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Abstract: For many years, oncological clinical trials have taken advantage of dendritic cells (DC) for
the design of DC-based cellular therapies. This has required the design of suitable quality control
assays to evaluate the potency of these products. The purpose of our work was to develop and
validate a novel bioassay that uses flow cytometry as a read-out measurement. In this method,
CD3+ cells are labeled with a fluorescent dye and the DC costimulatory activity is measured by the
degree of T cell proliferation caused by the DC–T cell interaction. The validation of the method was
achieved by the evaluation of essential analytical parameters defined by international guidelines.
Our results demonstrated that the method could be considered specific, selective, and robust. The
comparison between measured values and estimated true values confirmed a high level of accuracy
and a lack of systematic error. Repeated experiments have shown the reproducibility of the assay
and the proportionality between the potency and the DC amount has proven its linearity. Our results
suggest that the method is compliant with the guidelines and could be adopted as a quality control
assay or batch-release testing within GMP facilities.

Keywords: dendritic cells; potency; T cell proliferation; validation; co-stimulation; flow cytometry

1. Introduction

Since their first description in 1973 [1], dendritic cells (DCs) have been considered the
most efficient specialized antigen presenting cells (APCs) [2,3], with a unique ability to
initiate, coordinate, and regulate adaptive immune responses [4].

Actually, among all the APCs, only DCs have the capacity to induce a primary immune
response towards inactive or resting naïve T lymphocytes. To do this, DCs can uptake,
process, and present antigens on their cell surface, along with the necessary accessory and
costimulatory molecules, while undergoing the maturation process.

Thus, the interaction between mature DCs (mDCs) and antigen-specific T cells is the
trigger of antigen-specific immune responses [5,6]. When interacting with CD4+ helper
T cells, mDCs may induce their proliferation, activation, and differentiation into different
CD4+ T cell subsets [7,8] throughout a complex phenomenon influenced by DC-derived
cytokines and their maturation state [9,10].

Given the central role of DCs in initiating immune responses and surveillance, inves-
tigators have theorized that DCs would serve as an ideal tool for boosting endogenous
anti-tumor responses that can lead to the effective eradication of tumors [11–13]. The role
of the immune system in eliminating tumors has been established in several studies [14–18].
Monocyte-derived DCs (Mo-DCs) have been so far the most commonly used in anticancer
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vaccine clinical trials. In this approach, CD14+ monocytes selected from peripheral blood
mononuclear cells (PBMCs) are cultured ex vivo and induced to differentiate into imma-
ture DCs (iDCs). Subsequently, the iDCs are stimulated by exposure to the appropriate
maturation stimuli and simultaneously loaded with tumor antigens. Finally, the antigen-
loaded mDCs are then harvested and cryopreserved in aliquots until the thawing at each
scheduled vaccination date. To evaluate the quality of Mo-DC treatment, the potency test
of the final product has become imperative for batch-release of DC products.

As defined in the US Code of Federal Regulations, potency is the specific ability or
capacity of a product to affect a given result [19]. Potency is a critical quality attribute of
biological products that has been determined using several bioassays. In particular, for
DCs the mixed lymphocyte reaction assay has served as a “gold standard” for evaluating
their functional ability to induce T cell activation. Alternatively, in 2004 Shankar et al.
developed a method named “COSTIM bioassay” based on scintillation counting, which is
suitable as a quality control assay or lot-release testing. In this functional test, T cells are
stimulated with a sub-optimal amount of anti-CD3 antibody, such that they remain unable
to proliferate unless a source of co-stimulation is added to the culture [20]. The following
year, the same authors also validated the COSTIM bioassay for DC potency [21].

The main disadvantages of measuring T cell proliferation by applying scintillation
counting are the instability and dangerousness of radioactive pyrimidine base and the lack
of the exact number of cells which have actually proliferated due to the semi-quantitative
nature of the method.

The aim of the present work was to validate the Co-Flow DC assay: a COSTIM assay
using flow cytometry data as the T cell proliferation read-out.

2. Results
2.1. Method Development

In accordance with Shankar et al., we first focused on the purity of T cell samples
used for subsequent analysis. Flow cytometric analysis revealed that the percentage of
magnetically isolated CD3+ T cells was always higher than 90%. Additionally, Mo-DCs
were checked for purity and maturation phenotype. Purity was always reported to be ≥60%
(ranging from 60 to 84%) and the phenotype of the mDCs was confirmed by flow cytometry
using the following markers: HLA-DR (accepted cutoff value ≥ 60%, average = 91.6%),
CD80 (accepted cutoff value ≥ 50%, average = 98.7%), CD83 (accepted cutoff value ≥ 40%,
average = 90.6%), and CD86 (accepted cutoff value ≥ 60%, average = 98.8%).

In all our experiments, the positive control was represented by T cells treated with
the mitogenic agent phytohemagglutinin-L (PHA-L) (Figure 1A). In order to assess the
best treatment conditions, we tested scalar concentrations of PHA-L and two different
incubation times. Our results demonstrated that the best T cell proliferation rate was
obtained after incubation with PHA-L 5 µg/mL for 68 h (Figure 1B).
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Figure 1. PKH67 stained CD3+ T cell proliferation. (A) Gating strategy and representative flow cytometric histograms 
analyzed with Modfit LT. COSTIM = co-culture of T cells + DCs + OKT-3. (B) Labeled T cells were co-cultured with differ-
ent concentrations of PHA-L and analyzed by flow cytometry after 44 h (dashed line) or 68 h (continuous line) in culture. 
T cell proliferation results are mean ± standard deviation (SD) of three experiments at both incubation times. 

2.2. Method Validation 
The validation of the method described in this paper was performed satisfying es-

sential analytical parameters defined by the Guidelines of the International Conference of 
Harmonization [22] and in accordance with the US Food and Drug Administration guid-
ance document [19]. All the experiments were performed conforming to Current Good 
Manufacturing Practices in our quality control department to prove the specificity, selec-
tivity, accuracy, linearity, robustness, and precision of the method.  

2.2.1. Specificity 
Specificity is the ability to accurately measure the analyte of interest in the presence 

of other components. Since the DCs used in the tests were Mo-DCs, we wanted to show 
that the observed T cell proliferation was independent of the stimulation induced by other 
APCs eventually present in the co-culture. For this purpose, we evaluated the potency 

Figure 1. PKH67 stained CD3+ T cell proliferation. (A) Gating strategy and representative flow cytometric histograms
analyzed with Modfit LT. COSTIM = co-culture of T cells + DCs + OKT-3. (B) Labeled T cells were co-cultured with different
concentrations of PHA-L and analyzed by flow cytometry after 44 h (dashed line) or 68 h (continuous line) in culture. T cell
proliferation results are mean ± standard deviation (SD) of three experiments at both incubation times.

2.2. Method Validation

The validation of the method described in this paper was performed satisfying es-
sential analytical parameters defined by the Guidelines of the International Conference
of Harmonization [22] and in accordance with the US Food and Drug Administration
guidance document [19]. All the experiments were performed conforming to Current
Good Manufacturing Practices in our quality control department to prove the specificity,
selectivity, accuracy, linearity, robustness, and precision of the method.
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2.2.1. Specificity

Specificity is the ability to accurately measure the analyte of interest in the presence
of other components. Since the DCs used in the tests were Mo-DCs, we wanted to show
that the observed T cell proliferation was independent of the stimulation induced by other
APCs eventually present in the co-culture. For this purpose, we evaluated the potency
induced by varying the numbers of mDCs or monocytes per well. As shown in Figure 2A,
results obtained demonstrated that at 5 × 104 stimulator cells per well, monocytes were
capable of inducing a slight T cell proliferation, but still four times lower than that induced
by DCs. However, monocyte-induced potency became neglectable when we cultured
them at 1 × 104 cells per well, whereas DCs maintained their costimulatory functions at
this concentration. For this reason, 1 × 104 DCs per well was maintained throughout the
following experiments. Our aim was also to demonstrate that the proliferation of CD3+ T
lymphocytes during the Co-Flow DC assay was specifically due to the DC costimulatory
ability. We evaluated this by adding to the COSTIM cultures different concentrations of
an antibody cocktail directed against DC antigens with costimulatory functions, such as
anti-CD54, anti-CD80, and anti-CD86. The results showed that the simultaneous antibody-
mediated blockade of these antigens completely prevented T cell proliferation (Figure 2B),
indicating that in absence of adequate interactions between DCs and CD3+ cells during the
co-culture the proliferative capacity is inhibited.
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Figure 2. Specificity of the bioassay. (A) Potency induced by varying numbers of DCs or monocytes per well. Data from
three batches and donors are reported. (B) Proliferation with and without different concentrations of the antibody (Ab)
cocktail (anti-CD54, anti-CD80, and anti-CD86). Results are mean ± SD of three experiments. The addition of the isotopic
controls does not modify the DC-induced T cell proliferation at any concentration.

2.2.2. Selectivity

Selectivity is the quality of a response that can be achieved without interference from
any other substance. Additionally, in this case we considered monocytes as an interfering
agent, therefore we seeded in the same well DCs and monocytes in different proportions for
a total amount of 1 × 104 cells. Our data demonstrated that the potency was proportional
to the percentage of DCs present in the well and consequently inversely correlated with
the percentage of monocytes (Figure 3).
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Figure 3. Selectivity of the bioassay. Potency data obtained adding various proportions of CD14+
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2.2.3. Accuracy

Accuracy describes the degree to which the result of a measurement conforms to
the correct value and provides information on the ability of the test to produce solid and
real results. Unable to establish a true value, our purpose was to evaluate the agreement
between the obtained values (intended as the number of proliferated events) and the
estimated expected values. The accuracy of the test was evaluated after seeding different
proportions of DCs and monocytes in the same well, as described above. The expected
value is determined by the contribution exerted by the quantity of DCs and monocytes
present in the co-culture, as described in Table 1.

Table 1. Accuracy and relationship between expected and measured values.

Proportion (%) of DCs and Monocytes in Culture

100 + 0 80 + 20 60 + 40 40 + 60 20 + 80 0 + 100

Measured values (nr of
proliferated events) 3715.2 3172.9 1965.1 1483.6 951.1 182.7

Expected values 1 - 2972.5 2229.8 1487.2 744.5 -
Accuracy (%) - 6.7 −11.9 −0.2 27.8 -

Average accuracy (%) 5.6
1 Expected value was calculated as the multiple of “proportion of DCs in culture” and “the measured value” obtained from the 100% DC
group, plus the multiple of “proportion of monocytes in culture” and “the measured value” obtained from the 100% monocyte group.

We calculated the accuracy for each co-culture condition and its average value that
was lower than the established acceptance criterion of 10%. The same data were further
elaborated to evaluate if our test was affected by a systematic error. As shown in Figure 4,
in our bioassay we found a lack of constant or proportional overrated and underrated data
compared to the expected values. For this reason we can certainly assert that the Co-Flow
DC assay is affected by a random, but not systematic error.
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2.2.4. Linearity

Linearity of the method was demonstrated by testing scalar concentrations of DCs
cultured with 1 × 105 T cells and therefore different ratios of DCs and CD3+ T cells during
co-culture. Linearity is expressed as r-squared (r2) calculated by linear regression and
obtained by interpolation between the potency results and the corresponding concentration
of DCs per well (Figure 5). The obtained r2 is >0.978 indicating that the potency is directly
proportional to the DC amount in the culture.
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2.2.5. Robustness

The robustness of an analytical procedure represents the ability of the test not to un-
dergo alterations determined by small, but deliberate variations of the method parameters.
In this case, we evaluated the potency results after variations of OKT-3 concentration and
incubation time. In particular, we tested three different concentrations of OKT-3 antibody
(0.005 µg/mL ± 0.001) and three different co-culture times (68 h ± 1). In both cases the
coefficient of variation (CV) was lower than the established acceptance criterion of 10% (7.1
and 7.22, respectively).

2.2.6. Precision

The precision of an analytical procedure expresses the degree of reproducibility of
the test, and it can be distinguished as repeatability and intermediate precision (IP). The
precision assessment involved the use of a single batch of DC and a single batch of CD3+
cells. In order to verify the repeatability of the test, we observed the potency variation
between replicates within the same co-culture plate (intra-assay). Repeatability results
showed CV values lower than 10% (Table 2).

Table 2. Evaluation of repeatability and intermediate precision.

Run CV (%) ICC *

n Mean (range) Acceptance criterion

Intra-assay 3 6.46 (0.93–9.78) ≤10

Inter-assay 3 14.3 ≤20

Inter-day 3 6.16 ≤20

Inter-analyst 1
Inter-analyst 2 3

16.97 (9.04–23.54)
16.95

(5.01–31.29)
≤20 0.693

0.945

* Based on the 95% confident interval of the intraclass correlation coefficient (ICC) estimate, values less than 0.5,
between 0.5 and 0.75, between 0.75 and 0.9, and greater than 0.90 are indicative of poor, moderate, good, and
excellent reliability, respectively.

On the other hand, the evaluation of IP involved the execution of three test runs on
the same day by the same operator (inter-assay), three test runs each on a different day by
the same operator (inter-day), and the execution of the test by three different operators
(inter-analyst). For all the above-mentioned tests, the IP remained within the established
acceptance criterion (CV ≤ 20%) (Table 2).

3. Discussion

Potency assays are key tools for evaluating the critical quality attributes of medicinal
products. In this study, we described the development and validation of the Co-Flow DC
assay: a practical in vitro potency test for Mo-DC anticancer vaccines based on the COSTIM
bioassay already described by Shankar et al. Our assay is focused on the flow cytometric
analysis of proliferating T cells in co-culture with mDCs and a sub-optimal amount of
anti-CD3 antibody.

In respect to the COSTIM bioassay, the time scale of the assay described in this study
was optimized to the use of a different detection method. Despite this, several changes
have been introduced into the process, as the greater duration of the assay that allowed us
to introduce an appropriate positive control increasing the reliability of the test. Another
considerable implementation is the use of Annexin V assay for the evaluation of the cell
viability before the cell seeding. This test supplies more exact viability values that are
essential to guarantee the correct proportion between effectors and stimulators within
the assay. Therefore, the application of flow cytometry analysis permits us to know the
absolute number of proliferated cells and to perform simultaneous labeling of other cell
markers with the aim to obtain more information about the samples. Finally, we applied
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an important improvement in terms of safety using a flow cytometry method which let us
avoid the use of radioactive reagents that could be dangerous for the analysts.

On the other hand, the main limitation of the Co-Flow DC assay is the staining of T
lymphocytes. In particular, times and conditions of labeling with PKH67 adversely affect
the quality of proliferation data and the viability of T cells. Moreover, the seeding of the
correct number of cells must be performed very carefully; thus personnel should be trained
and retrained.

The validation of the above-described cell proliferation assay for the measurement of
Mo-DC potency according to international guidelines for pharmaceutical products showed
that it was suitable for this purpose with acceptable levels of specificity, selectivity, accuracy,
linearity, robustness, and precision.

This potency assay paves the way for the study of the correlation between potency
values and clinical results. In our opinion, the best potency assessment for DC cell therapies
comes from multi-strategy approaches that simultaneously evaluate T cell proliferation,
cytotoxicity, activation markers, and cytokine release.

Moreover, specific inhibitory/costimulatory molecules would be added to the Co-Flow
DC assay to evaluate their impact on T cell activity and proliferation.

In conclusion, the Co-Flow DC assay represents a new functional bioassay that will
help us to better understand the relationship between the biological activity of cell therapy
products and the clinical efficacy of the treatment improving our knowledge of DCs
anticancer vaccines.

4. Materials and Methods
4.1. Isolation of PBMCs and Cell Purification

Human PBMCs were isolated from healthy donor’s blood by density gradient cen-
trifugation using Lymphocyte Separation Media (Biowest, Nuaillé, France). Then, CD3+
T cells or CD14+ monocytes were obtained by magnetic separation, using the producer’s
recommended protocol. In particular, CD3+ T cells were isolated by negative depletion
of CD14+, CD15+, CD16+, CD19+, CD34+, CD36+, CD56+, CD123+, and CD235a+ cells,
using the Pan T Cell Isolation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany). While,
CD14 MicroBeads (Miltenyi Biotec) were used for the positive selection of monocytes. The
purity of isolated cells was checked by flow cytometry and only samples with purity > 90%
were used for subsequent experiments. Isolated CD3+ and CD14+ cells were cryopreserved
in 90% heat inactivated human serum AB (Biowest) and 10% dimethyl sulfoxide (DMSO;
Mylan, Dublin, Ireland) solution until use.

4.2. DCs Culture

Mo-DCs were prepared from healthy donor-derived PBMCs, as already described [23].
PBMCs were cultured with CellGro DC Medium (CellGenix GmbH, Freiburg, Germany)
at 10 × 106 cells/mL for 2 h after which all cells that had not adhered to the plastic
were removed from the culture. Adherent cells were cultured in CellGro DC Medium
added with 1000 IU/mL of recombinant human (rh) interleukin (IL)-4 and rh-granulocyte-
macrophage colony-stimulating factor (GM-CSF; CellGenix GmbH). On day 7 the culture
medium was discarded and the cells were incubated in CellGro DC Medium added with
IL-6 (2000 UI/mL), tumor necrosis factor-α (TNFα; 20 ng/mL), IL-1β (20 ng/mL) (all
from CellGenix GmbH), and prostaglandin E2 (PGE2; 1 µg/mL) (Cayman Chemical, Ann
Arbor, MI, USA). On day 9 mDCs were collected, washed, resuspended in sterile saline
solution, and counted under a light microscope to assess their vitality and purity. DCs
were cryopreserved in 90% autologous plasma and 10% DMSO solution until use.

4.3. Immunophenotypic Analysis

For the purity assessment of magnetically isolated cell populations, T cells were
stained with anti-human Viogreen CD3 recombinant antibody (REA) (1:50; Miltenyi Biotec
Cat# 130-113-704, RRID:AB_2726245), whereas monocytes were stained with anti-human
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Viogreen CD14 REA (1:50; Miltenyi Biotec Cat# 130-110-583, RRID:AB_2655056) for 10 min
at 4 ◦C in the dark. Expression of Mo-DCs surface markers was measured by flow cy-
tometry following induction to terminal differentiation using fluorescently conjugated
REA against CD86 (1:50; Miltenyi Biotec Cat# 130-116-265, RRID:AB_2727438), CD80 (1:50;
Miltenyi Biotec Cat# 130-123-314, RRID:AB_2802032), CD83 (1:50; Miltenyi Biotec Cat#
130-110-504, RRID:AB_2659323), and HLA-DR (1:50; Miltenyi Biotec Cat# 130-113-968,
RRID:AB_2726435). Appropriate conjugated REA Controls (S) (1:50; Miltenyi Biotec) were
included for each sample. Cells were washed twice in autoMACS running buffer before be-
ing analyzed by flow cytometry. The exclusion of dead cells from flow cytometric analysis
was performed with 7-amino-actinomycin D (7-AAD) staining solution (Miltenyi Biotec
Cat# 170-080-032) following the manufacturer’s instructions.

4.4. Co-Flow DC Assay

CD3+ cells and allogenic DCs were thawed, washed, and resuspended in warm
AIM-V medium 1X (Gibco, Thermo Fisher Scientific, Waltham, MA, USA). A total of
2 × 105 cells of each sample were incubated with 10 µL/mL Annexin V-FITC in binding
buffer (eBioscience Annexin V-FITC Apoptosis Kit, Invitrogen, Carlsbad, CA, USA) for
15 min at 37 ◦C in a humidified atmosphere in the dark. Cells were then washed and
suspended in binding buffer. Immediately before flow cytometric analysis, propidium
iodide (PI) was added to a final concentration of 5 µg/mL to distinguish between total
apoptotic cells (Annexin V+ and PI− or +) and necrotic cells (Annexin V- and PI+). T cells
were labeled with PKH67 Green Fluorescent Cell Linker Midi Kit (Sigma Aldrich, St. Louis,
MO, USA), as already described [24]. In a U-bottom 96-well plate, 1 × 104 live DCs and
1 × 105 live T cells were co-cultured in triplicate (background). Moreover, the same number
of cells were seeded with 0.005 µg/mL OKT-3 (Prodotti Gianni, Milan, Italy) (COSTIM).
In every plate a positive control consisting of T cells and phytohemagglutinin-L (PHA-L,
Life Technologies, Carlsband, CA, USA) and a negative control consisting of T cells and
OKT-3 (0.005 µg/mL) were included. The co-culture was performed for 68 h at 37◦ C in a
humidified atmosphere. At the end of incubation, cells were harvested and analyzed by
flow cytometry. As additional reagents for the assay validation, the monoclonal anti-human
CD54 (Miltenyi Biotec Cat# 130-104-031, RRID:AB_2658701) and REA Control (S) (Miltenyi
Biotec Cat# 130-104-616, RRID:AB_2661695) antibodies were added to COSTIM to prove
the specificity of the method.

4.5. Flow Cytometry

Flow cytometry acquisition was carried out on the MACSQuant Analyzer 10 (Miltenyi
Biotec) equipped with 405 (violet), 488 nm (blue), and 640 (red) lasers and 10,000 events
were recorded for each sample. The acquisition and analysis gates were set on lymphocytes,
monocytes, or DCs based on forward (FSC) and side scatter (SSC) properties of cells. FSC
and SSC were set on a linear scale. Flow cytometry data were analyzed with MACSQuantify
2.13 Software (Miltenyi Biotec). Proliferation analysis was performed using Cell Tracking
Wizard in Modfit LT 4.1 Software (Verity Software House, Topsham, ME, USA). All the
analyses were executed setting the parental generation on the negative control and using
the floating model. The percentage of proliferating cells was calculated subtracting the
percentage of cells of the parental generation from 100.

4.6. Data and Statistical Analysis

For each Co-Flow DC experiment the average proliferation value of triplicate wells
was estimated. The potency was calculated by subtracting the proliferation value of the
background to the proliferation value of the COSTIM condition. The test was considered
evaluable when the proliferation value of the background was between the positive control
value and the negative control value. The variability of the potency results obtained
throughout the method validation was evaluated by applying the percentage CV. For the
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comparison of data obtained from different analysts, we used the ICC based on absolute
agreement, two-way mixed-effect model.
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Abbreviations

DC Dendritic cell
APC Antigen presenting cell
mDC Mature DC
Mo-DC Monocyte-derived DC
PBMC Peripheral blood mononuclear cell
iDC Immature DC
PHA-L Phytohemagglutinin-L
SD Standard deviation
Ab Antibody
r2 R-squared
CV Coefficient of variation
IP Intermediate precision
ICC Intraclass correlation coefficient
DMSO Dimethyl sulfoxide
h Hour
rh Recombinant human
IL Interleukin
GM-CSF Granulocyte-macrophage colony-stimulating factor
TNF-α Tumor necrosis factor-α
PGE2 Prostaglandin E2
REA Recombinant antibody
Min Minute
7-AAD 7-amino-actinomycin D
PI Propidium iodide
FSC Forward scatter
SSC Side scatter
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