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Doubly Resonant Optical Periodic 
Structure
G. Alagappan & C. E. Png

Periodic structures are well known in various branches of physics for their ability to provide a stopband. 
In this article, using optical periodic structures we showed that, when a second periodicity – very closed 
to the original periodicity is introduced, large number of states appears in the stopband corresponding 
to the first periodicity. In the limit where the two periods matches, we have a continuum of states, 
and the original stopband completely disappears. This intriguing phenomena is uncovered by noticing 
that, regardless of the proximities of the two periodicities, there is an array of spatial points where the 
dielectric functions corresponding to the two periodicities interfere destructively. These spatial points 
mimic photonic atoms by satisfying the standards equations of quantum harmonic oscillators, and 
exhibit lossless, atom-like dispersions.

Doubly resonant systems have compelling physical properties resulting from the interference effects. A three 
level atomic system with a Λ  configuration has two resonant transitions, and by an appropriate coherent driving, 
we can generate steep positive (normal)1–4 and steep negative (anomalous)5–7 optical dispersions. Such steep dis-
persions can be exploited to create novel systems of slow light and subluminal light without any violation in the 
Einstein’s causality principle8–9. Steep positive dispersions are usually obtained in the three level systems using 
an electromagnetic induced transparency (EIT) setup1–3, and there have been many proposals to mimic such 
configuration using plasmonic10–11 and optical12–15 double resonances. These mock versions work based on the 
coherent interference effects in the light scattering, and allow tuning of the positive dispersions via modifications 
in the geometrical structures. They also have been shown to possess scattering dark states16 and superscattering 
states17,18. In this article, we demonstrate the intriguing optical properties of a new paradigm of doubly resonant 
systems that exploits structures with both short and long range spatial periodicities, and exhibiting two closely 
spaced Bragg resonances.

Typical periodic structures are single – period, structures (SPSs), and they exhibit stopbands [i.e., spectral 
regions for which wave propagations are forbidden]. The physical principle behind this stopband formation is the 
Bragg resonance of the SPS. Waves with frequency in the vicinity of Bragg resonance frequency, will experience a 
strong Bragg reflectivity, and therefore is unable to penetrate the bulk of the SPS.

In optics a SPS can be created by mean of a periodic variation of the dielectric constant with a fixed spatial 
period, a. We can again modulate the dielectric profile of this SPS, slowly and periodically, with a longer spatial 
period, as

19–21. This new periodic structure which exhibits rapid, short range periodicity (a) and slow, long range 
periodicity (as) is defined as a dual periodic structure (DPS). Intuitively, one can expect in the limit of a very large 
as, the slow modulation vanishes, and consequently a DPS reduces to a SPS. However, a DPS in this limit does not 
fit into this simple intuition.

In the Fourier spectra, the dielectric function of a weakly modulated SPS, will exhibit one frequency peak at the 
fundamental spatial frequency G =  2π /a. However, for the DPS, due to the slow dielectric modulation, we will see 
a group of closely spaced peaks around the fundamental frequency. Assuming a DPS with only two of such closely 
spaced peaks (i.e., a structure with double Bragg resonances), the dielectric function can be casted as,

ε ε ε ε( ) = + ( ) +






 ( )

x Gx G
r

xcos cos
10 1 1

where r is a number close to 1. In Eqn. 1, ε ε1 0, and for a simplicity, we assumed the strengths of the two closely 
spaced harmonics to be equal (i.e., the amplitudes of two cosine functions in Eqn. 1 are equal). The conservation 
of translational symmetry in DPS requires ε ε( ) = ( + )x x as , and using Eqn. 1 it can be shown that this demands 
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/a as  to be the least integer multiple of r. The least integer multiple exist, only if r is rational. Assuming a rational r, 
and taking its’ least integer multiple as R, we have =a Ras .

In a DPS, the mixing of the two harmonics, G and G/r creates the spatial “beats” in the dielectric function at a 
longer spatial scale. The length of the beat ( =a Ras ) is longer when the spacing between the two harmonics is 
closer. The closest allowed proximity between the two harmonics, G and G/r is one reciprocal lattice vector of the 
DPS, g =   π/a2 s. Any spacing lesser than g, is symmetrically forbidden, and hence will break the translational 
symmetry of the DPS. Assuming >r 1, and the spacing, G − G/r =  g, it is easy to show that the rational form of r 
is r =  R/(R −  1) [or equivalently R =  r/(r − 1)].

For a SPS, r =  1, and from Eqn. 1 we have ε ε ε( ) = + ( )x Gx2 cos0 1 . For the DPS, a direct substitution of =r 1 
for the limit r  →   1 in Eqn. 1 leads to a plausible inference that the DPS should be identical to the SPS in the limit 
r  →   1, and therefore recovers the original stopband of the SPS. However, the constraint r =  R/(R − 1) for the DPS 
prevents the direct substitution of =r 1 for the limit r  →   1 in Eqn. 1. The flawless method of analysing the limit 
r  →   1 in DPS is by letting R to take a huge integer value. As an illustration, Fig. 1(a) shows a sketch of ε( )x  with 
the unit cell from − /a 2s  to /a 2s  is highlighted in blue. Figure 1(b) depicts the evolution of the unit cell as R is 
increased to a huge integer value. As we can see from Fig. 1(a,b), regardless of the proximity of r to 1, the dielectric 
function of the DPS is topologically different from the dielectric function of the SPS – which is an unmodulated 
cosine function. As a signature difference, in DPS, the destructive interference between the two cosine waves in 
Eqn. 1 creates an array of spatial points (i.e., the green dots in Fig. 1) that are shielded from the effect of the rapid 
dielectric modulation with the period a. As we shall illustrate, this array of spatial points mimics an array of pho-
tonic atoms by satisfying the standard equations of quantum harmonic oscillators22. These photonic atoms create 
edge states (at the edge of the DPS unit cell) that closes the stopband due to the rapid dielectric modulation, 
despite the limit r  →   1. The dispersions in the vicinity of these photonic atoms, are strongly anomalous (i.e., a 
steep negative dispersion), and very much similar to the dispersions in mediums with inverted populations23–24 
and gain doublets5–7.

DPS as a Metamaterial Cavity
For the purpose of the numerical illustration, throughout this article, we use ε = .2 560 , and ε = .0 161 . An optical 
structure with such dielectric constants, and the dielectric profile as in Eqn. 1 with a large R, can be realized in 
many different ways. Some of the techniques include, fabrication of porous silicon via electrochemical anodization 
with varying current density25, deposition of a dual periodic multilayer using a logical combination technique19, 
holographic interferometry, that make uses laser beam interferences on photosensitive materials26, and the depo-
sition of silicon oxynitride with varying stoichiometry of oxygen and nitrogen27–28.

Using a plane wave expansion method29, we can solve the dispersion relation, ω λ= /a  versus k, where ω, λ 
and k are the normalized frequency, freespace wavelength and wavevector, respectively. Firstly, consider the lim-
iting case, when r →  1. As r =  R/(R − 1), the dispersion curve of the DPS in this limit can be obtained asymptoti-
cally by increasing R to a huge integer value, using an extended zone scheme30. For a very large R, the dispersion 
of the DPS converges to a continuous curve, Ω( )k , shown in Fig. 2(a) [blue curve]. In the same diagram, we have 
also plotted the dispersion curves of the SPS, and a homogenous medium with dielectric constant ε0. When r →  1, 
from the direct substitution of r =  1 in Eqn. 1, one can expect the dispersion of the DPS to be identical to the dis-
persion of the SPS. However, this is only true for wavevectors far from G/2. For wavevectors far from G/2, both SPS 
and DPS behave as linear homogenous materials of dielectric constants ε0. Near k =  G/2, the dispersion relation of 
the DPS is remarkably different from the dispersion relation of the SPS despite r →  1 [Fig. 2(a)]. In the SPS, the 

Figure 1.  (a) Sketch of Eqn. 1 with r =  R/(R − 1). At the location of green dots we have ε ε( ) =x 0. (b) Evolution 
of the DPS unit cell as a function of increasing R.
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dispersion is discontinuous at k =  G/2, and consequently we have a stopband between the frequencies ω ( − )ε
ε

1c 2
1

0
 

and ω ( + )ε
ε

1c 2
1

0
, where ω =

εc
1

2 0
 is the stopband centre29. In the DPS this stopband completely closes, and the 

dispersion relation takes a continuous, sigmoid shape curve around ωc. Thus, in the vicinity of ωc, the DPS with 
r →  1, can be characterized with a dispersive refractive index, ω( )np . This refractive index can be defined via the 
phase index definition as ω( ) =

Ω( )
np G

k
k

1 , and the corresponding plot as a function of frequency is shown in 

Fig. 2(b). From this figure, we can see that ω( )np  exhibits a large normal dispersion (i.e., a positive ω
dn

d
p
) near the 

stopband edges of the SPS. However, near ω ω= c the dispersion is strongly anomalous (i.e., negative 
ω

dn

d
p ). In order 

to better quantify the dispersion of the DPS with r →  1, let’s define a group index via ω( ) =
ω

ng G
dk
d

1 .  
Note that ng  is inversely proportional to the slope of the dispersion curve Ω( )k[ ], and its relationship with np can 

be casted as ω= +
ω

n ng p
dn

d
p
. Figure 2(c) shows the plot of ng  as a function of frequency, and as we can see from 

this figure ε= ≈n ng p 0  for frequencies far away from the two SPS stopband edges. For frequencies near the 
stopband edges of the SPS, np exhibits a large normal dispersion [Fig. 2(b)], and consequently we have a sublumi-
nal group index with 

n ng p [Fig. 2(c)]. On the other hand, near ω ω= c the np exhibits a large anomalous dis-
persion, and consequently this gives a superluminal group index ≈n 0g  [Fig. 2(c)]. The anomalous dispersion, 
and the resulting superluminal group index of the DPS in the limit r →  1, is very much similar to anomalous dis-
persions in the nonlinear mediums with population inversions23–24, and gain doublets5–7. Besides these active 
nonlinear structures, anomalous dispersion has been also shown as a result of scattering in passive structures that 
facilitates tunnelling of light8–9,31–34. However, such system is very lossy since the anomalous dispersion is for the 
evanescent solution of the system. On the other hand, in the case of DPS (with the limit r →  1), the anomalous 
dispersion is for the real solutions (i.e., propagating waves) of the system.

The refractive indices ( np and ng ) obtained for the limit r →  1 is indeed useful to describe and infer the behav-
iour of the DPSs with finite values of R. For a finite R, the DPS behaves like a multimode optical cavity made of an 
artificial material with the dispersive refractive index ω( )np . For an illustration, in Fig. 3(a), we show the disper-
sion curve for R =  500. As we can see from this figure, the dispersion curve for R =  500, which is in similar shape 
as Ω( )k  [Fig. 2(a)], is discontinuous at each half of the Brillouin zone (BZ), forming discrete bands in the vicinity 
of ωc. Imporatanltly, these discrete bands are flat, signifying the dispersions of slow or localized optical modes35. 
The dispersion curve for R =  500 in the reduced zone scheme is shown in Fig. 3(b). Note that, the dispersion curve 
in the reduced zone scheme is better known in the name of photonic band structure29,36. In Fig. 3(c–f), we show 
the photonic band structures for R = 750, 1000, 2000, and 5000. The frequency positions of the flat bands, to a very 
good approximation is given by

ω = Ω


 =

+ 

,

( )
k G mg

2 2m

where m is a integer that indexes the flat band in the photonic band structure. The indexing scheme is shown in 
Fig. 3(b). The frequency spacing between the flat bands, ω∆ , can be expressed using the group index of the DPS in 
the limit r →  1 [ ω( )ng ] as

Figure 2.  (a) Dispersion curves. Black – Homogenous medium with the dielectric constant ε0, Red – SPS, Blue 
– DPS in the limit →r 1. (b) Refractive index, ω( )np  for the DPS in the limit →r 1. (c) Group index ω( )ng  for 
the DPS in the limit →r 1. In (b,c), the dashed vertical lines represent the SPS stopband edges (ω1 and ω2), and 
the stopband centre (ωc). The dashed horizontal lines in (b,c) correspond to the refractive index, ε0 .



www.nature.com/scientificreports/

4Scientific Reports | 6:20590 | DOI: 10.1038/srep20590

ω
ω

∆ =
( )

.
( )n R

1
2 3g

This frequency spacing for the DPS with the finite R is the same as the frequency spacing in a Fabry Perot cavity 
made with a dispersive dielectric material of refractive index ω( )np , with a length Ra. From Fig. 3(b–f), we can see 
that the density of the flat bands increases as a function of R. This is because the discretization step (i.e., the length 
of half BZ π= / = /g Ra2 ) decreases as R increases. Further, these figures also indicate that the density of flat 
bands are not uniform across the frequencies of the stopband. For each R in Fig. 2(b–f), the density of the flat 
bands is maximum near SPS band edge frequencies, and the density is minimum near the SPS stopband centre. 
These density variations are due the dispersive nature of ω( )np , and can be easily understood from the frequency 
spacing [Eqn. 3] which is inversely proportional to ω( )ng . The values of ω( )ng  are maximum and minimum for 
SPS stopband edges and stopband centre, respectively [see the ng  plot in Fig. 2(c)]. Therefore, the densities of flat 
bands are maximum and minimum for frequencies near SPS stopband edges and stopband centre, respectively.

DPS as a Photonic Harmonic Oscillator
In order to perceive the intriguing dispersion of the DPS, let us examine the dielectric function in the vicinity of 
green dots in Fig. 1. For the sake of discussion let us pick x =  as/2. Using the approximation θ θ≈sin  for a small 
angle θ, it can be easily shown that near x =  as/2, and for a large R Eqn. 1 becomes ε ε ε( ) = − 

 − 
x x Gxsina

0 1 2
s . 

As can be seen from this equation, in the proximity of x =  as/2, the strength of the rapid dielectric modulation–the 
modulation with the period a (i.e., the amplitude of sin Gx) is ε 

 − 
x a

1 2
s , and it is a linear function of x.

When x is exactly 
a
2

s , the strength of the rapid dielectric modulation is zero, and we have ε( )x  =  ε0. This means, 
at this position the DPS is completely shielded from the effect of the SPS (i.e., the rapid dielectric modulation). So, 
any light with a frequency in the vicinity of the SPS stopband centre (i.e., ω ω= c) tends to concentrate at =x a

2
s . 

A slight deviation from =x a
2

s , causes the light to face the rapid dielectric modulation of the SPS in a linearly 
increasing strength, ε ε ε( ) = − 

 − 
x x Gxsina

0 1 2
s , and as a consequence the light will be reflected back towards 

=x a
2

s . As the stopband resulting from the rapid dielectric modulation, is proportional to the strength of the 
modulation ε 

 − 
x a

1 2
s , the reflection will be stronger as the deviation from =x a

2
s  increases. As we shall prove in 

the following, this scenario is analogous a lossless harmonic oscillator with linearly increasing restoring force30.
In order to analyse the localized modes at =x a

2
s , let us first move the origin of the x–axis from 0 to a

2
s . In the 

new coordinate system, Eqn. 1 becomes ( )ε ε ε π( ) = − +x R2 sin sin 1 cosgx Gx
r0 1 2 2
1

. Near =x 0, assuming 
an even R, we have ε ε ε( ) = −x gx G xsin r0 1 , where ( )= +G 1r

G
r2
1 . In Fig. 4(a), we illustrate ε( )x , and its 

slowly varying amplitude functions in the new coordinate system. As we can readily see from this figure, ε gx1  
provides a very good approximation to the slowly varying amplitude over half of the unit cell [i.e., from − as/4 to 

Figure 3.  (a) Blue – dispersion curve of the DPS with R =  500 in the extended zone scheme. Green – dispersion 
curve of a homogenous medium. (b–f) Dispersion curves in the reduced zone scheme (i.e., photonic band 
structure) for R =  500, 750, 1000, 2000, and 5000. The horizontal axes in (b–f) represent wavevectors in the half 
of the BZ. The photonic band structure is obtained by folding the dispersion curve in the extended zone scheme 
into the half of the BZ. The dashed orange lines indicate the band edges of the SPS. The label m in (b) represents 
the frequency subscript as in ωm.
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as/4]. With ε ε ε( ) = −x gx G xsin r0 1 , the time–independent Maxwell’s equation for the light in the DPS can be 
written as,

ω ε ε
( )

+ − ( ) = , ( )
d E x

dx
G gx G x E x[ sin ] 0 4r

2

2
2 2

0 1

where ( )E x  is the electric field. In order to solve Eqn. 4, assume the DPS to be a SPS with a linearly perturbed 
dielectric function in the slow spatial scale. Consequently, ( )E x  can be expressed as a linear combination of the 
SPS’s modes,

( ) = ( ) + ( ) , ( )E x p x G x q x G xcos
2

sin
2 5

r r

where xcos G
2

r  and xsin G
2

r  are the modes of the SPS which are rapidly varying functions. The coefficients ( )p x  
and ( )q x  are slowly varying functions. Substituting Eqn. 5 into Eqn. 4, and applying a slowly varying envelope 
approximation37, we can average out the rapidly varying terms. The resulting slow scale equations are coupled 
equations,

α β= − + , ( )
dp
dx

px q 6

α β= − , ( )
dq
dx

qx p 7

where α = ω ε
−

G
R2 1

2 2
1 , and β ω ω= −ε [ ]G

G r
2

0
2

r

2
0  are frequency dependant constants. Here,

ω
ω

=


 +



,

( )r2
1 1

8or
c

Figure 4.  (a) Blue – the dielectric function of the DPS, ( )ε ε ε( ) = − +x 2 sin sin 1gx Gx
r0 1 2 2
1 . Orange – the 

slowly varying amplitude of ε( )x , ε ε− 2 sin gx
0 1 2

. Red – the slowly varying amplitude of ε( )x  near x =  0, 
ε ε− gx0 1 . (b,c) Normalized electric field amplitudes for the localized modes (n =  0 to 5) of the DPS. Circles – 
analytical calculations via Eqn. 14. Solid line – exact numerical calculations. (d) The dispersion curves in the 
limit r →  1. Blue – analytical calculation via Eqn. 15. Green – exact numerical calculation (same as the blue 
curve in Fig. 2).
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with ω =
εc

1
2 0

 is the center of SPS bandgap. Changing the variable, x , to a dimensionless position  
variable, α=z x , and eliminaing q and p in Eqns 6 and 7, respectively, we have two independent second order 
differential equations,

β
α

+




 + −





 = ,

( )

d p
dz

z p1 0
9

2

2

2
2

β
α

+













−





+ −








= .
( )

d q
dz

z q2 1 0
10

2

2

2
2

Eqns 9,10 mimic the standard Schrodinger equation for a quantum harmonic oscillator, 
ψ+ + − =ψ n z[2 1 ] 0d

dz n
2n

2

2  with n being a non–negative integer. The solution for the Schrodinger equation is 
ψ π( ) = ( ! ) ( )− / − /z n e H z2n

n z
n

1 2 22

, where ( )H zn  is the Hermite polynomial of order n38. Therefore, to solve Eqns 
9,10, we let =β

α
n2

2
, and subsitituting the frequency expressions for α and β, gives us,

ω ω
ε
ε

ω± − = .
( )

n
R

0
11

r
2 1

0
2 0

2

Assuming ω ε

ε
r

n

R0
2 1

0
2

, the positive solutions to Eqn. 11 are ω ω= ± ε

ε±n r
n

R0
1
2

1

0
2

 . In order, to be consistent with 

the frequency indexing scheme used in Fig. 3(b), this solution also can re-written for any integer m as,

ω ω
ε
ε

= + ( ) ,
( )

m
m
R

1
2

sign
12

m r0
1

0
2

where ( )msign  >  0 and ( ) <msign 0 for positive and negative values of m, respectively.
As we have let, =β

α
n2

2
 in Eqn. 9, we have − = ( − )β

α
n2 2 1

2
 for Eqn. 10. Thus, for a non–negative −n 1,  

we need ≥n 1, and consequently for n =  0 we have ψ= ( )p z0  and =q 0. For ≥n 1, the solutions for p and q in 
Eqns 9,10 can be written as ψ ( )A zn , and ψ ( )−B zn 1 , respectively. Here, A and B are constants, and using Eqns 6 and 
11, it can be shown that they satisfy =A B for ω ω= n, and = −A B for ω ω= −n. With the solutions for ( )p x  
and ( )q x , and the normalization condition ∫ ε( ) ( ) =

− /

/ x E x dx 1
a a

a
n

1
2

2 2
s s

s , the electric fields [Eqn. 5] for the modes 
with frequencies ω±n can be succinctly written as

ε
α
π

α α( ) =




 !





 ( ) ± ( ) ,

( )ρ

α
± −

−
−{ }E x a

n
e H x G x nH x G x

2
cos

2
2 sin

2 13n
s

n
x

n
r

n
r

0

1
2

2 1

2

where ρ = 1 and 0, for =n 0 and ≥n 1, respectively. As α is real and positive, the modes described by Eqn. 13 
exhibit Gaussian evanescent tails, −αe

x2
2 , which decay smoothly.

Eqn. 13 also can be written as θ( ) = ( ) 


± ( )
±E x S x x xcosn n

G
2

r , where ( )S xn  and θ( )x  are the slowly varying 
amplitude and phase, respectively. From Eqn. 13, we can show that,

ε
α
π

α α( ) =




 !





 ( ) + ( ) .

( )ρ

α

−
−

−S x a
n

e H x nH x
2

2
14n

s
n

x
n n

0

1
2

2 2
1

2
2

For n =  0, α( ) =H x 10 , and we have Gaussian function for ( )S x0 . In Fig. 4(b) we plot ( )S xn  using Eqn. 14 for 
n =  0 to 5, and R =  750. In the same figure, we have also plotted the similar quantity obtained from the exact 
numerical calculation (based on the plane wave expansion method29. Figure 4(c) shows a similar plot to Fig. 4(b), 
however for R =  2000. As we can see from these figures, both analytical and exact calculations are in very good 
agreement. The degree of agreement reduces when the slowly varying electric field amplitude moves far from the 
centre of the DPS’s unit cell.

In order to determine the continuous dispersion relation in the limit r →  1, let us write the wavevector in the 
extended zone scheme as = ±k nG g

2 2
. Using this k, and the frequency expression, ω ω= ± ε

εr
n

R0
1
2

1

0
2

, it can be 

shown that, in the vicinity of ωc and r →  1, the dispersion curve of the DPS is defined by

ε
ε
ω ω
ω

=








±





− 











.

( )
k G

2
1

15
c

c

0

1

2

In Fig. 4(d), we compare the dispersion curve obtained from Eqn. 15, with respect to the exact numerical cal-
culation (i.e., the blue curve in Fig. 2). As we can see from this figure, we have a good agreement between these two 
curves for frequencies in the stopband of the SPS, and in the vicinity of ωc, the agreement is perfect. The discrep-
ancies in the wavevector values of the analytically obtained curve with respect to the numerically evaluated curve 
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are less than 0.01% and 1% for frequencies near ω0 and near the stopband edge, respectively. From Eqn. 15, the 

closed form expression of the refractive index is ( )ω( ) =




 ±





ω

ε
ε

ω ω
ω
−n 1p

1
2

2
c

c

0

1
. The group index can be obtained 

by differentiating Eqn. 15 with respect to ω as ( )= ± ε
ε

ω ω

ω

−ng
c

c

0

1
2

. As we can see from this expression, for ω ω→ c, 

we have →n 0g . This zero group index signifies that the light propagation in the vicinity of the equilibrium posi-
tion [x =  0 (new coordinate system) in Fig. 4(a); green dot in Fig. 1(a)] is essentially a tunnelling process, and 
therefore superluminal in nature8–9,31–34.

Application and Optical Performances of DPS
DPSs can be used for designing high quality broadband, and multichannel slow light devices. The harmonic 
modes of the DPS exhibit Gaussian evanescent tails, which decay smoothly. Therefore it naturally generates reso-
nant peaks of high quality factors39, despite of a geometrical structure with a low refractive index contrast. This is 
favourable for many applications such as high temperature realization of Bose-Einstein condensation of exciton 
polaritons40, and realization low threshold nonlinear optical devices, using the abundant low refractive index 
optical materials.

In the metamaterial cavity section, we showed that for a finite R, the DPS exhibits many flat bands (for example 
see Fig. 3). In the transmission spectrum, these flat bands will appear as sharp resonant peaks. Figure 5(a) shows 
the schematic of a single unit cell DPS (N =  1). This single unit cell DPS acts as a metamaterial cavity. The dielec-
tric constant of the ambience is taken as ε ε+ 20 1 to match with the dielectric constant at the edge of the unit cell 
[Fig. 5(a)]. The device with the schematic as shown in Fig. 5(a) can be easily fabricated using the holographic 
interferometric techniques26. Figure 5(b) shows the simulated transmission spectrums [see the Methods section 
for the details of the numerical simulation] of the single unit cell DPS for R =  100, 200, 300, and 400. The fre-
quency window in this figures spans the entire bandgap window of the SPS [i.e., ω1 to ω2; see Fig. 2(a)]. As we can 
from this figure, the transmission spectrums of the DPS exhibit many sharp resonant peaks, and the number of 
peaks increases as R increases. The density of the transmission peaks are high and low near the bandgap edge and 
bandgap centre of the SPS, respectively. These observations are consistent with the band structure calculations [see 
section on the metamaterial cavity]. The density of the transmission peaks also agrees with the equation describ-
ing the frequency spacing of the flat bands [Eqn. 3].

Each sharp transmission peak in Fig. 5(b), can be labelled with an integer m using the frequency indexing 
scheme used in Fig. 3(b). We showed the frequency labelling for the transmission peaks of R =  400 in Fig. 5(b). 
This labelling will assist us to compare the locations of simulated transmission peaks with the theory developed in 
this paper. Figure 5(c) compares the positions of the transmission peaks with the resonant frequencies obtained 
from Eqn. 2 [i.e., from the continuous dispersion curve: blue curve in Fig. 2(a)] and Eqn. 12 [i.e., from the the-
ory of photonic harmonic oscillators]. As the figure suggests, both of these frequency expressions serve as good 
approximations to the frequencies of the transmission peaks.

Figure 5.  (a) Schematic of the single unit cell DPS. (b) Transmission spectrums for R =  100, 200, 300 and 400. 
(c) (blue-open circles) Frequencies of transmission peaks for R =  400 from “(b)”, and frequencies from Eqn. 2 
(green-closed circles), and Eqn. 12 (red-open circles). (d) Frequencies of m =  0 transmission peaks obtained 
from full numerical simulations (blue circles), and frequencies from the harmonic oscillator theory for m =  0 
(solid purple line). (e) logarithmic value of the quality factors for m =  0 peaks as a function of R.
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The most profound transmission peak of the DPS is the peak with m =  0. This peak has the highest quality 
factor, and the peak is visible even for small values of R. In Fig. 5(d), we plotted the frequency of the m =  0 reso-
nant transmission peak (obtained with the full numerical simulation; see the Methods section) as a function of R. 
As R increases the frequency of the m =  0 peak move towards to the centre of the SPS bandgap, ωc. The position of 
the m =  0 transmission peak is in perfect agreement with the prediction of the harmonic oscillator theory which 
gives ( )ω ω= = +ω 1r r0 0 2

1c  [Eqns 8 and 12].The plot ω r0  is shown in purple color in Fig. 5(d) for the continuous 
scale of R. As → ∞R , we have →r 1, and therefore ω ω ω= →r c0 0 . In order to assess the quality of transmission 
peaks with m =  0, in Fig. 5(e), we plot the logarithmic values of the their quality factors as a function of R, for ε1 
values of .0 16 and .0 08. As we can see from this figure, the quality factor increases exponentially as R increases, 
and the quality factor is comparatively high when the dielectric modulation is of the DPS is high.

For N >  1 the finite DPS is indeed a coupled system of harmonic oscillators [Fig. 1]. An essential nature of any 
coupled oscillators is the splitting of the resonant peaks41–42. The DPS with N >  1, and ε1 =  0.16 [the schematic is 
shown in Fig. 1] is numerically simulated using an ambience dielectric constant of ε0 [see the Methods section for 
the details]. Figure 6(a) shows the resulting transmission spectrum near the frequency ω r0  for N =  2, 3, 4 and 5. 
When N =  2, there is one transmission peak with frequency of ω r0 . This peaks corresponds to the localized mode 
of m =  0, in the vicinity of one green dot in Fig. 1. When N =  3, there are two of such modes couples together, and 
as a result the original peak at N =  2 splits in two peaks [see Fig. 6(a)]. In general, for the DPS with N unit cells, the 
coupling of modes in adjacent oscillators results in N-1 closely spaced peaks. The splitting of the peaks is system-
atically depicted in Fig. 6(b). The frequency span of these closely spaced peaks equal to the bandwidth of the m =  0 
flat band of the infinite system ( → ∞N ), and the span can be obtained from the DPS band structure calculations. 
For R =  50, and ε1 =  0.16 the frequency span obtained from the band structure calculation is from ω =  0.309 to 
0.3098. If we choose to work around the telecommunication wavelength, then, for a =  480 nm, this normalized 
frequencies translates to wavelengths from 1549 to 1553 nms. This frequency span is adjustable. If we would like 
to have a narrow frequency span, then R has to be increased to generate a flatter band.

The closely spaced peaks for any given N in Fig. 6(a) display non-uniform quality factors. The outermost peak 
[see Fig. 6(a,b)] exhibits the largest quality factor. In Fig. 6(c), we show the quality factor of the outermost peak 

Figure 6.  (a) Transmission peaks of a DPS (R =  50) with N unit cells that corresponds to m =  0 flat band  
(b) Frequencies of m =  0 flat band as a function of N. The m =  0 flat band has a frequency span of ω =  0.309 to 
0.3098. (c) The quality factors of the transmission peaks along the path A (see the insert).
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[i.e., along the line A - insert of Fig. 6(c)] as a function of N. As N increases, the quality factors increases quadrati-
cally. Note this increase of quality factor with respect N is slower than the increase of quality factor with respect R, 
which is at the exponential scale [Fig. 5(e)].

Constructing a high dielectric contrast DPS
As we have mentioned in the metamaterial cavity section, the DPS with the dielectric function as in Eqn. 1 can be 
implemented in many different ways25–28. Most of these methods generates continuous dielectric profile, and 
therefore they have two important limitations: 1) generating structures with large dielectric modulations (i.e., 
large ε1); 2) generating structures that are amenable for mass production via lithographical techniques. Therefore, 
in this section, we would like to introduce the method of creating dielectric profiles as in Eqn. 1, however, with a 
large dielectric contrast. The method can be implemented either using a multilayer deposition or standard litho-
graphical techniques.

Recall that Eqn. 1 is actually a cosine series. Therefore, in general, we will have a DPS as long as the Fourier 
series of any periodic dielectric function, at least in an approximation, takes the form of Eqn. 1. Thus, what is really 
needed to form a DPS, is a dielectric function with two closely spaced frequency peaks (at frequencies G and G/r) 
in its’ spatial Fourier spectra.

Consider a dielectric profile, ε ( )xA  as in Fig. 7(a) which has a period a. This is a binary profile with alternating 
dielectric constants of εa and εb. The fundamental harmonic of ε ( )xA  occurs at the frequency G =  2π /a. In 
Fig. 7(b), we have a similar dielectric function ε ( )xB , but with a period ra. The fundamental harmonic εB(x) is 
therefore, at the frequency 2π /ra =  G/r. Now if we linearly combine ε ( )xA  and ε ( )xB  as ε ε ε( ) = . ( ) + ( )x x x0 5{ }A B  
[see Fig. 7(c)] then by the linearity of the Fourier transform, the new function ε( )x  will have two Fourier peaks at 
frequencies G and G/r. Therefore to a good approximation this results in dielectric profile similar to Eqn. 1. Note 
that in Fig. 7(a,b), the dielectric functions are binary valued, however the dielectric function in Fig. 7(c) is not a 
binary profile. In order to implement this dielectric profile, we need three materials with dielectric constants εa, εb, 
and ε ε. ( + )0 5 a b .

Although the linear combination looks simple in its’ operation, the real implementation requires a third mate-
rial with the dielectric constant ε ε. ( + )0 5 a b . This condition can be relaxed, if we use a logical combination, 
instead of the linear combination. The output of a logical combination is always binary, and therefore if we com-
bined ε ( )xA  and ε ( )xB , using a logical operation at every x, then we will obtain a dielectric profile with the binaries 
εa and εb. Further, if we propely choose the duty cycle of ε ( )xA  and ε ( )xB , this will also give two strong harmonics 
at frequencies G and G/r. For an example in Fig. 7(a,b), assume the length of the εa portion within each period is 
0.2a. If we treat εa and εb to be equivalent to the binaries 1 and 0, and logically combine, ε ( )xA  and ε ( )xB , using a 
logical OR combination, then the result is the dielectric profile as shown in Fig. 7(d). The Fourier transform of this 

Figure 7.  (a) Binary valued periodic dielectric function [ε ( )xA ] with period, a. (b) Binary valued periodic 
dielectric function [ε ( )xB ] with period, ra. (c) Linear combination of ε ( )xA  and ε ( )xB , ε ε. ( ) + ( )x x0 5{ }A B .  
(d) Logical “OR” combination of ε ( )xA  and ε ( )xB  [εa and εb are treated as binaries 1 and 0, respectively] (e) Fourier 
transform of the periodic dielectric function (period =  as) in “(d)”. Here, we assumed ε = .3 4a  (silicon), ε = .1 45b  
(silicon dioxide), and the length of the εa portion within each period of ε ( )xA  and ε ( )xB  as 0.2a.
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dielectric profile is shown in Fig. 7(e) for ε = .3 4a  (silicon) and ε = .1 45b  (silicon dioxide). As we can clearly see, 
the Fourier transform exhibits two profound peaks at the frequencies G and G/r.

Therefore, using the method of linear and logical combinations, we can generate non-continuous, high dielec-
tric contrast DPS structures. The dielectric profiles in Fig. 7(c,d) can be easily fabricated either via multilayer 
deposition, or lithographical techniques. One important point to note when handing high dielectric contrast 
logically or linearly combined structures is that the their Fourier transforms will also consists the higher order 
harmonics. Nevertheless, the continuous dispersion curve for the limit →r 1 is still obtainnable via exact numer-
ical calculations, and the photonic harmonic oscilator theory will serve as a qualitative model that gives a good 
physical perspective.

Conclusion
In conclusion, we have presented the unique dispersion properties of a DPS with two closely spaced harmonics. 
Our discussion confirms that the anomalous dispersion of the DPS in the vicinity of ω0, is due to the linear pertur-
bation in the dielectric function of the SPS. As we have shown, this linear perturbation is analogous to a presence 
of a harmonic oscillator, which pulls the light back towards the equilibrium position [i.e., x =  0 in Fig. 4(a), new 
coordinate system].

One of the key signatures of the DPS is the large density of flat bands with modes of Gaussian tails. This can 
be used designing high quality broadband, and multichannel slow light devices. The anomalous dispersion of the 
DPS also can be engineered to generate new class of passive superluminal, and dispersion controlling devices. 
Although we have presented the DPS in one dimension for an optical wave, the idea can be easily extended, to 
generate harmonic oscillators, and therefore lossless effective dispersive metamaterials, in higher dimensions, and 
other physical wave systems.

Methods
The continuous dispersion curve for the limit → ∞R , and the photonic band structures for finite values of R are 
obtained using the plane wave expansion method29. The continuous dispersion curve is obtained by increasing R 
to a huge value, until the results are converged. Specifically, in this paper we used R =  10000 to obtain the disper-
sion curve [Figs 2(a) and 4(d)]. The transmission spectrums for the DPS are obtained using transfer matrix 
method (TMM)43. In TMM simulations, we slice the continuous dielectric profile [Eqn. 1], into large number of 
spatial steps with uniform dielectric constants. We verified the TMM results independently, using the finite– 
difference time domain (FDTD)44 simulation. For FDTD simulation we used the freely available software, MEEP45.
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