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Abstract

Response to antidepressant treatment in major depressive disorder (MDD) cannot be pre-

dicted currently, leading to uncertainty in medication selection, increasing costs, and pro-

longed suffering for many patients. Despite tremendous efforts in identifying response-

associated genes in large genome-wide association studies, the results have been fairly

modest, underlining the need to establish conceptually novel strategies. For the identifica-

tion of transcriptome signatures that can distinguish between treatment responders and

nonresponders, we herein submit a novel animal experimental approach focusing on

extreme phenotypes. We utilized the large variance in response to antidepressant treatment

occurring in DBA/2J mice, enabling sample stratification into subpopulations of good and

poor treatment responders to delineate response-associated signature transcript profiles in

peripheral blood samples. As a proof of concept, we translated our murine data to the tran-

scriptome data of a clinically relevant human cohort. A cluster of 259 differentially regulated

genes was identified when peripheral transcriptome profiles of good and poor treatment

responders were compared in the murine model. Differences in expression profiles from

baseline to week 12 of the human orthologues selected on the basis of the murine transcript

signature allowed prediction of response status with an accuracy of 76% in the patient
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population. Finally, we show that glucocorticoid receptor (GR)-regulated genes are signifi-

cantly enriched in this cluster of antidepressant-response genes. Our findings point to the

involvement of GR sensitivity as a potential key mechanism shaping response to antide-

pressant treatment and support the hypothesis that antidepressants could stimulate resil-

ience-promoting molecular mechanisms. Our data highlight the suitability of an appropriate

animal experimental approach for the discovery of treatment response-associated path-

ways across species.

Author summary

Major depression is the second leading cause of disability worldwide. However, only one-

third of patients with depression benefit from the first antidepressant compound they are

prescribed. It is a fundamental problem that the outcomes of individual antidepressant

treatments are still highly unpredictable. In clinical studies, discovery of biomarkers for

antidepressant response is hampered by confounding factors such as the heterogeneity of

the disease phenotype and additional environmental factors, e.g., previous life events and

different schedules of psychopharmacological treatment, which reduce the power to detect

true response biomarkers. To overcome some of these limitations, we have established a

conceptually novel approach that allows the selection of extreme phenotypes in an antide-

pressant-responsive mouse strain. In the first step, we identify signatures in the transcrip-

tome of peripheral blood associated with responses following stratification into good and

poor treatment responders. As proof of concept, we translate the murine data to a popula-

tion of depressed patients. We show that differences in expression profiles from baseline

to week 12 of the human orthologues predict response status in patients. We finally pro-

vide evidence that sensitivity of the glucocorticoid receptor could be a potential key mech-

anism shaping response to antidepressant treatment.

Introduction

A “one size fits all” approach is not effective or efficient in the treatment of major depressive

disorder (MDD). Although it would be ideal to tailor available treatments to individual

patients [1], patient-level antidepressant treatment outcomes are still highly unpredictable [2].

Identification of biomarkers predictive of individual treatment response or molecular bio-

signatures associated with response would dramatically improve the quality of care for MDD

[3]. These biomarkers could also be expected to significantly reduce both treatment and loss-

of-productivity costs. The latter become increasingly important because MDD has been shown

to be the second leading cause of disability worldwide [4]. Finally, biomarkers could allow

patient stratification and enable the selection of pathophysiologically distinct patient sub-

groups to allow optimized treatment choices based on biology. Such biomarkers could also

inform the development of new interventions specifically targeting disease mechanisms in

these subgroups.

Conceivably, useful biomarkers for treatment response in depression could be developed

through blood-based biomarkers, including genetic approaches, although psychophysiological

and neuroimaging approaches are also promising [5]. However, despite considerable efforts,

including large-scale hypothesis-free, genome-wide approaches during the past years [6, 7], no

biological or genetic predictors of sufficient clinical utility have been identified for routine
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clinical use. Thus, the most effective treatment for each patient is currently identified through

a trial and error process [2].

Among the potential barriers to the development of clinically useful biomarkers in depres-

sion, the following 3 have been identified as being most important. First, current symptom-

based diagnoses likely group pathophysiologically distinct patients [8], leading to considerable

heterogeneity among patients diagnosed with MDD [9, 10]. Second, there are a number of

confounding environmental factors such as childhood maltreatment, previous life events, dis-

ease episodes, and different psychopharmacological treatment schedules that often remain

unidentified and potentially reduce the power to detect true response biomarkers. Third,

genetic background, age, and sex are all factors that significantly impact transcription profiles

and other laboratory measurements, as well as treatment outcome [11].

In addition to the aforementioned problems, major psychiatric disorders, including MDD,

are primarily viewed as brain disorders, so the question of whether peripheral measures can be

informative for treatment response to centrally acting compounds such as antidepressants

continues to be matter of debate [12]. During recent years, evidence has emerged that disease-

and treatment-related changes may be reflected outside the central nervous system [13, 14],

revealing a potential role for appropriate animal models to support biomarker discovery in

MDD. To the best of our knowledge, neither an appropriate animal experimental approach

nor a translational approach systematically addressing the potential of biosignatures predicting

or tracking antidepressant treatment response has been published.

To overcome some of the limitations of past approaches, we here present a conceptually

novel approach that allows the selection of extreme phenotypes in an antidepressant-respon-

sive mouse strain (DBA/2J [15]) and uses these extreme groups to identify peripheral blood

biomarkers associated with behavioral treatment response, which are then tested in a human

patient cohort. This strategy exploits the advantages of a murine approach for the purpose of

biomarker discovery, i.e., (1) to investigate a highly homogeneous group of animals in which

differences in genetic background, age, and sex can be excluded, (2) to perform biomarker dis-

covery under conditions in which interindividual confounding environmental influences,

including drug plasma and brain levels, are reduced to a minimum and controlled for, and (3)

to allow correlations of peripheral biomarkers with behavior but also with peripheral and cen-

tral drug concentrations, and to test the overlap of blood and brain expression profiles. We

hypothesize that these standardized conditions will facilitate the identification of valid periph-

eral biomarkers for antidepressant treatment response and allow translation to humans.

Materials and methods

Ethics statement

Animal experimental approaches. All animal experiments were approved by the com-

mittee for the Care and Use of Laboratory Animals of the Government of Upper Bavaria, Ger-

many (AZ 55.2.-1-54-2532-127-11). All experiments were carried out in accordance with the

European Communities Council Directive 86/609/EEC.

Human studies. PREDiCT: The study was designed and conducted in accord with the lat-

est version of the Declaration of Helsinki. The Emory Institutional Review Board and the

Grady Hospital Research Oversight Committee gave ethical approval for the study design, pro-

cedures, and recruitment strategies (Emory IRB numbers 00024975 and 00004719).

Citalopram versus CBT: Written informed consent was obtained from all participants, with

the protocol conducted as approved by the Emory Institutional Review Board and registered at

clinicaltrials.gov (NCT00367341).
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Development of an animal experimental approach modeling the

heterogeneity in response to antidepressant treatment

Conceptual background. We hypothesized that within a large group of antidepressant-

treated mice (antidepressant-responsive strain DBA/2J), we would be able to stratify animals

into subgroups that are either responding exceptionally well (“responder”) to the antidepres-

sant treatment or that do not show a response at all (“nonresponder,” concept visualized in

Fig 1). The readout parameter for scoring antidepressant response was the forced swim test

(FST, also known as Porsolt test [16]). Importantly, searching for potential predictors of early

antidepressant response, a 14-day treatment was chosen according to the “early response phe-

notype” in clinical studies.

Animals and housing conditions

Experiments were carried out with male DBA/2J mice (n = 140) from Charles River, France.

On the day of arrival, the animals were 6–8 weeks old and from that day on were singly housed

in standard cages under a 12L:12D cycle (lights on at 0800 h) and constant temperature

(23 ± 2˚C) conditions. Food and water were provided ad libitum. Pharmacological treatment

of all animals started at an age of 9–11 weeks. Behavioral testing was performed at an age of

11–13 weeks. The experiments were carried out in the animal facility of the Max Planck Insti-

tute of Psychiatry in Munich, Germany, and approved by the committee for the Care and Use

of Laboratory Animals of the Government of Upper Bavaria, Germany. All experiments were

carried out in accordance with the European Communities Council Directive 86/609/EEC.

Experimental design

The sequential steps and experimental procedures are summarized in Fig 2, indicating the

number of animals for each experimental group. A large number of animals were treated twice

a day with either paroxetine (n = 90), a commonly used selective serotonin reuptake inhibitor

(SSRI) antidepressant or a vehicle (n = 50). On treatment day 15, the animals received their

Fig 1. Murine approach modeling heterogeneity of treatment outcome in the FST. This figure illustrates

the underlying hypothesis: in a large number of animals that are treated with an antidepressant, animals are

stratified into subgroups of extremes according to their time-floating behavior. To allow for the distinction of

effects truly related to the phenomenon of response (and not treatment per se), a second group of animals is

treated with a vehicle under identical conditions. FST, forced swim test.

https://doi.org/10.1371/journal.pbio.2002690.g001
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last drug administration at 6 AM and were subjected to a FST 4 hours later. Directly after the

FST, the animals were anesthetized with isoflurane and decapitated.

Oral stress-free antidepressant treatment and behavioral readout. The DBA/2J mouse

strain has previously been shown to respond to oral treatment with the commonly used SSRI

paroxetine under basal stress-free conditions [17], and this was the most important argument

in favor of paroxetine (5 mg/kg twice daily).

Animals were randomly distributed to the vehicle or paroxetine-treated experimental

group. Paroxetine (paroxetine hydrochloride; Sigma-Aldrich, Germany) or vehicle was volun-

tarily self-administered twice daily via customized palatable pellets (40 mg PQPellets, Pheno-

quest AG, Martinsried, Germany), with a concentration of 5 mg/kg body weight. To evaluate

the minimum effective dosage in our mouse strain, we included an additional group of animals

treated with 1 mg/kg paroxetine (paroxetine n = 29, vehicle n = 11) twice daily for comparison.

Consumption was monitored on a daily basis. Animals that did not voluntarily consume the

mouse pellets were excluded from the analysis.

The FST was performed on day 15 of the antidepressant treatment, 4 hours after the last

drug administration, between 10 AM and noon. Each mouse was placed into a 2-L glass beaker

(diameter, 13 cm; height, 24 cm) filled with tap water (22 ± 1˚C) to a height of 15 cm, so that

the mouse was not able to touch the bottom with its hind paws or tail. The duration of the test

was 5 min. The parameters floating, swimming, and struggling were scored by an experienced

observer who was uninformed regarding the treatment of the animals. Animals with the high-

est 20% of time floating were categorized as poor treatment responders, whereas animals with

the lowest 20% of time floating were categorized as good treatment responders (Fig 1).

Fig 2. Flowchart for the entire experimental procedure. Summary figure illustrating the sequential steps of experiments and analyses

applied in this study, indicating the experimental groups and group sizes for each condition. CORT, corticosterone; QC, quality control.

https://doi.org/10.1371/journal.pbio.2002690.g002
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Blood and brain tissue sampling procedure

Animals were anesthetized with isoflurane and killed immediately following the FST. Trunk

blood was collected individually in 1.5-mL tubes. Brains were rapidly dissected and frozen at

−80˚C.

Due to the complex character of the study, limitations in available specimens, stringent

quality control (QC), and exclusion of outlier data, we could not always achieve fully identical

sample and group compositions throughout all data analysis levels. This also explains the spo-

radic appearance of nonconcordant group sizes, which we consider a minor but unavoidable

drawback.

Paroxetine brain and plasma concentrations

Brain and plasma paroxetine concentrations were measured after extraction by high liquid

chromatography and quantifications. Paroxetine plasma concentrations were considered as a

covariate in the analysis of the microarray data. For details of the respective protocols, see [18].

High-performance liquid chromatography. High-performance liquid chromatography

(HPLC) analysis was performed using a Beckman 166 variable-wavelength ultraviolet (UV)

detector (Beckman Coulter, Inc., Indianapolis, IN), a Merck L-7480 fluorescence detector

(Merck KGaA, Darmstadt, Germany), and a Beckman gradient pump 126 Solvent Module

(Beckman Coulter, Inc., Indianapolis, IN) equipped with a Beckman autoinjector 508 auto-

sampler (Beckman Coulter, Inc., Indianapolis, IN) [18]. A Luna 5 μ C18(2) 250 × 4.6 mm col-

umn (Phenomenex, Torrance, CA) was used for separation; column temperature was set at

60˚C and the flow of the mobile phase was 1.0 mL/min. For chromatographic analysis of par-

oxetine and its metabolites, a mobile phase gradient was used and combined with determina-

tion of the substances and their metabolites by UV absorption or fluorescence. The coefficient

of variance was less than 15% for the different methods.

Quantification. Calibration of plasma samples was performed using spiked samples at

different concentrations [18]. Quantification was done by calculating the analyte: internal-

standard peak-area ratio. In addition, a regression model was fitted to the peak-area ratio of

each substance to internal standard versus concentration.

Corticosterone plasma concentrations

For determination of brain tissue concentrations of paroxetine, tissue from the cerebellum was

dissected and rapidly frozen on dry ice. The remaining trunk blood of each animal was col-

lected in labeled 1.5-mL EDTA-coated microcentrifuge tubes (Kabe Labortechnik, Nüm-

brecht, Germany). All blood samples were kept on ice until centrifugation at 8,000 rpm at 4˚C

for 15 min. After centrifugation, the blood plasma was transferred to new, labeled 1.5-mL

microcentrifuge tubes. All plasma samples were stored frozen at −20˚C until the determination

of corticosterone by radioimmunoassay (MP Biomedicals, Santa Ana, CA; sensitivity, 6.25 ng/

mL).

Statistics for data obtained in in vivo experiments

The data presented are shown as means + standard error of the mean, analyzed by the com-

mercially available software SPSS 16.0. For comparing 2 independent groups, data were ana-

lyzed with 2-tailed, independent samples Student t test in case of normal distribution of the

data; otherwise, nonparametric comparisons were applied (Mann–Whitney U test). For vari-

ables with more than 2 groups, 1-way ANOVA was performed followed by Bonferroni post

hoc testing. Correlations were analyzed with a 2-tailed, bivariate Pearson’s correlation analysis.

Biosignatures associated with antidepressant response
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As nominal level of significance, p< 0.05 was accepted. Values outside the 95% confidence

interval (CI) were defined as statistical outliers and excluded from the analyses.

For RNA extraction

Part of the blood was processed according to the PAXgene blood miRNA Kit manufacturer’s

instructions. Briefly, 350 μL of freshly collected trunk blood was immediately transferred into

1.5-mL tubes filled with 966 μL PAXgene solution (RNA stabilizer reagent), gently inverted 10

times, incubated at room temperature (RT) for 2–24 hours, and then stored at −20˚C before

ribonucleic acid (RNA) isolation. Volume ratio of RNA stabilizer reagent to blood samples

was kept at 2.76, according to the manufacturer’s protocol.

Whole blood RNA globin reduction. Blood consists of a heterogeneous cell population

of erythrocytes, granulocytes, and other peripheral mononuclear cells (PBMC). This heteroge-

neity makes it difficult to detect differences in gene expression levels. Furthermore, it is worth

mentioning that blood consists of a high amount of globin mRNA transcripts. This high

amount of globin mRNA transcripts can mask differences in other mRNA transcripts. After

the RNA isolation from whole blood, we applied the Ambion GLOBINclear-Mouse/Rat Kit.

Globin reduction was performed according to the manufacturer’s protocol. Input RNA was

quantified before the globin reduction with a Nanodrop spectrophotometer. Shortly, custom

biotinylated complementary oligonucleotides were mixed with globin RNA sequences from

RNA isolated out of whole blood and then annealed the oligonucleotides to α- and β-globin

transcripts. Streptavidin-coated paramagnetic beads were added to bind the biotinylated

duplexes and therefore removed the captured globin transcripts from the preparations of total

RNA. This globin-reduced RNA was then further processed and amplified and then used for

the microarray experiments.

Gene expression profiling in mice

Microarray analysis. After stratification of mice into good versus poor responder sub-

groups according to the abovementioned phenotypic criteria, gene expression profiling by

means of whole-genome gene expression microarrays (MouseWG-6 v2.0 Expression Bead-

Chip Kit, Illumina) was performed on globin-depleted RNA extracted from 3 groups of ani-

mals: good treatment responders (n = 12), poor treatment responders (n = 12), and vehicle-

treated animals (n = 12) (see Fig 2 for an overview of the groups). For comparison of transcrip-

tome profiles of peripheral blood and brain, prefrontal cortex (PFC) was punched from cryo-

sections of the same animals using a binocular microscope.

Gene expression profiling in mice

RNA quantification and QC. Globin-depleted total RNA was quantified with a Nano-

photometer (Nanodrop 2000, Fisher Scientific, Waltham, MA) and both quantified and quality

controlled by capillary gel electrophoresis (2100 Bioanalyzer, Agilent Technologies, Santa

Clara, CA; RNA 6000 nano Assay, Agilent Technologies, Santa Clara, CA). The obtained RNA

integrity numbers (RIN) were greater than 7.5 in all total RNA samples derived from blood

before globin depletion and dropped slightly after globin depletion (RIN> 6.3 for all samples

that were further analyzed).

RNA amplification and labeling. Globin-depleted RNA was labeled and linearly ampli-

fied to cRNA in a commercial form of the classical procedure by Eberwine. As input for the

Illumina TotalPrep-96 RNA Amplification Kit (Life technologies, Carlsbad, CA), 250 ng of

RNA was used, and sample processing followed the manufacturer’s protocol exactly. cRNA

was again quantified and quality checked as performed with total RNA. All samples underwent

Biosignatures associated with antidepressant response
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photometric analysis (Epoch Spectrophotometer with Take3 Trio Micro-Volume Plate, Bio-

Tek Instruments GmbH, Bad Friedrichshall, Germany) and a selected cross section of the sam-

ples was additionally checked on the Bioanalyzer (Agilent Technologies, Santa Clara, CA).

Microarray hybridization. Following the manufacturer’s instructions (WGGEX Direct

Hybridization Assay Guide 11322355A), 1,500 ng of labeled cRNA was hybridized onto

whole-genome gene expression microarrays (MouseWG-6 v2.0 Expression BeadChip Kit, Illu-

mina, San Diego, CA). Sample randomization and alternating processing between the experi-

mental groups were applied in order to avoid technical bias being correlated with group

comparisons.

Microarray scanning and QC. Microarrays were scanned and intensity extractions were

computed using a BeadArray Reader (Illumina, San Diego, CA) via the BeadScan Software

with activated internal outlier detection and a scan factor of 1 (PMT = 478; PMTFactor = 1).

The extracted bead summary data provide gene expression levels from 45,281 array features

per sample. QC of microarray data was based on visual inspection of scan images, data distri-

butions, internal Illumina controls, pairwise scatter plots, and statistical outlier detection of

samples. Thereby, 3 samples (1 from the good responder group and 2 from the control group)

were excluded from further analysis.

Microarray data processing and analysis. For the samples fulfilling QC criteria, bead

summary scan data were filtered for detected probes with p-detection < 0.05 in at least 4 sam-

ples in the whole data set. Variables remaining numbered 20,412 and were variance stabilizing

normalization (vsn) transformed and normalized using the bioconductor R package “beadar-

ray.” Normalized and filtered data were imported into Qlucore Omics Explorer 2.3 (Qlucore,

Lund, Sweden) for exploration of batch effects and for inference testing. Principal component

analysis was used to identify batch effects and artifacts according to correlations of the sample

structure with putative confounders. Consequently, a mild technical bias was removed by

using bead chip ID as a covariate in ANOVA from blood samples analyses. Paroxetine concen-

trations were used as a second covariate to remove unwanted variance introduced by differ-

ences in the bioavailability of paroxetine. For some animals, blood paroxetine concentrations

were not available due to limitations in total blood amount. To impute those missing values, 4

blood concentrations used in the differential gene expression analysis were predicted from

regressing paroxetine concentrations from brain against blood. In the brain microarray data,

covariates were paroxetine concentration in brain, and “amplification batch.” For correlation

analyses of paroxetine concentrations with microarray data, paroxetine concentration as

covariate was omitted.

For inference testing, variables (individual microarray probes) were further filtered for vari-

ance of>5%, which left 4,966 variables for the good versus poor responder comparison and

6,664 for the paroxetine versus vehicle comparison. Statistical tests of microarray data were

based on 2 group comparisons using ANOVA with Benjamini-Hochberg based false discovery

rate (FDR)-analogue q-values (q< 0.1 and q< 0.05).

Annotation of microarray probes was done using the manufacturer’s annotation file (Mou-

seWG-6_V2_0_R2_11278593_A.bgx).

Visualization of microarray results. Microarray results were visualized as a volcano plot;

all 4,966 microarray probes that have been filtered for detection over background and variance

in the paroxetine blood data have been plotted. The x-axis displays the difference in residual

gene expression for normalized microarray data (variance stabilizing normalization, vsn). The

y-axis indicates the negative value of log 10 transformed q-values.

Gene regulation pattern analysis between tissues was performed using the R “stats” package

(functions: heatmap, dendrogramm, hclust, and dist). All significant probes from blood were

mapped to the brain array results. After removing probes with missing data in one of either
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tissue, 214 microarray probes remained for the analysis. Clustering was only performed for

microarray probes that are represented as rows in the plot. The agglomerative clustering is

based on the method “complete” and the use of a distance matrix with euclidean distances as a

dissimilarity parameter.

Impact of blood cell proportions in mice gene expression profiles

We assessed whether the observed gene expression profiles of good treatment responders and

poor treatment responders were related to changes in blood cell proportions in the mice using

CIBERSORT [19]. The input reference matrix of expression signature profiles of mouse tissue

was obtained using ImmuCC [20]. These statistical tools infer proportions of 25 types of

immune blood cell types.

Gene expression transcripts of antidepressant treatment response

tested in a human sample

To assess the relevance of the gene expression transcripts for antidepressant response differ-

ences in humans, we tested their predictive ability to classify response status in a human sam-

ple. The sample (n = 86) consisted of a subset of MDD patients treated with antidepressant

drug treatment over 12 weeks from 2 samples recruited at Emory University School of Medi-

cine (N = 74 from [21] and N = 12 from [22]). In both studies, patients followed a similar pro-

tocol and were randomized to either antidepressant drug treatment or cognitive behavior

therapy (CBT), with the difference that patients were randomized to CBT, duloxetine, or esci-

talopram in PReDiCT [21] and to CBT or escitalopram in [22]. Only the subset of patients in

the antidepressant treatment group with sufficient RNA quality at both time points was

included in this study. Please see S2 Table for a brief synopsis of demographic and clinical

parameters on the patients from clinical studies. Depression severity was assessed at baseline

and week 12 using the Hamilton Depression Rating Scale (17 items, HDRS-17). In both sam-

ples, blood was drawn at baseline and after 12 weeks of treatment into Tempus RNA tubes

(Applied Biosystems).

RNA was isolated from peripheral blood in a 96-well format using the magnetic bead-based

technology MagMAX for Stabilized Blood Tubes RNA Isolation Kit, compatible with Tempu

Blood RNA Tubes (Ambion/Life Technologies, Carlsbad, CA; cat# 4451893). RNA was quanti-

fied using the Nanophotometer, and quality checks were performed on the Agilent Bioanalyzer

(Agilent Technologies, Santa Clara, CA). Only samples with RIN� 6 with clear 18S and 28S

peaks on the Bioanalyzer were used for amplification; the average RIN was 6.3 (SD of 0.668).

RNA was further processed for generation of biotin-labeled amplified RNA using the Amplifi-

cation Kit (Ambion/Life Technologies, Carlsbad, CA; cat# 4393543). cRNA was hybridized to

Illumina Sentrix Arrays HT-12 v4.0 arrays using the Illumina TotalPrep-96 RNA (Life technol-

ogies, Carlsbad, CA) and incubated overnight for 16 hours at 55˚C. Arrays were washed,

stained with Cy3 labeled streptavidin, dried, and scanned on the Illumina BeadScan confocal

laser scanner (Illumina, San Diego, CA). QC was performed using the bead-array package in R

for 86 samples and 47,282 probes. Probes with p-detection values of<0.01 in at least 10% of

the samples in the whole data set were removed. Remaining probes were normalized and

transformed using the vsn package in R. Not all samples were hybridized on the same batch,

and thus we corrected for chip number using COMBAT. A total of 17,725 transcripts and 86

samples remained after QC.

For the full drug-treated sample, 63 patients were classified as responders and 23 as nonre-

sponders, according to percent changes in HDRS-17 scores from baseline to week 12 (�50%

or<50% change, respectively).
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Mouse gene expression transcripts (n = 259) resulting from the microarray analysis and

described in S1 Table were mapped to their human orthologue genes present in the Illumina

HT-12 arrays (n = 241). Because some genes are represented by more than one probe, 288

probes were included in final analyses. Prediction models were built as soft margin support

vector machines for classification using the e1071 packages in R with the parametrization

gamma = 0.001; cost = 10. Further analyses included only mouse transcripts at FDR of 5%

(n = 85). These were also mapped to their human orthologue genes (n = 77); 66 genes passed

QC in the human study, which were represented by 92 probes. The sample was equally divided

into training and test data sets for each of the analyses (probes at q< 0.1 and q< 0.05). Gene

expression repeated measures from the patients at baseline and week 12 were available; we

computed the absolute difference between the expression levels of the transcripts between

those time points and tested whether these differences were able to predict response to antide-

pressant treatment in the test data set. We permuted the response-status labels 10,000 times in

the training data set and predicted the response status in our test data. In addition, we com-

pared the obtained prediction accuracy of our selected classification features against 1,000 clas-

sification models derived from randomly sampled features. Random feature sets also consisted

of absolute difference in expression between baseline and week 12 of treatment and were size

matched to the selected feature set. Those data were the input for soft margin support vector

machine training and testing as indicated above.

Impact of blood cell proportions in human gene expression profiles

We assessed whether the observed gene expression changes in responders versus nonrespond-

ers were related to changes in cell proportions in the human samples using the Cell-type

Computational Differential Estimation CellCODE R package [23]. Separate components for

neutrophils, T cells, stimulated T cells, NK cells, dendrite cells, stimulated dendrite cells,

monocytes, B cells, and plasma cells were extracted using markers from the IRIS reference data

set provided by CellCODE.

Pathway analysis

Two available tools have been used for pathway analyses: DAVID (https://david.ncifcrf.gov/)

and Pathway-Express [24].

Both tools were used with a list of gene symbols previously shown to be significantly regu-

lated (q-value< 0.1) with differential paroxetine response and interrogated with respect to a

custom background that contained all microarray probes that have been used for computing

inferential statistics. The background contained probes that passed our detection and variance

filters.

Functional overlap of differential paroxetine response with dex-regulated

genes

To determine the function overlap of differential paroxetine response with dex-regulated

genes, we used data from a microarray experiment in male C57BL/6N mice at an age of 12

weeks (mean body weight 26.8 ± 0.1 g), in which animals were treated with 0.1 mg/kg dexa-

methasone i.p. or vehicle (N = 10 and 10) between 0900 and 1100 and sacrificed 4 hours later

[25]. Trunk blood was collected into microcentrifuge tubes containing PAXGene RNA stabi-

lizer solution and frozen at −20˚C. RNA was then extracted using the PAXgene blood miRNA

kit (PreAnalytiX), amplified using the Illumina Total Prep 96-Amplification kit (Life Technol-

ogy), and then hybridized on Illumina MouseRef-8 v2.0 BeadChips.
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Analyses were performed using custom scripts in R. First, a common content for both

microarray data sets was generated based on Illumina “Probe Ids.” Within that common con-

tent, differentially expressed microarray probes were identified for both contrasts using an

FDR threshold of q< 0.1. For the differential paroxetine response, 179 probes passed that

threshold. Then, the number of array probes overlapping with dex regulation by chance was

determined using 100,000 random sampled gene sets of size N = 179. For each trial, the overlap

to the fixed dex-regulated gene list (N = 1,882) was determined and all the results were finally

compared to the overlap of paroxetine response genes with dex-regulated genes; this was done

by counting the number of sampled sets that showed higher overlap (>134) than the differen-

tial gene list.

In addition, a 2 × 2 contingency table was computed for dex regulation and paroxetine

response and these numbers were further used to perform a hypergeometric test.

Calculation of statistical significance for a possible directionality of gene regulation was per-

formed using a binomial test.

Results

Modeling heterogeneity in antidepressant treatment response in mice

In order to detect the minimum effective dosage of paroxetine for the DBA/2J strain, 2 paroxe-

tine concentrations (1 mg/kg body weight or 5 mg/kg body weight, twice daily) were tested in

a pilot study. The lower paroxetine concentration (n = 29) failed to produce a significant

behavioral treatment effect in the FST. The only parameter that was altered with the 1 mg/kg

dosage was body weight (T39 = −2.490, p< 0.05). Behavioral data, neuroendocrine measure-

ments, and body weight are shown in S1 Fig.

A dosage of 5 mg/kg evoked a significant antidepressant-like response in the FST (Fig 3).

The following data were all collected from animals treated with 5 mg/kg paroxetine, which we

considered to be the minimum effective dosage for the DBA/2J strain.

Behavioral heterogeneity of paroxetine-treated mice allows stratification into good ver-

sus poor treatment responders. Paroxetine-treated animals showed a significant reduction

in the time floating (Fig 3A) (T80.701 = 9.157, p< 0.000) and a significant increase in the time

struggling (Fig 3B) (T102.624 = −4.496, p< 0.000). Furthermore, there was a large heterogeneity

within the paroxetine-treated animals (Fig 3C), thus allowing selection of extreme subgroups

(animals with low time floating were considered “good responders;” animals with a high time

floating were considered “poor responders” [20% extremes]).

Physiological and neuroendocrine parameters. Paroxetine-treated animals gained sig-

nificantly more body weight compared to the vehicle group (T105 = −8.356, p< 0.000) (S2

Fig). However, there was no significant difference in body weight gain between the responder

and nonresponder groups (S2 Fig).

Plasma corticosterone concentrations were assessed directly after the 5-minute FST. No sig-

nificant difference in corticosterone plasma concentrations was detected between vehicle- and

paroxetine-treated animals (S2 Fig) or between the subgroups of good- versus poor-respond-

ing animals (S2 Fig).

Paroxetine plasma and brain concentrations

There was no significant difference in plasma paroxetine concentrations between the good

and poor treatment responder (p = 0.19). For paroxetine brain concentrations, a significant

difference between good and poor responders could be detected (p< 0.05) (S3 Fig). Paroxetine

brain and plasma concentrations were closely correlated (r = 0.94; p< 0.0001) (S3 Fig).

Despite the lack of statistical association, we included plasma paroxetine concentrations as a
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covariate in further analyses on the transcriptome profiles in peripheral blood samples. Brain

paroxetine concentrations were used as covariates in analyses of PFC samples.

Microarray analysis in peripheral blood

To identify signature gene expression profiles characteristic of the animals’ responder status,

gene expression data sets of vehicle-treated animals, good responders, and poor responders

were created by whole-genome gene expression microarray analysis on blood samples and

analyzed (n[vehicle] = 12, n[good] = 12, n[poor] = 12). We evaluated both treatment effect

and response status with respect to antidepressant treatment and with respect to paroxetine

plasma concentrations. We also investigated whether paroxetine brain or plasma concentra-

tions might have an effect on gene expression levels. Linear and quadratic regression analyses

did not reveal any microarray probe that showed significant correlations with the related

plasma paroxetine levels when controlling for multiple testing. No significant influence of par-

oxetine concentrations on gene expression profiles was observed. Nevertheless, identified tech-

nical batch effects in the data and measured paroxetine drug concentrations in blood were

used as covariates in an ANOVA-based statistical model.

Although no robust gene regulation was apparent when the treatment group (independent

of response) was compared to the control group, there was a pronounced effect within the

treatment group. We were able to detect a set of 259 transcripts that showed a significant

Fig 3. A 14-day paroxetine treatment significantly reduces depression-like behavior in the FST. (A)

Paroxetine-treated animals showed a reduction in time floating compared to vehicle-treated animals. (B)

Paroxetine significantly increased active coping strategies, i.e., time struggling, compared to vehicle-treated

animals. (C) Identification of different responder groups according to their performance in the FST. Animals

indicated in the red squares are referred as good and poor treatment responders. Animals that showed a very

high time floating represent the poor treatment responder, whereas animals that showed a very low time

floating represent the good treatment responder. Animals indicated in the dotted-line square represent

internal control groups. Animals within the vehicle-treated group served as a vehicle-treated control group.

* indicates significant difference between the vehicle-treated control group and the paroxetine-treated group,

p < 0.000. All raw data for Fig 3 are available in S2 Data. FST, forced swim test.

https://doi.org/10.1371/journal.pbio.2002690.g003
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difference in expression due to antidepressant response status at a false discovery controlled

significance level of 10% (q< 0.1) (Fig 4; S1 Table), of which 85 had q< 0.05 (S1 Table).

We then aimed to see whether the observed gene regulation patterns in peripheral blood

might overlap with effects observed in the PFC from the same animals. To test this, we first

performed a cluster analysis on the difference in expression between the responder groups in

the set of differentially regulated genes in blood. We then compared the results for these tran-

scripts to the difference in expression between these 2 groups measured in PFC brain tissue in

the same animals. The results are summarized in a heat map in Fig 4 and indicate that, within

the selected gene set, there is no major common gene regulation pattern associated with

response status between both tissues.

Impact of blood cell proportions in mice gene expression profiles

No significant differences in immune cell subtypes between the different response groups were

detected using CIBERSORT [19] and ImmuCC [20] (see S3 Table).

Impact of blood cell proportions in human gene expression profiles

No significant change in immune cell subtypes using CellCODE [23] was associated with the

response groups in the human sample (see S4 Table). Therefore, none of the estimated cell

proportions were included in further analyses.

Murine signature gene expression transcripts predict antidepressant

treatment response in the human sample

In the next step, we determined whether this transcriptional profile identified in the mouse

model would also be relevant in the human data set. Therefore, we tested whether changes in

the mRNA expression of the human orthologues of transcripts at FDR of 10% and at FDR of

Fig 4. Differential gene expression in animals stratified for behavioral treatment response to chronic

paroxetine treatment. (A) Volcano plot showing results from blood samples. The biological effect size

(difference in expression) is plotted against statistical significance (as negative log 10 transformed values of

the FDR-based q-value). Regarded as significantly regulated, 259 probes with q-values < 0.1 are colored

according to their difference in expression. (B) Heat map comparing patterns of differential gene expression in

blood and prefrontal cortex. Each row in the plot represents the difference in expression of 1 microarray probe

between poor and good responders in both blood and prefrontal cortex. The array probes are ordered

according to agglomerative hierarchical clustering, but no large common gene regulation patterns are

revealed between the 2 tissues. Scale for color coding difference in expression is identical for (A) and (B). All

raw data for Fig 4 are available in S1 Data. FDR, false discovery rate.

https://doi.org/10.1371/journal.pbio.2002690.g004

Biosignatures associated with antidepressant response

PLOS Biology | https://doi.org/10.1371/journal.pbio.2002690 December 28, 2017 13 / 23

https://doi.org/10.1371/journal.pbio.2002690.g004
https://doi.org/10.1371/journal.pbio.2002690


5%, separately, are associated with response to antidepressant treatment. Differences in expres-

sion profiles from baseline to week 12 when using human orthologues of transcripts at FDR of

10% allowed prediction of response status (at least 50% improvement in HDRS-17 from base-

line to week 12 for responders) with an accuracy of 76%, using all patients treated with antide-

pressant. The prediction persisted after we permuted the response-status labels 10,000 times

(pperm = 0.0328). When a more stringent FDR of 5% cutoff was applied to the mouse tran-

scripts, the corresponding human orthologues predicted response status with an accuracy of

81% in the human sample. The prediction persisted after we permuted the response-status

labels 10,000 times (pperm = 0.0018).

After showing that expression levels of the antidepressant response genes identified from

mice are also informative for classification in a human sample, we further analysed the quality

of the mouse-based feature selection in the human data set. For this, we compared the classifi-

cation accuracy of our identified antidepressant-response features to classification accuracy

given by randomly chosen and size-matched sets of gene expression probes in the human sam-

ple (Fig 5). In analogy to the previous classification approach, we used differences in gene

expression from baseline to week 12 in 1,000 random sets of gene probes. Only 25 random

gene probe sets showed higher or equal prediction accuracy than our feature panel selected

from the animal model. This suggests that the information derived from the mouse experi-

ments allowed the selection of transcripts for which the classification accuracy is better than

for random gene expression background (pperm = 0.026).

Functional annotation

For functional annotations of the microarray results, we performed pathway analyses and

included an overrepresentation analysis with DAVID, and we conducted a second analysis

using Pathway-Express. The latter accounts for pathway topology and biological effect

size. In both approaches, no significant results passing our threshold criteria were found.

The top overrepresented categories in DAVID were entities associated with general gene

transcription and did not reach significance levels. Although Pathway-Express showed for-

mally significant results for a few specific Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways, we excluded them because less than 2% of the pathway genes were

regulated.

Genes regulated by dexamethasone are enriched in paroxetine

treatment responsive genes

We next integrated our results with another microarray data set that we had previously gener-

ated. Those data originated from mouse blood samples taken from animals that had been

treated with the glucocorticoid receptor (GR) agonist dexamethasone (dex [25]). To test

whether GR activation responsive genes are overrepresented in our antidepressant response

gene set, we used a permutation approach and computed the overlap of dex-regulated genes

with the paroxetine response genes and compared it to matched random gene sets sampled

from the paroxetine array results (Fig 6). Based on 2,852 array probes that constituted a

common content for both independent data sets, 179 array probes of the 259 response associ-

ated probes could be used for this analysis. The overlap between the probes significantly regu-

lated between the responder group and the ones regulated following dex administration was

134 out of 179. Within 100,000 trials of drawing random gene sets of 179 probes, there were

only 70 instances in which a higher overlap occurred. This reflects a permutation-based FDR

of 7e-4 for enrichment of dex-regulated array probes in paroxetine response probes. A
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hypergeometric test yielded a p-value of 5.6e-4, further supporting an enrichment of GR-

responsive transcripts among response-associated genes.

Standard enrichment analysis does not take into account the direction of gene regulation,

and we were interested to see whether paroxetine response and dex regulation showed a direc-

tional overlap. Of the 134 array probes that are significantly regulated by dex and are, at the

same time, between the paroxetine response groups, only 38 had a mismatch in the direction

of the putative regulation. The majority of the regulated genes (N = 96) are regulated in the

same direction in both conditions, and based on a binomial distribution, such a result could

not be observed if both outcomes (same and opposite regulation) had the same probability

(p = 7.2e-07). Thus, we can conclude that there is a common direction of gene regulation for

dex treatment and paroxetine response.

Fig 5. Classification features selected from differential gene expression in a mouse model for

antidepressant treatment response are informative for treatment response in a human gene

expression data set. Histogram shows the distribution of prediction accuracy over 1,000 simulated

classification models that were computed with randomly chosen gene expression probe sets from human

gene expression data (median prediction accuracy = 69.77%). The red dashed line marks the observed

prediction accuracy (76.74%) when using our informed feature selection to build classifiers. Because only 25

of the randomly chosen feature sets yield equal or better classification results, the predictive ability of our

features selected from the presented mouse model is significantly greater than expected by chance

(p = 0.026). All raw data for Fig 5 are available in S1 Data.

https://doi.org/10.1371/journal.pbio.2002690.g005
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Discussion

The goal of the present study was to gain insight into the biology of variations in response to

antidepressant treatment and to describe molecular signatures associated with response, ulti-

mately aiming at the identification of predictors of treatment outcome. Based on a conceptu-

ally novel translational approach, starting with stratification into extreme phenotypes in the

mouse, we were able to identify common—i.e., conserved across species—informative tran-

script sets associated with antidepressant treatment outcome. Intriguingly, we finally show

that GR-regulated genes are significantly enriched in this cluster of antidepressant-response

genes, pointing to the involvement of GR sensitivity as a potential key mechanism in shaping

transcriptional changes and clinical response to antidepressant treatment.

Modeling heterogeneity of antidepressant response in the mouse: The

approach

There are 2 obvious gaps of knowledge in depression treatment, namely (1) the lack of bio-

signatures predicting antidepressant response and (2) the lack of knowledge of the molecular

mechanisms mediating the response to antidepressant pharmacotherapy. The latter is of par-

ticular importance for the eagerly awaited discovery of conceptually novel antidepressant treat-

ment strategies, which can only be rationally realized with a deeper understanding of the

molecular mechanisms underlying clinical response [26].

In recent years, the unbiased, i.e., genome-wide, screening to identify genetic factors that

could assist in the prediction of an individual’s drug response has been a major focus in

Fig 6. Enrichment of dexamethasone-regulated genes. Histogram of 100,000 random samples indicates

that paroxetine response genes show higher overlap with dex-regulated genes than expected by chance. The

overlap between differential microarray probes from paroxetine-response and dex-regulated microarrays is

134 and this threshold is indicated as a vertical red dashed line. In this simulation, on average, 115 probes do

overlap by chance and in 70 samples, the random overlap is higher than the tested one. All raw data for Fig 6

are available in S1 Data. dex, dexamethasone.

https://doi.org/10.1371/journal.pbio.2002690.g006
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depression research. Despite tremendous efforts, however, the results are fairly modest in

identifying predictive genes in large genome-wide association studies [27–29] and even in a

meta-analysis [6]. Instead, Tansey et al. [30] recently presented data implicating a highly poly-

genic architecture involving many common variants scattered across the genome, none of

which have very large effects but cumulatively contribute to a substantial proportion of varia-

tion in antidepressant response. So far, only a few small studies provided first evidence that

biochemical information (e.g., metabolomics) could add to the panel of markers predicting

response to a particular antidepressant in patients [31], suggesting that alternative strategies

need to be explored.

However, studies to investigate the neurobiology of antidepressant treatment response have

been hampered by the fact that no appropriate animal model addressing this issue had yet

been described. Therefore, we embarked upon the development of an animal experimental

approach modeling the heterogeneity in response to antidepressant treatment as closely as pos-

sible. In contrast to studies in patients, this model approach both enables an in-depth analysis

of the neurobiological mechanisms shaping individual antidepressant response in the central

nervous system and searches for peripheral biosignatures associated with treatment response.

There are different approaches to model depression-like phenotypes (i.e., symptoms of depres-

sion) in the mouse. While induction of depression-like symptoms following exposure to differ-

ent types of stress, e.g., chronic social defeat or chronic mild stress is one possible approach,

the use of mouse strains with high innate anxiety- and depression-like behavior is also com-

monly accepted. The selection of the DBA/2J mouse strain, with its well-described high innate

anxiety and responsiveness to antidepressant treatment [17], enabled us to perform the phar-

macological treatment under basal conditions, i.e., without the need to subject the animals to

an additional stress procedure that might have influenced the transcriptome data. A combina-

tion of stress exposure and antidepressant treatment within our approach would not allow us

to identify the individual contribution of these 2 factors to the phenotype. Nonetheless, a com-

parison of stress-related and antidepressant response–related molecular events could enable

the identification of shared molecular pathways.

Oral treatment with the SSRI paroxetine significantly reduced—as expected—depression-

like behavior. Remarkably, in addition to the overall antidepressant-like effect on promoting

active coping strategies in the FTS, we detected a high variability in the behavioral outcome.

Although the neurobiological mechanisms underlying antidepressant-induced behavioral

changes in the FTS still are not fully understood [32], we here used the FST as the laboratory

animal equivalent of treatment response because it is the most commonly used test to screen

for antidepressant efficacy in rodents [16]. Comparable approaches for stratification and

extreme case sampling in animal models have been successfully introduced in the field of stress

research [33], and during recent years, they have enabled the identification of a number of key

mechanisms shaping individual susceptibility to stress [34, 35]. We considered plasma paroxe-

tine concentration as a covariate on our microarray analyses, but we were not able identify a

significant influence on the gene expression profile associated with treatment response.

The selection of a rodent approach for biomarker discovery in psychiatric disorders has the

advantage of minimizing potentially confounding variables, which, in clinical depression stud-

ies, so far have impeded biomarker discovery [12]. Due to the standardized experimental con-

ditions, factors such as sex, age, and additional environmental factors, including

pharmacological pretreatment, the time of day at which the blood sample is taken, physical

exercise, food, and many others [36], can be strictly controlled for, thus enabling the detection

of true response biomarkers in a hypothesis-free approach. In a second step, these murine bio-

markers can then be validated in the human population. Given the complexity of identifying

true biomarker candidates in psychiatric disorders, the need to strengthen potential candidates
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by cross-species approaches [37] and to validate those in independent cohorts is considered

crucial [38].

Translation to the patient: Murine signature gene expression transcripts

predict antidepressant treatment response in the human sample

Aiming to enable a translational approach, we focused on the identification of transcriptome

signatures in the periphery, because only those are relevant for clinical application. Several

studies have investigated the use of human peripheral blood cells as surrogate material for dif-

ferent organs and tissues, including the central nervous system [39–41]. However, inconsistent

results have been reported as to the overlap between transcriptome profiles in peripheral blood

and brain [14].

To address issues of cross-tissue relevance, we compared peripheral transcriptome signa-

tures with expression profiling data of the PFC of the same good- and poor-responding ani-

mals. We did not find any major common response status-associated gene regulation pattern

between both tissues. We thus hypothesize that in depression treatment, blood cells might act

as sentinels of treatment response but are not generally informative about central regulation

processes, at least not in the PFC.

In the next step and as a proof of concept, we sought to evaluate the relevance of the murine

transcriptional signature associated with antidepressant treatment response in a human data

set. Using a powerful within-participant approach investigating longitudinal transcription

changes between baseline and week 12 of antidepressant treatment, we tested whether mRNA

expression of the human orthologues of these transcripts changes with antidepressant treat-

ment in peripheral blood in a subset of 2 human studies [21, 22]. Differences in expression

profiles from baseline to week 12 of the human orthologues selected on the basis of the murine

transcript signature allowed prediction of response status (percent change in HDRS-17 from

baseline to week 12) with an accuracy of 76% in the human sample. Using a permutation strat-

egy, we also showed that our set of transcripts was more likely to predict treatment outcome

correctly than random sets of transcripts. We thus show the suitability of an appropriate ani-

mal experimental approach for the discovery of peripheral treatment response biomarkers.

While promising, our findings certainly require validation in independent samples of patients

with MDD. One aspect that needs more detailed investigation in future studies is the precise

time course and stability of response-associated transcript changes, as we here integrated

murine transcript data following 2 weeks of antidepressant treatment with patient data over a

12-week treatment course.

Modulation of GR sensitivity as underlying mechanism shaping

response to antidepressant treatment

The available evidence makes a compelling case implicating dysregulation of the stress hor-

mone system, the so-called hypothalamus-pituitary-adrenocortical (HPA) system, in the path-

ogenesis of MDD [42, 43]. Moreover, considerable evidence has accumulated suggesting that

normalization of the HPA system might be the final step necessary for stable remission of

the disease [44], and it was further hypothesized that antidepressants may act through normal-

ization of the HPA system function [45]. A recent study provided evidence that hormone-

independent activation of the GR is involved in the therapeutic action of fluoxetine [46], sup-

porting the neurobiological link between GR signalling and antidepressant action.

We could not detect any difference in corticosterone plasma concentrations between good

and poor responders to paroxetine treatment directly after the FTS challenge, although assess-

ment of plasma corticosterone concentrations at 1 time point, i.e., 5 min after the FST, does
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not exclude potential dynamic changes in HPA system response (i.e., changes in the rise of

corticosterone or HPA system feedback following initial activation). Evidence from measure-

ments of HPA system activity in depressed patients, however, supports the notion that in vivo

challenges such as the combined dexamethasone/corticotropin releasing hormone challenge

test (Dex-CRH test) are superior to single baseline measurements of peripheral glucocorticoid

concentrations in discriminating between depressed patients and healthy controls as well as

treatment responders versus nonresponders. In addition, recent investigations have shown

that dex-stimulated gene expression is a sensitive marker of GR-resistance in MDD [13] and

that common genetic variants that modulate the initial transcriptional response to GR activa-

tion increase the risk for depression [25]. Therefore, we tested for an enrichment of GR-

responsive genes in our antidepressant response gene set, a finding that could point to

increased GR sensitivity in good- versus poor-responding animals. We demonstrated that

(1) GR-regulated genes are significantly enriched in our cluster of antidepressant-response

genes and (2) there is a common direction of gene regulation for dex treatment and paroxetine

response. Our data are in line with a large body of previous evidence pointing to the normali-

zation of GR resistance as an important feature of the clinical response to antidepressant treat-

ment [43, 47] and support the intriguing hypothesis that antidepressants could stimulate

resilience-promoting molecular mechanisms [48].

Conclusion and perspectives

Biomarkers or biosignatures, respectively, would not only allow monitoring of antidepressant

treatment response in clinical practice but they also could assist in the evaluation of drug

actions at an early stage in clinical trials of novel agents that are frequently marred by late attri-

tion [49]. In particular, identifying biomarkers of response will be essential for assessing target

engagement of novel mechanisms. We submit that our approach opens up the opportunity to

generate a unique database for putative biosignatures predicting response to be assessed and

validated in larger patients’ samples.

In conclusion, we expect this translational approach to serve as a template for the discovery

of improved and tailored treatment modalities for depression in the future.
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paroxetine treatment led to an increase in body weight in the paroxetine-treated animals. (B)
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group. (D) Chronic treatment did not alter the time spent struggling in the paroxetine-treated

group. � significant correlation, p< 0.05. All raw data for S1 Fig are available in S2 Data. BW,

body weight.

(TIF)

S2 Fig. Impact of 14-d paroxetine treatment on physiological and neuroendocrine parame-

ters. (A) After 14 d of paroxetine treatment, animals treated with the SSRI gained significantly

more body weight compared to the vehicle-treated control group. (B) No significant difference

in body weight gain was found between the responder groups due to the paroxetine treatment.

(C) Corticosterone levels were assessed in blood plasma during the circadian nadir in the

morning directly after the FST. We did not find any significant difference in corticosterone

levels between vehicle- and paroxetine-treated animals. (D) While comparing the corticoste-

rone levels in the different responder groups, no difference was found between the groups.

Data are represented as mean + SEM. � significantly different from vehicle treated animals,

p< 0.000. All raw data for S2 Fig are available in S2 Data. FST, forced swim test; SEM, stan-

dard error of the mean; SSRI, selective serotonin reuptake inhibitor.

(TIF)

S3 Fig. Paroxetine brain and plasma concentrations following 14 d of antidepressant treat-

ment. (A, B) ANOVA analysis showed a significant association of responder status with both

plasma and paroxetine concentrations. In the post hoc analyses, only brain tissue concentra-

tions of paroxetine showed a significant difference between good responders and poor

responders. (C) Paroxetine brain and plasma concentrations were closely correlated (r = 0.94).

All raw data for S3 Fig are available in S2 Data.

(TIF)
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