HR=4.18,
95% CI 2.92 to 5.81), while those with 1-3 children had
a reduced risk (HR=0.54, 95% CI 0.39 to 0.73). Being
married also appeared to confer increased risk of a
child dying compared to those with children of single
mothers (HR=2.10, 95% CI 1.78 to 2.42). Our results
showed that education level of the mother matters when
it comes to child survival. Children with mothers who
had no formal education or only lower primary educa-
tion were more likely to die than those with tertiary edu-
cation (HR=1.48, 95% CI 1.28 to 1.70 and 1.21, 95% CI
1.05 to 1.45, respectively).For those with secondary edu-
cation, the risk was lower relative to those with tertiary
education (HR=0.57, 95% CI 0.36 to 0.81). In relation
to electronic assets, the risk was non-linear with increas-
ing risk at level 2, reduced risk at level 3 and increased
risk again at levels 4 and 5, compared to level 1 (table
5). We observed that the risk was lower at levels 2 and 3
of the shelter index and increased at level 4 and 5 rela-
tive to level 1. Nevertheless, the only significant differ-
ence was observed at levels 3 and 4 (1.32 and 1.12,
respectively).

The geographical variation in risk is shown in figure 3.
Estimates ranged from —0.61 (low risk) to 0.73 (high
risk). See left plot. However, the significance map (right

map) indicates that areas of high risk are in the south-
west and north-west while those of low risk are in the
north-east and centre-east. Notably Kampala district
showed a significantly reduced risk.

The unstructured spatial effects at provincial level
were also fitted. Figure 4 shows caterpillar plots for the
three countries at province and county level. No single
province or county residual was significantly above or
below zero indicating no difference in risk of death
between provinces or counties in the three countries.
However, there was clear variation in the risk of death,
for example, in Rwanda there are four provinces with an
estimated lower risk of death while six provinces have an
estimated risk in the higher direction. For Senegal,
there were four provinces with a reduced risk, and eight
with estimated high risk. In Uganda, about a 100 coun-
ties were estimated to have a lower risk of child mortality,
while another 70 had a high risk (figure 4).

DISCUSSION AND CONCLUSION

The central question of this study was to identify risk
factors associated with child mortality, which go beyond
individual factors, and extending to include other
factors such as the geographic location. These factors
were assumed to be best captured by assuming spatially
varying processes. In doing so, we applied a novel
Bayesian framework which permitted estimation of risk
at individual, household and area level in a unified
framework.
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Figure 4 Left: unstructured spatial effects, at province level in Rwanda and Senegal and at county level in Uganda, of child
survival (model M3b). Shown are the posterior means and corresponding error bars at probabilities at 80% nominal level.

Our modelling approach can be considered as an
extension of the generalised linear model and can be
classified as a spatial generalised linear model. These
types of models have a complex structure, which is easily
exploited using the Bayesian approach.

Despite the complexity of our approach the results
obtained from our approach are consistent with what
has been reported previously. For instance, the
decreased risk of mortality by age is well established in
SSA.® '® However, we found that the degree of associ-
ation of various factors varied by country. We also
observed a ruralurban divide in under-five mortality,
with rural children more likely to die in the first 5 years
than their urban counterparts.

The significance of spatial effects is they have an
important influence on child survival in the three coun-
tries. These spatial effects may represent many factors,
and are likely surrogates of factors not captured by the
census survey instruments. They may include distal
factors such as access to health care, availability of
health care centres, reproductive health behaviour,g2
cultural and religious practices (including nutrition
habits) specific to certain areas which may either benefit
children or put them at increased risk of mortality, or
they may represent other factors such as disease preva-
lence or cost or quality. Understanding geographical
variability of mortality is an increasingly important
research approach.'” However, this has often been done
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implicitly using categorical variables to measure geo-
graphic effects.®” In our approach, we explicitly intro-
duced spatial effects and modelled them at the local
level.

In our analyses of spatial frailties, we have used the
traditional approach that extends hierarchical exchange-
able frailties to incorporate spatial autocorrelation and
heterogeneity. However, recent developments in the ana-
lysis of spatially correlated survival data mean that a
multivariate spatial dependence structure has been pro-
posed.®® This is ideal for multiple spatially dependent
data, or data that arise in spatially arranged settings.*> **
Therefore, a conventional conditional autoregressive
(CAR) model may not be ideal to capture spatial frail-
ties. Models designed through multiple memberships
multiple classification,®® or using a mixture of Polya
trees,”” or multivariate CAR* offer desirable properties.
Indeed, further studies which consider the multilevel
and multivariate structure of survival data are worth
exploring.®* %6 %7

STRENGTH AND LIMITATIONS

It should be noted that these samples from census are
10 times bigger than those used in national surveys like
DHS. However, there are some limitations in the present
study that deserve attention. First, census data are cross-
sectional in nature and the present study does not allow
establishing temporality and thus causality of the
observed associations. Given the self-reporting of chil-
dren death in census, we cannot disregard the likelihood
that mortality outcomes may be influenced by the
respondent’s recall. In addition, there was limited or
lack of information for variables such as income and dis-
eases data in census compared to surveys data, which are
relevant to mortality. Nevertheless, our findings corrob-
orate the notion that childhood mortality is an increas-
ing public health issue in these countries, with evidence
of considerable spatial variation across different pro-
vinces in the three countries.

Another important issue in the use of this data is the
issue of data quality because of the fact that national
census in developing countries are prone to incomplete
or partial reporting of responses. Moreover, the use of
complex questionnaires inevitably allows scope for
inconsistent responses to be recorded for different ques-
tions resulting in a further complication in the assess-
ment of morality outcomes.

In summary, the primary objective of this article was to
illustrate a novel application of a recently developed
structured additive regression model to analyse census
data in SSA. The approach is data driven and has rarely
been applied in the SSA region. Census data is often not
used, thus this paper exemplifies the use of such techni-
ques in census data as opposed to survey samples, with
results providing confirmatory data, and therefore, pro-
viding more confidence in censuses and national
surveys. Indeed, the present paper offers incremental

new information regarding child survival at the individ-
ual or geographical levels in Africa. Furthermore, the
results emphasise the fact that there are complex social
and demographic processes operating in under-five mor-
tality which can be more clearly understood using
adequate statistical modelling which analyses the
outcome of mortality beyond the individual child’s risk
factors and which incorporates distal factors such as the
area where the child lives at the time of the survey. This
has implications for these countries in terms of policy
and planning for the achievement of Millennium
Development Goal (MDG 4) to reduce under-five mor-
tality by half by 2015.
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APPENDIX
Statistical methodology

In studying survival of the child, we assume T as time to event or sur-
vival time with t as the actual realisation. The probability that a survival
time T is less than or equal to some value t is given by

t
F(t)= [ f(u)du = Pr(T <t). In our context, F(t) is the cumulative
0

probability that a child dies at or before some given time t, thus F(t)=P
(Child dies at time <t). The instantaneous probability that an event will
occur at any given small interval is defined as F’(t)=f(t). The proportion
of children surviving to time t or beyond is derived as S(t)=1-F(t),
which is also known as the survivor function. An important approach

Childhood mortality in sub-Saharan Africa

is to consider the duration analysis through the hazard rate. The
hazard rate, which links the survival and failure functions, is of the

form h(t) = % or equivalent to h(t) = —log S'(t). The hazard rate,
unlike the survivor function, describes the risk or event of ‘failure’
given that the individual has survived all along up to point t.

In the analysis of child mortality, our interest is to answer this ques-
tion: Given that the child has survived up to month t, what is the likeli-
hood it will survive in the subsequent months? Further to this, one is
interested in how the hazard rate varies with respect to some covari-
ates, for instance, will the hazard be the same for children living in
urban and rural areas? One way to analyse such data is to use
Kaplan—-Meier survival curves and log-rank test. This is an exploratory
analysis that permits assessment of any differences in child survival
by various covariates.

An alternative model which captures the effect of covariates is to
use Cox regression models or commonly referred to as the propor-
tional hazard model. It should be pointed out, however, that various
statistical models may be constructed, see Box-Steffensmeier and
Jones'® for an overview on the topic. In contrast to other data, several
issues are considered when analysing survival data. Central are cen-
soring and truncation of survival data, existence of time-varying cov-
ariates, occurrence of multiple causes of death, whether events
occurrences were recorded in discrete-time, and the possibility of
group-risk factors and confounders acting on the hazard. Thus, a
more general model that incorporates all these issues if they are
present in the data is needed.

We propose using a more general Cox model that captures a wide
range of issues including spatial frailties. Thus, a spatial Cox regres-
sion model?® was applied to determine factors associated with the risk
of early childhood mortality. Assume that Tj is the observed number
of months lived or the censoring time for jth child in area i. Under
Cox’s model, the hazard function at time T=t is given by

h(t|B, vj) = ho(t)exp(Bvj) (1)

where hy(t) is the baseline hazard at time t, and the Bs are a vector of
regression coefficients for the fixed and time-invariant variables(vj).
The exponent of a coefficient, that is, exp(p), is interpreted as HR, that
is, the ratio of instantaneous risks which is assumed to be constant
over time. The HR compares rates of deaths in one group to some ref-
erence group, for a categorical variable, and to the mean for a con-
tinuous variable.

Since individuals are clustered in geographical regions, group-
specific random frailty term, ;, was introduced to augment the Cox
model, that is,

h(t|B, vij, ;) = ho(t)exp(Bv + i) (2)

The above model indicated that childhood survival was influenced by
both individual-specific factors (v;) and group-specific environmental
factors ;. Here it was assumed that the environmental factors were
approximated by geographical locations. In the case of geographical
regions, spatially distributed random effects s;were assumed, while for
the other unstructured heterogeneity a random effect, u;, was speci-
fied such that ; = s; + u;. Fitting model (2) assumed a semipara-
metric additive predictor, which is known as geoadditive survival
model,?°

n;(t) = fo(t) + Bvj + Ui + S (3)

where ; is the log-additive predictor at time t for child j in area i. The
term f(t) = log(ho(t)) is the log baseline hazard effect at time t. The
other terms are as defined above.
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Estimation: fully Bayesian approach

Prior distributions for covariate effects
Modelling and inference uses the fully Bayesian approach. In the
Bayesian formulation, the specification of the proposed model (equa-
tion 3) is complete by assigning priors to all unknown parameters. For
the fixed regression parameters, a suitable choice is the diffuse prior,
that is, p(y)xconst, but a weakly informative Gaussian prior is also
possible. The baseline hazard effect, f(t), was assigned a penalised
spline with a second order random walk prior. Similarly, the time and
continuous covariates were estimated non-parametrically through
smoothness priors. We use the second-order Gaussian random walk
prior to allow enough flexibility, while penalising abrupt changes in the
function, as suggested by Brezger et al.3° The prior can be expressed
in the pairwise difference form as

-

p(f|72) ocexp(——z

=3

—2fi 1+ f,2)2> (4)

where f=(f,---,f,) and 7? is the variance, with diffuse
priorsfy oc const, f, oc const for initial values.

For the unstructured spatial heterogeneity term, u; is assumed to
follow an exchangeable Gaussian prior with zero mean and variance,
72, that is, u; ~ N(0,72). Finally, for the spatial components s;, we
assign a MRF prior.%° This is analogous to random walk models. The
conditional distribution ofs;, given adjacent areass;, is a univariate
normal distribution with mean equal the average s; values ofs;’s
neighbouring areas and variance equal to 72 divided by the number of
adjacent areas. This leads to a joint density of the form

p(s|7s) o< exp(—fz (si - s;)z) (5)

i~

where i~j denotes that area i is adjacent to j, and assumes that par-
ameter values s; and s; in adjacent areas are similar. The degree of
similarity is determined by the unknown precision parameters2.

By writing f; = Z;B;, h = ZkBy, u= ZB; and s = Zyf,,, for a well-
defined design matrix Z and a (possibly high-dimensional) vector of
regression parameters B, all different priors (equations 4 and 5) can
be expressed in a general Gaussian form

1
p(Bj|7) o< exp <2723/’K13j> (6)
i

with an appropriate penalty matrixK;. Its structure depends on the
covariate and smoothness of the function. In most cases, K; is rank
deficient and hence the prior for B; is improper. For the variances 'r]z
we ah = Z; B, assume inverse Gamma priors IG(a;, b;), with hyper-
parameters a;, b; chosen such that this prior is weakly informative.

Posterior distribution

Fully Bayesian inference is based on the analysis of posterior distribu-
tion of the model parameters. In general, the posterior is highly dimen-
sional and analytically intractable, which makes direct inference
almost impossible. This problem is circumvented by using MCMC
simulation techniques, whereby samples are drawn from the full condi-
tional of parameters given the rest of the data. Under conditional inde-
pendence assumptions the posterior distribution for the Bernoulli
model is given by Bayes Theorem

p(B, 7, y|data) oc L(datalB, 7, y)p(B, 7, ¥)

p
= L(datalb, *, ) x {H p(ﬁjﬁ)p(ﬁ)}p(v)
=1

where the quantity p(B,vy,7) is the prior density function, and
L(data|B, y, ) denotes the likelihood of the data. More specifically,
the posterior is given by

n t—1 Yie [ ¢ 1-Vit
P(B, 7, y|data) o< | | [h(n) IIa- h<r,->>} {H (1- h(n))}
i=1

i=1 i=1

1
xexp{%gﬁj//gﬁj}

k . b
~(ar exp( Tjé) x p(v)-

A
where y; is a binary indicator coded 1 if an event occurs and O if an
event does not occur at time t. For updating the full conditionals of
parameters, we use a hybrid MCMC sampling scheme of the itera-
tively weighted least squares proposals, developed for GLMM by
Brezger,*® and Metropolis-Hastings algorithm. Full details are pre-
sented elsewhere 20 36

Data analysis
A number of models were explored. The first model (MO) explored
unstructured variation in child i at provincial level k

MO:my = Yonst€ONSt + funstr(PROVINCE)

The second set of models estimated fixed effects only (M1a) and
then we adjusted for unstructured random effects at province level
(M1b).

Mla Z’T],‘/‘k = X/,‘jk’)/
MIb i = XIjiy + funsir(PROVINCE)

We also investigated geographical variation at district level. We
fitted both unstructured (M2a)and structured random effects (M2b)
using districts as variables.

M2a :m = Yeonst€ONSt + funstr (DISTRICT)
M2b :m = YgonstCONSt + f(DISTRICT)

The last set of models combined fixed and random effects at district
and province levels. In model M3a we estimated structured spatial
effects at district level and unstructured effects at province level, and
model (M3b) improved model M3a by combining with fixed effects.

M3a:m = yco,,srconst + fDISTHW(DISTRW) + fPRovﬁw(PHOVHW)
M3b 1 = YeonetCONSt + X/jicy + +Fsr(DISTRICT) + fynsir (PROVINCE)

Model comparison was based on the DIC.*® This is given by,
where D is the deviance of the model evaluated at the posterior mean
of the parameters, and represents the fit of the model to the data. The
component pp, is the effective number of parameters, which assessed
the complexity of the model. Since small values of D indicate good fit
while small values of pp indicate a parsimonious model, small values
of DIC indicate a better model. Models with differences in DIC of <3
compared with the best model cannot be distinguished, while those
between 3-7 can be weakly differentiated.3®
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