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1. Introduction
We consider a generic stochastic optimization problem

inf
a∈A

∫
S

f (x, a) μ(dx), (1.1)

where A is the set of actions or choices, f is the loss function and μ is a probability measure
over the state space S. Such problems are found across the whole of applied mathematics. The
measure μ is the crucial input and it could represent, for example, a dynamic model of the
system, as is often the case in mathematical finance or mathematical biology, or the empirical
measure of observed data points, or the training set, as is the case in statistics and machine
learning applications. In virtually all the cases, there is a certain degree of uncertainty around
the choice of μ coming from modelling choices and simplifications, incomplete information, data
errors, finite sample error, etc. It is thus very important to understand the influence of changes
in μ on (1.1), both on its value and on its optimizer. Often, the choice of μ is done in two stages:
first a parametric family of models is adopted and then the values of the parameters are fixed.
Sensitivity analysis of (1.1) with changing parameters is a classical topic explored in parametric
programming and statistical inference, e.g. [1–3]. It also underscores a lot of progress in the field
of uncertainty quantification, see [4]. Considering μ as an abstract parameter, the mathematical
programming literature looked into qualitative and quantitative stability of (1.1). We refer to [5,6]
and the references therein. When μ represents data samples, there has been a considerable interest
in the optimization community in designing algorithms which are robust and, in particular, do
not require excessive hypertuning, see [7] and the references therein.

A more systematic approach to model uncertainty in (1.1) is offered by the distributionally
robust optimization problem

V(δ) := inf
a∈A

V(δ, a) := inf
a∈A

sup
ν∈Bδ (μ)

∫
S

f (x, a) ν(dx), (1.2)

where Bδ(μ) is a ball of radius δ around μ in the space of probability measures, as specified below.
Such problems greatly generalize more classical robust optimization and have been studied
extensively in operations research and machine learning in particular; we refer the reader to [8]
and the references therein. Our goal in this paper is to understand the behaviour of these problems
for small δ. Our main results compute first-order behaviour of V(δ) and its optimizer for small δ.
This offers a measure of sensitivity to errors in model choice and/or specification as well as points
in the abstract direction, in the space of models, in which the change is most pronounced. We use
examples to show that our results can be applied across a wide spectrum of science.

This paper is organized as follows. We first present the main results and then, in §3, explore
their applications. Further discussion of our results and the related literature is found in §4, which
is then followed by the proofs. The online appendix [9] contains many supplementary results and
remarks, as well as some more technical arguments from the proofs.

2. Main results
Take d, k ∈ N, endow Rd with the Euclidean norm | · | and write Γ o for the interior of a set Γ .
Assume that S is a closed convex subset of Rd. Let P(S) denote the set of all (Borel) probability
measures on S. Further fix a seminorm || · || on Rd and denote by || · ||∗ its (extended) dual norm,
i.e. ||y||∗ := sup{〈x, y〉 : ||x|| ≤ 1}. In particular, for || · || = | · | we also have || · ||∗ = | · |. For μ, ν ∈
P(S), we define the p-Wasserstein distance as

Wp(μ, ν) = inf
{∫

S×S
||x − y||p∗ π (dx, dy) : π ∈ Cpl(μ, ν)

}1/p
,
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where Cpl(μ, ν) is the set of all probability measures π on S × S with first marginal π1 := π

(· × S) = μ and second marginal π2 := π (S × ·) = ν. Denote the Wasserstein ball

Bδ(μ) = {ν ∈P(S) : Wp(μ, ν) ≤ δ},

of size δ ≥ 0 around μ. Note that, taking a suitable probability space (Ω ,F , P) and a random
variable X ∼ μ, we have the following probabilistic representation of V(δ, a):

sup
ν∈Bδ (μ)

∫
S

f (x, a) ν(dx) = sup
Z

EP[f (X + Z, a)],

where the supremum is taken over all Z satisfying X + Z ∈ S almost surely and EP[||Z||p∗] ≤ δp.
Wasserstein distances and optimal transport techniques have proved to be powerful and versatile
tools in a multitude of applications, from economics [10,11] to image recognition [12]. The idea
to use Wasserstein balls to represent model uncertainty was pioneered in [13] in the context of
investment problems. When sampling from a measure with a finite pth moment, the measures
converge to the true distribution and Wasserstein balls around the empirical measures have the
interpretation of confidence sets, see [14]. In this set-up, the radius δ can then be chosen as a
function of a given confidence level α and the sample size N. This yields finite sample guarantees
and asymptotic consistency, see [15,16], and justifies the use of the Wasserstein metric to capture
model uncertainty. The value V(δ, a) in (1.2) has a dual representation, see [17,18], which has led
to significant new developments in distributionally robust optimization, e.g.[15,19–21].

Naturally, other choices for the distance on the space of measures are also possible: such as
the Kullblack–Leibler divergence, see [22] for general sensitivity results and [23] for applications
in portfolio optimization, or the Hellinger distance, see [24] for a statistical robustness analysis.
We refer to §4 for a more detailed analysis of the state of the art in these fields. Both of these
approaches have good analytic properties and often lead to theoretically appealing closed-form
solutions. However, they are also very restrictive since any measure in the neighbourhood of μ

has to be absolutely continuous with respect to μ. In particular, if μ is the empirical measure of N
observations then measures in its neighbourhood have to be supported on those fixed N points. To
obtain meaningful results, it is thus necessary to impose additional structural assumptions, which
are often hard to justify solely on the basis of the data at hand and, equally importantly, create
another layer of model uncertainty themselves. We refer to [17, sec. 1.1] for further discussion of
potential issues with φ-divergences. The Wasserstein distance, while harder to handle analytically,
is more versatile and does not require any such additional assumptions.

Throughout the paper, we take the convention that continuity and closure are understood
w.r.t. | · |. We assume that A⊂ Rk is convex and closed and that the seminorm || · || is strictly
convex in the sense that for two elements x, y ∈ Rd with ||x|| = ||y|| = 1 and ||x − y|| 
= 0, we have
|| 1

2 x + 1
2 y|| < 1 (note that this is satisfied for every ls-norm |x|s := (

∑d
i=1 |xi|s)1/s for s > 1). We fix

p ∈ (1, ∞), let q := p/(p − 1) so that 1/p + 1/q = 1, and fix μ ∈P(S) such that the boundary of S ⊂ Rd

has μ–zero measure and
∫
S |x|p μ(dx) < ∞. Denote by A	

δ the set of optimizers for V(δ) in (1.2).

Assumption 2.1. The loss function f : S × A→ R satisfies

— x → f (x, a) is differentiable on So for every a ∈A. Moreover, (x, a) → ∇xf (x, a) is continuous
and for every r > 0 there is c > 0 such that |∇xf (x, a)| ≤ c(1 + |x|p−1) for all x ∈ S and a ∈A
with |a| ≤ r.

— For all δ ≥ 0 sufficiently small, we have A	
δ 
= ∅ and for every sequence (δn)n∈N such that

limn→∞ δn = 0 and (a	
n)n∈N such that a	

n ∈A	
δn

for all n ∈ N there is a subsequence which
converges to some a	 ∈A	

0.

The above assumption is not restrictive: the first part merely ensures existence of
||∇xf (·, a	)||Lq(μ), while the second part is satisfied as soon as either A is compact or V(0, ·) is
coercive, which is the case in most examples of interest; see [9, lemma 7.15] for further comments.
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Theorem 2.2. If assumption 2.1 holds then V′(0) is given by

Υ := lim
δ→0

V(δ) − V(0)
δ

= inf
a	∈A	

0

(∫
S

||∇xf (x, a	)||q μ(dx)
)1/q

.

Remark. Inspecting the proof, defining

Ṽ(δ) = inf
a	∈A	

0

sup
ν∈Bδ (μ)

∫
S

f (x, a	) ν(dx)

we obtain Ṽ′(0) = V′(0). This means that for small δ > 0 there is no first-order gain from optimizing
over all a ∈A in the definition of V(δ) when compared with restricting simply to a	 ∈A	

0, as in Ṽ(δ).

The above result naturally extends to computing sensitivities of robust problems, i.e. V′(r), see
[9, corollary 7.5], as well as to the case of stochastic optimization under linear constraints, see [9,
theorem 7.7]. We recall that V(0, a) = ∫

S f (x, a) μ(dx).

Assumption 2.3. Suppose the f is twice continuously differentiable, a	 ∈A	
0 ∩ Ao and

—
∑k

i=1 |∇ai∇xf (x, a)| ≤ c(1 + |x|p−1−ε) for some ε > 0, c > 0, all x ∈ S and all a close to a	.
— The function a → V(0, a) is twice continuously differentiable in the neighbourhood of a	

and the matrix ∇2
a V(0, a	) is invertible.

Theorem 2.4. Suppose a	 ∈A	
0 and a	

δ ∈A	
δ such that a	

δ → a	 as δ → 0 and assumptions 2.1 and 2.3
are satisfied. If ∇xf (x, a	) 
= 0 μ-a.e. or if ∇x∇af (x, a	) = 0 μ-a.e., then

� := lim
δ→0

a	
δ − a	

δ
= −

(∫
S

||∇xf (x, a	)||q μ(dx)
)(1/q)−1

· (∇2
a V(0, a	))−1

∫
S

∇x∇af (x, a	) h(∇xf (x, a	))
||∇xf (x, a	)||1−q μ(dx),

where h : Rd \ {0} → {x ∈ Rd : ||x||∗ = 1} is the unique function satisfying 〈·, h(·)〉 = || · ||, see [9,
Lemma 6.2]. In particular, h(·) = ·/| · | if || · || = | · |.

Above and throughout the convention is that ∇xf (x, a) ∈ Rd×1, ∇ai∇xf (x, a) ∈ Rd×1, ∇af (x, a) ∈
Rk×1, ∇x∇af (x, a) ∈ Rk×d and 0/0 = 0. The assumed existence and convergence of optimizers holds,
e.g. with suitable convexity of f in a; see [9, lemma 7.14] for a worked out setting. In line with the
financial economics practice, we gave our sensitivities letter symbols, Υ and �, loosely motivated
by Υ π óδειγμα, the Greek for Model, and ,בקרה the Hebrew for control.

3. Applications
We now illustrate the universality of theorems 2.2 and 2.4 by considering their applications in a
number of different fields. Unless otherwise stated, S = Rd, A= Rk and

∫
means

∫
S .

(a) Financial economics
We start with the simple example of risk-neutral pricing of a call option written on an underlying
asset (St)t≤T. Here, T, K > 0 are the maturity and the strike, respectively, f (x, a) = (S0x − K)+ and
μ is the distribution of ST/S0. We set interest rates and dividends to zero for simplicity. In [25],
the model μ is a lognormal distribution, i.e. log(ST/S0) ∼N (−σ 2T/2, σ 2T) is Gaussian with mean
−σ 2T/2 and variance σ 2T. In this case, V(0) is given by the celebrated Black–Scholes formula.
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Figure 1. DROvalueRBS(δ) versus thefirst order (FO) approximationRBS(0) + Υ δ, S0 = T = 1,K = 1.2,σ = 0.2. (Online
version in colour.)

Note that this example is particularly simple since f is independent of a. However, to ensure
risk-neutral pricing, we have to impose a linear constraint on the measures in Bδ(μ), giving

sup
ν∈Bδ (μ):

∫
xν(dx)=1

∫
(S0x − K)+ν(dx). (3.1)

To compute its sensitivity we encode the constraint using a Lagrangian and apply theorem 2.2, see
[9, remark 7.3, theorem 7.7]. For p = 2, letting k = K/S0 and μk = μ([k, ∞)), the resulting formula,
see [9, example 7.10], is given by

Υ = S0

√∫ (
1x≥k − μk

)2
μ(dx) = S0

√
μk(1 − μk).

Let us specialize to the lognormal distribution of the Black–Scholes model above and denote
the quantity in (3.1) as RBS(δ). It may be computed exactly using methods from [26]. Figure 1
compares the exact value and the first-order approximation. We have Υ = S0

√
Φ(d−)(1 − Φ(d−)),

where d− = log(S0/K) − σ 2T/2/σ
√

T and Φ is the cdf of N (0, 1) distribution. It is also insightful
to compare Υ with a parametric sensitivity. If instead of Wasserstein balls, we consider
{N (−σ̃ 2T/2, σ̃ 2T) : |σ − σ̃ | ≤ δ} the resulting sensitivity is known as the Black–Scholes Vega and
given by V = S0Φ

′(d− + σ
√

T). We plot the two sensitivities in figure 2. It is remarkable how, for
the range of strikes of interest, the non-parametric model sensitivity Υ traces out the usual shape
of V but shifted upwards to account for the idiosyncratic risk of departure from the lognormal
family. More generally, given a book of options with payoff f = f + − f − at time T, with f +, f − ≥ 0,
we could say that the book is Υ -neutral if the sensitivity Υ was the same for f + and for f −. In
analogy to Delta-Vega hedging standard, one could develop a non-parametric model-agnostic
Delta-Upsilon hedging. We believe these ideas offer potential for exciting industrial applications
and we leave them to further research.

We turn now to the classical notion of the optimized certainty equivalent (OCE) of [27]. It
is a decision theoretic criterion designed to split a liability between today’s and tomorrow’s
payments. It is also a convex risk measure in the sense of [28] and covers many of the popular risk
measures such as expected shortfall or entropic risk, see [29]. We fix a convex monotone function
l : R → R which is bounded from below and g : Rd → R. Here, g represents the payoff of a financial
position and l is the negative of a utility function, or a loss function. We take || · || = | · | and refer to
[9, lemma 7.14] for generic sufficient conditions for assumptions 2.1 and 2.3 to hold in this setup.
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The OCE corresponds to V in (1.1) for f (x, a) = l(g(x) − a) + a and A= R, S = Rd. Theorems 2.2 and
2.4 yield the sensitivities

Υ = inf
a	∈A	

0

(∫ ∣∣l′(g(x) − a	
)∇g(x)

∣∣q μ(dx)
)1/q

,

� =
( ∫

|l′(g(x) − a	) ∇g(x)|2 μ(dz)
)−1/2 ·

∫
l′′(g(x) − a	) l′(g(x) − a	) (∇g(x))2 μ(dx)∫

l′′(g(x) − a	) μ(dx)
,

where, for simplicity, we took p = q = 2 for the latter.
A related problem considers hedging strategies which minimize the expected loss of the

hedged position, i.e. f (x, a) = l(g(x) + 〈a, x − x0〉), where A= Rk and (x0, x) represent today’s and
tomorrow’s traded prices. We compute Υ as

inf
a	∈A	

0

(∫ ∣∣l′(g(x) + 〈a	, x − x0〉
)
(∇g(x) + a	)

∣∣q μ(dx)
)1/q

.

Furthermore we can combine loss minimization with OCE and consider a = (H, m) ∈ Rk × R,
f (x, (h, m)) = l(g(x) + 〈H, x − x0〉 + m) − m. This gives V′(0) as the infimum over (H	, m	) ∈A	

0 of(∫ ∣∣l′(g(x) + 〈H	, x − x0〉 + m	
)
(∇g(x) + H	)

∣∣q μ(dx)
)1/q

.

The above formulae capture non-parametric sensitivity to model uncertainty for examples of
key risk measurements in financial economics. To the best of our knowledge, this has not been
achieved before.

Finally, we consider briefly the classical mean-variance optimization of [30]. Here μ represents
the loss distribution across the assets and a ∈ Rd,

∑d
i=1 ai = 1 are the relative investment weights.

The original problem is to minimize the sum of the expectation and γ standard deviations of
returns 〈a, X〉, with X ∼ μ. Using the ideas in [31, Example 2] and considering measures on Rd ×
Rd, we can recast the problem as (1.1). While [31] focused on the asymptotic regime δ → ∞, their
non-asymptotic statements are related to our theorem 2.2 and either result could be used here to
obtain that V(δ) ≈ V(0) +

√
1 − γ 2δ for small δ.

(b) Neural networks
We specialize now to quantifying robustness of neural networks (NN) to adversarial examples.
This has been an important topic in machine learning since [32] observed that NN consistently
misclassify inputs formed by applying small worst-case perturbations to a dataset. This produced
a number of works offering either explanations for these effects or algorithms to create such
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adversarial examples, e.g. [33–39] to name just a few. The main focus of research works in this
area, see [40], has been on faster algorithms for finding adversarial examples, typically leading to
an overfit to these examples without any significant generalization properties. The viewpoint has
been mainly pointwise, e.g. [32], with some generalizations to probabilistic robustness, e.g. [39].

In contrast, we propose a simple metric for measuring robustness of NN which is independent
of the architecture employed and the algorithms for identifying adversarial examples. In fact,
theorem 2.2 offers a simple and intuitive way to formalize robustness of NN: for simplicity
consider a 1-layer neural network trained on a given distribution μ of pairs (x, y), i.e.
(A	

1, A	
2, b	

1, b	
2) solve

inf
∫

|y − ((A2(·) + b2) ◦ σ ◦ (A1(·) + b1))(x)|p μ(dx, dy),

where the inf is taken over a = (A1, A2, b1, b2) ∈A= Rk×d × Rd×k × Rk × Rd, for a given activation
function σ : R → R, where the composition above is understood componentwise. Set f (x, y; A, b) :=
|y − (A2(·) + b2) ◦ σ ◦ (A1(·) + b1)(x)|p. Data perturbations are captured by ν ∈ Bp

δ (μ) and (1.2)
offers a robust training procedure. The first-order quantification of the NN sensitivity to
adversarial data is then given by(∫

|∇f (x, y; A	, b	)|q μ(dx, dy)
)1/q

.

A similar viewpoint, capturing robustness to adversarial examples through the optimal transport
lens, has been recently adopted by other authors. The dual formulation of (1.2) was used by
[21] to reduce the training of neural networks to tractable linear programs. [41] modified (1.2)
to consider a penalized problem infa∈A supν∈P(S)

∫
S f (x, a) ν(dx) − γ Wp(μ, ν) to propose new

stochastic gradient descent algorithms with inbuilt robustness to adversarial data.

(c) Uncertainty quantification
In the context of UQ, the measure μ represents input parameters of a (possibly complicated)
operation G in a physical, engineering or economic system. We consider the so-called reliability
or certification problem: for a given set E of undesirable outcomes, one wants to control
supν∈P ν(G(x) ∈ E), for a set of probability measures P . The distributionally robust adversarial
classification problem considered recently by [42] is also of this form, with Wasserstein balls
P around an empirical measure of N samples. Using the dual formulation of [18], they linked
the problem to minimization of the conditional value-at-risk and proposed a reformulation, and
numerical methods, in the case of linear classification. We propose instead a regularized version
of the problem and look for

δ(α) := sup
{
δ ≥ 0 : inf

ν∈Bδ (μ)

∫
d(G(x), E) ν(dx) ≥ α

}
,

for a given safety level α. We thus consider the average distance to the undesirable set,
d(G(x), E) := infe∈E |G(x) − e|, and not just its probability. The quantity δ(α) could then be used
to quantify the implicit uncertainty of the certification problem, where higher δ corresponds to
less uncertainty. Taking statistical confidence bounds of the empirical measure in Wasserstein
distance into account, see [14], δ would then determine the minimum number of samples needed
to estimate the empirical measure.

Assume that E is convex. Then x → d(x, E) differentiable everywhere except at the boundary of
E with ∇xd(x, E) = 0 for x ∈ Eo and |∇xd(x, E)| = 1 for all x ∈ Ēc. Furthermore, assume μ is absolutely
continuous w.r.t. Lebesgue measure on S. Theorem 2.2, using [9, remark 7.3], gives a first-order
expansion for the above problem:

inf
ν∈Bδ (μ)

∫
d(G(x), E) ν(dx) =

∫
d(G(x), E) μ(dx) −

(∫
|∇xd(G(x), E)∇xG(x)|q μ(dx)

)1/q
δ + o(δ).
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In the special case ∇xG(x) = cI this simplifies to
∫

d(G(x), E) μ(dx) − c(μ(G(x) /∈ E))1/qδ + o(δ),

and the minimal measure ν pushes every point G(x) not contained in E in the direction of the
orthogonal projection. This recovers the intuition of [43, theorem 1], which in turn relies on [17,
corollary 2, example 7]. Note however that our result holds for general measures μ. We also note
that such an approximation could provide an ansatz for dimension reduction, by identifying
the dimensions for which the partial derivatives are negligible and then projecting G on to
the corresponding lower-dimensional subspace (thus providing a simpler surrogate for G). This
would be an alternative to a basis expansion (e.g. in orthogonal polynomials) used in UQ and
would exploit the interplay between the properties of G and μ simultaneously.

(d) Statistics
We discuss two applications of our results in the realm of statistics. We start by highlighting the
link between our results and the so-called influence curves (IC) in robust statistics. For a functional
μ → T(μ) its IC is defined as

IC(y) = lim
t→0

T(tδy + (1 − t)μ) − T(μ)
t

.

Computing the IC, if it exists, is in general hard and closed form solutions may be unachievable.
However, for the so-called M-estimators, defined as optimizers for V(0),

T(μ) := argmina

∫
f (x, a)μ(dx),

for some f (e.g. f (x, a) = |x − a| for the median), we have

IC(y) = ∇af (y, T(μ))

− ∫ ∇2
a f (s, T(μ)) μ(ds)

,

under suitable assumptions on f , see [44, section 3.2.1]. In comparison, writing Tδ for the
optimizer for V(δ), theorem 2.4 yields

lim
δ→0

Tδ − T(μ)
δ

=
∫ ∇x∇af (x, T(μ))∇xf (x, T(μ)) μ(dx)

− ∫ ∇2
a f (s, T(μ)) μ(ds)

, (3.2)

under assumption 2.3 and normalization ||∇xf (x, T(μ))||Lp(μ) = 1. To investigate the connection let
us Taylor-expand IC(y) around x to obtain

IC(y) − IC(x) = ∇a∇xf (x, T(μ))

− ∫ ∇2
a f (s, T(μ)) μ(ds)

(y − x).

Choosing y = x + δ∇fx(x, T(μ)) and integrating both sides over μ and dividing by δ, we obtain the
asymptotic equality

∫
IC(x + δ∇xf (x, T(μ))) − IC(x)

δ
μ(dx) ≈ Tδ − T(μ)

δ
,

for δ → 0 by (3.2). We conclude that considering the average directional derivative of IC in the
direction of ∇fx(x, T(μ)) gives our first-order sensitivity. For an interesting conjecture regarding
the comparison of influence functions and sensitivities in KL-divergence, we refer to [45,
Section 7.3] and [22, Section 3.4.2].

Our second application in statistics exploits the representation of the LASSO/Ridge
regressions as robust versions of the standard linear regression. We consider A= Rk and S = Rk+1.
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If instead of the Euclidean metric we take ||(x, y)||∗ = |x|r1{y=0} + ∞1{y
=0}, for some r > 1 and
(x, y) ∈ Rk × R, in the definition of the Wasserstein distance, then [19] showed that

inf
a∈Rk

sup
ν∈Bδ (μ)

∫
(y − 〈x, a〉)2 ν(dx, dy) = inf

a∈Rk

(√∫
(y − 〈a, x〉)2 μ(dx, dy) + δ|a|s

)2

(3.3)

holds, where 1/r + 1/s = 1. The δ = 0 case is the ordinary least-squares regression. For δ > 0, the
r.h.s. for s = 2 is directly related to the Ridge regression, while the limiting case s = 1 is called
the square-root LASSO regression, a regularized variant of linear regression well known for its
good empirical performance. Closed-form solutions to (3.3) do not exist in general and it is a
common practice to use numerical routines to solve it approximately. Theorem 2.4 offers instead
an explicit first-order approximation of a	

δ for small δ. We denote by a	 the ordinary least-squares
estimator and by I the k × k identity matrix. Note that the first-order condition on a	 implies
that

∫
(y − 〈a	, x〉)xiμ(dx, dy) = 0 for all 1 ≤ i ≤ k. In particular, V(0) = ∫

(y2 − 〈a	, x〉y)μ(dx, dy) and
a	 = D−1 ∫

yxμ(dx, dy), where we assume the system is overdetermined so that D = ∫
xxT μ(dx, dy)

is invertible. A direct computation, see [9, example 8.2], yields

a	
δ ≈ a	 −

√
V(0)D−1 h(a	)δ. (3.4)

For s = 2, h(a	) = a	/|a	|2 and for s = 1, h(a	) = sign(a	) and hence1 a	
δ is approximately(

1 −
√

V(0)
|a	|2

D−1δ

)
a	 and a	 −

√
V(0)D−1sign(a	)δ, (3.5)

respectively. This corresponds to parameter shrinkage: proportional for square-root Ridge and
a shift towards zero for square-root LASSO. To the best of our knowledge, these are first such
results and we stress that our formulae are valid in a general context and, in particular, parameter
shrinkage depends on the direction through the D−1 factor. Figure 3 compares the first-order
approximation with the actual results and shows a remarkable fit. Furthermore, our results agree
with what is known in the canonical test case for the (standard) Ridge and LASSO, see [46]. When
μ = μN is the empirical measure of N i.i.d. observations, the data are centred and the covariates
are orthogonal, i.e. D = (1/N)I. In that case, (3.5) simplifies to

(
1 − δ

√
N
(

1
R2 − 1

))
a	 and a	 −

√
N |y|

√
1 − R2 sign(a	)δ,

where R2 is the usual coefficient of determination.
The case of μN is naturally of particular importance in statistics and data science and we

continue to consider it in the next subsection. In particular, we characterize the asymptotic
distribution of

√
N(a	

1/
√

N
− a	), where a	

δ ∈A	
δ(μN) and a	 ∈A	

0(μ∞) is the optimizer of the non-

robust problem for the data-generating measure. This recovers the central limit theorem of [47], a
link we explain further in §4b.

(e) Out-of-sample error
A benchmark of paramount importance in optimization is the so-called out-of-sample error, also
known as the prediction error in statistical learning. Consider the setup above when μN is the
empirical measure of N i.i.d. observations sampled from the ‘true’ distribution μ = μ∞ and take,
for simplicity, || · || = | · |s, with s > 1. Our aim is to compute the optimal a	 which solves the
original problem (1.1). However, we only have access to the training set, encoded via μN . Suppose
we solve the distributionally robust optimization problem (1.2) for μN and denote the robust

1In the case s = 1, inspecting the proof, we see that theorem 2.4 still holds since a	 does not have zero components μ-a.s.,
which are the only points of discontinuity of h.
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Figure 3. Square-root LASSO parameter shrinkage a	δ − a	0 : exact (o) and the first-order approximation (x) in (3.5).
2000 observations generated according to Y = 1.5X1 − 3X2 − 2X3 + 0.3X4 − 0.5X5 − 0.7X6 + 0.2X7 + 0.5X8 + 1.2X9 +
0.8X10 + ε with all Xi , ε i.i.d.N (0, 1). (Online version in colour.)

optimizer a	,N
δ . Then the out-of-sample error

V(0, a	,N
δ ) − V(0, a	) =

∫
f (x, a	,N

δ ) μ(dx) −
∫

f (x, a	) μ(dx)

quantifies the error from using a	,N
δ as opposed to the true optimizer a	.

While this expression seems to be hard to compute explicitly for finite samples, theorem 2.4
offers a way to find the asymptotic distribution of a (suitably rescaled version of) the out-of-
sample error. We suppose the assumptions in theorem 2.4 are satisfied and note that the first
order condition for a	 gives ∇aV(0, a	) = 0. Then, a second-order Taylor expansion gives

V(0, a	,N
δ ) − V(0, a	) = 1

2 (a	,N
δ − a	)T∇2

a V(0, ã)(a	,N
δ − a	), (3.6)

for some ã (coordinate-wise) between a	 and a	,N
δ . Now we write

a	,N
δ − a	 = a	,N

δ − a	,N + a	,N − a	,

where we define a	,N as the optimizer of the non-robust problem (1.1) with μ replaced by μN . In
particular, the δ-method for M-estimators implies that

√
N(a	,N − a	) ⇒ (∇2

a V(0, a	))−1H, (3.7)

where H ∼N (0,
∫

(∇af (x, a	))T∇af (x, a	) μ(dx)) and ⇒ denotes the convergence in distribution. On
the other hand, for a fixed N ∈ N, theorem 2.4 applied to μN yields

a	,N
δ − a	,N = −

(∫
|∇xf (x, a	,N)|qs μN(dx)

)(1/q)−1
·
(∫

∇2
a f (x, a	,N) μN(dx)

)−1

·
∫ ∇x∇af (x, a	,N) h(∇xf (x, a	,N))

|∇xf (x, a	,N)|1−q
s

μN(dx) · δ + o(δ) (3.8)

= −((∇2
a V(0, a	))−1Θ + �N) · δ + o(δ), (3.9)
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where

Θ :=
(∫

|∇xf (x, a	)|qs μ(dx)
)(1/q)−1

·
∫ ∇x∇af (x, a	) h(∇xf (x, a	))

|∇xf (x, a	)|1−q
s

μ(dx),

�N :=
(∫

|∇xf (x, a	,N)|qs μN(dx)
)(1/q)−1

·
(∫

∇2
a f (x, a	,N) μN(dx)

)−1

·
∫ ∇x∇af (x, a	,N) h(∇xf (x, a	,N))

|∇xf (x, a	,N)|1−q
s

μN(dx) − (∇2
a V(0, a	))−1Θ .

Almost surely (w.r.t. sampling of μN), we know that μN → μ in Wp as N → ∞, and under the
regularity and growth assumptions on f in [9, equation (8.2)] we check that �N → 0 a.s., see [9,
example 8.4] for details. In particular, taking δ = 1/

√
N and combining the above with (3.7) we

obtain √
N
(

a	,N
1/

√
N

− a	
)

⇒ (∇2
a V(0, a	))−1(H − Θ). (3.10)

This recovers the central limit theorem of [47], as discussed in more detail in §4b below. Together,
(3.6) and (3.9) give us the a.s. asymptotic behaviour of the out-of-sample error

V(0, a	,N
δ ) − V(0, a	) = 1

2N
(H − Θ)T(∇2

a V(0, a	))−1(H − Θ) + o
(

1
N

)
. (3.11)

These results also extend and complement [48, Prop. 17]. [48] investigate when the
distributionally robust optimizers a	,N

δ yield, on average, better performance than the simple in-
sample optimizer a	,N . To this end, they consider the expectation, over the realizations of the
empirical measure μN of

V(0, a	,N
δ ) − V(0, a	,N) =

∫
f (x, a	,N

δ ) μ(dx) −
∫

f (x, a	,N) μ(dx).

This is closely related to the out-of-sample error and our derivations above can be easily modified.
The first-order term in the Taylor expansion no longer vanishes and, instead of (3.6), we now have

V(0, a	,N
δ ) − V(0, a	,N) = ∇aV(0, a	,N)(a	,N

δ − a	,N) + o(|a	,N
δ − a	,N|),

which holds, e.g. if for any r > 0, there exists c > 0 such that
∑k

i=1 |∇a∇ai f (x, a)| ≤ c(1 + |x|p) for all
x ∈ S, |a| ≤ r. Combined with (3.8), this gives asymptotics in small δ for a fixed N. For quadratic f
and taking q ↑ ∞, we recover the result in [48, Prop. 17], see [9, example 8.4] for details.

4. Further discussion and literature review
We start with an overview of related literature and then focus specifically on a comparison of our
results with the CLT of [47] mentioned above.

(a) Discussion of related literature
Let us first remark, that while theorem 2.2 offers some superficial similarities to a classical
maximum theorem, which is usually concerned with continuity properties of δ → V(δ), in this
work, we are instead interested in the exact first derivative of the function δ → V(δ). Indeed,
the convergence limδ→0 supν∈Bδ (μ)

∫
f (x) ν(dx) = ∫

f (x) μ(dx) follows for all f satisfying f (x) ≤
c(1 + |x|p) directly from the definition of convergence in Wasserstein metric (e.g. [49, Def. 6.8]).
In conclusion, the main issue is to quantify the rate of this convergence by calculating the first
derivative V′(δ).

Our work investigates model uncertainty broadly conceived: it includes errors related to
the choice of models from a particular (parametric or not) class of models as well as the mis-
specification of such a class altogether (or indeed, its absence). In the decision theoretic literature,
these aspects are sometimes referred to as model ambiguity and model mis-specification,
respectively, see [50]. However, seeing our main problem (1.2) in decision theoretic terms is not
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necessarily helpful as we think of f as given and not coming from some latent expected utility
type of problem. In particular, our actions a ∈A are just constants.

In our work, we decided to capture the uncertainty in the specification of μ using
neighbourhoods in the Wasserstein distance. As already mentioned, other choices are possible
and have been used in past. Possibly, the most often used alternative is the relative entropy, or the
Kullblack–Leibler divergence. In particular, it has been used in this context in economics, see [51].
To the best of our knowledge, the only comparable study of sensitivities with respect to relative
entropy balls is [22], see also [45] allowing for additional marginal constraints. However, this only
considered the specific case f (x, a) = f (x) where the reward function is independent of the action.
Its main result is

sup
ν∈BKL

δ (μ)

∫
f (x) ν(dx) =

∫
f (x) μ(dx) +

√
2 Varμ(f (X))δ + 1

3
κ3(f (X))

Varμ(f (X))
δ2 + O(δ3),

where BKL
δ (μ) is a ball of radius δ2 centred around μ in KL-divergence, Varμ(f (X)) and κ3(f (X))

denote the variance and kurtosis of f under the measure μ respectively. In particular, the
first-order sensitivity involves the function f itself. By contrast, our theorem 2.2 states V′(δ) =
(
∫

( f ′(x))2 μ(dx))1/2 and involves the first derivative f ′. In the trivial case of a point mass μ = δx, we
recover the intuitive sensitivity V′(δ) = |f ′(x)|, while the results of [22] do not apply for this case.
We also note that [22] requires exponential moments of the function f under the baseline measure
μ, while we only require polynomial moments. In particular, in applications in econometrics
(or any field in which μ typically has fat tails), the scope of application of the corresponding
results might then be decisively different. We remark however, that this requirement can be
substantially weakened (to the existence of polynomial moments) when replacing KL-divergences
by α-divergences, e.g. [52,53]. We expect a sensitivity analysis similar to [22] to hold in this setting.
However, to the best of our knowledge no explicit results seem to be available in the literature.

To understand the relative technical difficulties and merits, it is insightful to go into the
details of the statements. In fact, in the case of relative entropy and the one-period set-up we
are considering, the exact form of the optimizing density can be determined exactly (see [22,
Proposition 3.1]) up to a one-dimensional Langrange parameter. This is well known and is the
reason behind the usual elegant formulae obtained in this context. But this then reduces the
problem in [22] to a one-dimensional problem, which can be well-approximated via a Taylor
approximation. By contrast, when we consider balls in the Wasserstein distance, the form of the
optimizing measure is not known (apart from some degenerate cases). In fact, a key insight of our
results is that the optimizing measure can be approximated by a deterministic shift in the direction
(x + f ′(x)δ)∗μ (this is, in general, not exact but only true as a first-order approximation). The reason
for these contrastive starting points of the analyses is the fact that Wasserstein balls contain a more
heterogeneous set of measures, while in the case of relative entropy, exponentiating f will always
do the trick. We remark however that this is not true for the finite-horizon problems considered in
[22, Section 3.2] any more, where the worst-case measure is found using an elaborate fixed-point
equation.

A point which further emphasizes the fact that the topology introduced by the Wasserstein
metric is less tractable is the fact that

Wp
p(μ, ν) = lim

ε→0
inf

π∈Π(μ,ν)

∫
|x − y|p π (dx, dy) + εH(π | μ ⊗ ν) = lim

ε→0
ε inf

π∈Π(μ,ν)
H(π | Rε),

where H(π | Rε) = ∫
log( dπ

dRε ) dπ is the relative entropy and

dRε = c0 exp
(

−|x − y|p
ε

)
d(μ ⊗ ν),

for some normalizing constant c0 > 0 (e.g. [54]). This is known as the entropic optimal transport
formulation and has received considerable interest in the ML community in the past years (e.g.
[55]). In particular, the Wasserstein distance can be approximated by relative entropy, but only
with respect to reference measures on the product space. As we consider optimization over ν
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above it amounts to changing the reference measure. In consequence, the topological structure
imposed by Wasserstein distances is more intricate compared to relative entropy, but also more
flexible.

The other well-studied distance is the Hellinger distance. [24] calculates influence curves for
the minimum Hellinger distance estimator aHell,	 on a countable sample space. Their main result
is that for the choice f (x, a) = log(�(x, a)) (where (�(x, a))a∈A is a collection of parametric densities)

IC(x) = −(∇2
a V(0, aHell,	))−1∇a log(�(x, aHell,	)),

the product of the inverse Fisher information matrix and the score function, which is the same as
for the classical maximum-likelihood estimator. Denote by μN the empirical measure of N data
samples and by aHell,	(N) the corresponding minimum Hellinger distance estimator for μN . In
particular, the above result then implies the same CLT as for M-estimators given by

N1/2(aHell,	(N) − aHell,	) ⇒ (∇2
a V(0, aHell,	))−1H,

where H ∼N (0,
∫ ∇af (x, aHell,	)T∇af (x, aHell,	) μ(dx)). As we discuss in the next section, our

theorem 2.4 yields a similar CLT, namely

N1/2(a	,N
1/

√
N

− a	) ⇒ (∇2
a V(0, a	))−1 ·

(
H − ∇a

√∫
|∇xf (x, a	)|2s μ(dx)

)
.

Thus the Wasserstein worst-case approach leads to a shift of the mean of the normal distribution
in the direction

−∇a

√∫
|∇xf (x, a	)|2s μ(dx),

compared to the non-robust case. In the simple case μ =N (0, σ 2) with standard deviation σ > 0,
we obtain the MLE σ	,N = 1

N
∑N

k=1 X2
i . We can directly compute (for a = σ ) that

∇σ

√∫ ∣∣∣∣∇x

(
const. + log

(
exp

(
− x2

2(σ	)2

)))∣∣∣∣
2

s
μ(dx) = ∇σ

√∫
x2

(σ	)4 μ(dx)

= ∇σ
σ 	

(σ	)2 = ∇σ
1
σ	

= − 1
(σ	)2 .

Thus the robust approach accounts for a shift of 1/(σ	)2 (of order 1 if mulitplied with inverse
Fisher information) to account for a possibly higher variance in the underlying data. In particular,
in our approach, the so-called neutral spaces considered (e.g. [56], eqn (21)]) as

{a : −(a − a	)T∇2
a V(0, a	)(a − a	) ≤ δ}

should also take this shift into account, i.e. their definition should be adjusted to⎧⎨
⎩a : −

(
a − a	 + ∇a

√∫
|∇xf (x, a	)|2s μ(dx)

)T

∇2
a V(0, a	)

·
(

a − a	 + ∇a

√∫
|∇xf (x, a	)|2s μ(dx)

)
≤ δ

}
.

Lastly, let us mention another situation when our approach provides directly interpretable
insights in the context of a parametric family of models. Namely, if one considers a family of
models P such that the worst-case model in the Wasserstein ball remains in P , i.e. (x + f ′(x)δ)∗μ ∈
P , then considering (the first-order approximation to) model uncertainty over Wasserstein
balls actually reduces to considerations within the parametric family. While uncommon,
such a situation would arise, for example, for a scale-location family P , with μ ∈P and a
linear/quadratic f .
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(b) Link to the central limit theorem of [47]
As observed in §3e above, theorem 2.4 allows to recover the main results in [47]. We explain
this now in detail. Set || · || = | · |s, p = q = 2, S = Rd. Let μN denote the empirical measure of N
i.i.d. samples from μ. We impose the assumptions on μ and f from [47], including Lipschitz
continuity of gradients of f and strict convexity. These, in particular, imply that the optimizers
a	,N
δ , a	,N and a	, as defined in §3e are well defined and unique, and further a	,N

1/
√

N
→ a	 as N → ∞.

[47, Thm. 1] implies that, as N → ∞,

√
N(a	,N

1/
√

N
− a	) ⇒ (∇2

a V(0, a	))−1 ·
(

H − ∇a

√∫
|∇xf (x, a	)|2s μ(dx)

)
, (4.1)

where H ∼N (0,
∫ ∇af (x, a	)T∇af (x, a	) μ(dx)). We note that for || · || = | · |s we have

h(x) = (sign(x1) |x1|s−1, . . . , sign(xk) |xk|s−1) · |x|1−s
s = ∇x|x|s.

Thus

∇a

√∫
|∇xf (x, a	)|2s μ(dx) =

∫ |∇xf (x, a	)|sh(∇xf (x, a	))∇x∇af (x, a	) μ(dx)√∫ |∇xf (x, a	)|2s μ(dx)
,

and (4.1) agrees with (3.10) which is justified by the Lipschitz growth assumptions on f , ∇xf (x, a)
and ∇a∇xf (x, a) from [47], see [9, equation (8.2)]. In particular, theorem 2.4 implies (4.1) as a
special case. While this connection is insightful to establish2 it is also worth stressing that the
proofs in [47] pass through the dual formulation and are thus substantially different from ours.
Furthermore, while theorem 2.4 holds under milder assumptions on f than those in [47], the last
argument in our reasoning above requires the stronger assumptions on f . It is thus not clear if our
results could help to significantly weaken the assumptions in the central limit theorems of [47].

5. Proofs
We consider the case S = Rd and || · || = | · | here. For the general case and additional details, we
refer to [9]. When clear from the context, we do not indicate the space over which we integrate.

Proof of theorem 2.2. For every δ ≥ 0, let Cδ(μ) denote those π ∈P(Rd × Rd) which satisfy

π1 = μ and
(∫

|x − y|p π (dx, dy)
)1/p

≤ δ.

As the infimum in the definition of Wp(μ, ν) is attained (see [49, Theorem 4.1, p. 43]) one has
Bδ(μ) = {π2 : π ∈ Cδ(μ)}.

We start by showing the ‘≤’ inequality in the statement. For any a	 ∈A	
0, one has V(δ) ≤

supν∈Bδ (μ)
∫

f (y, a	) ν(dy) with equality for δ = 0. Therefore, differentiating f (·, a	) and using both
Fubini’s theorem and Hölder’s inequality, we obtain that

V(δ) − V(0) ≤ sup
π∈Cδ (μ)

∫
f (y, a	) − f (x, a	) π (dx, dy)

= sup
π∈Cδ (μ)

∫ 1

0

∫
〈∇xf (x + t(y − x), a	), (y − x)〉π (dx, dy) dt

≤ δ sup
π∈Cδ (μ)

∫ 1

0

(∫
|∇xf (x + t(y − x), a	)|qπ (dx, dy)

)1/q
dt.

Any choice πδ ∈ Cδ(μ) converges in p-Wasserstein distance on P(Rd × Rd) to the pushforward
measure of μ under the mapping x → (x, x), which we denote [x → (x, x)]∗μ. This can be seen by,

2We thank Jose Blanchet for pointing out the possible link and encouraging us to explore it.
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for example, considering the coupling [(x, y) → (x, y, x, x)]∗πδ between πδ and [x → (x, x)]∗μ. Now
note that q = p/(p − 1) and the growth assumption on ∇xf (·, a	) implies

|∇xf (x + t(y − x), a	)|q ≤ c(1 + |x|p + |y|p), (5.1)

for some c > 0 and all x, y ∈ Rd, t ∈ [0, 1]. In particular,
∫ |∇xf (x + t(y − x), a	)|q πδ(dx, dy) ≤ C for

all t ∈ [0, 1] and small δ > 0, for another constant C > 0. As further (x, y) → |∇xf (x + t(y − x), a	)|q
is continuous for every t, the p-Wasserstein convergence of πδ to [x → (x, x)]∗μ implies that

∫
|∇xf (x + t(y − x), a	)|q πδ(dx, dy) →

∫
|∇xf (x, a	)|q μ(dx),

for every t ∈ [0, 1] for δ → 0, see [9, lemma 7.13]. Dominated convergence (in t) then yields ‘≤’ in
the statement of the theorem.

We turn now to the opposite ‘≥’ inequality. As V(δ) ≥ V(0) for every δ > 0, there is no loss of
generality in assuming that the right-hand side is not equal to zero. Now take any, for notational
simplicity not relabelled, subsequence of (δ)δ>0 which attains the liminf in (V(δ) − V(0))/δ and
pick a	

δ ∈A	
δ . By assumption, for a (again not relabelled) subsequence, one has a	

δ → a	 ∈A	
0.

Further note that V(0) ≤ ∫
f (x, a	

δ) μ(dx) which implies

V(δ) − V(0) ≥ sup
π∈Cδ (μ)

∫
f (y, a	

δ) − f (x, a	
δ) π (dx, dy).

Now define πδ := [x → (x, x + δT(x))]∗μ, where

T(x) := ∇xf (x, a	)
|∇xf (x, a	)|2−q

(∫
|∇xf (z, a	)|q μ(dz)

)1/q−1

for x ∈ Rd with the convention 0/0 = 0. Note that the integral is well defined since, as before in
(5.1), one has |∇xf (x, a	)|q ≤ C(1 + |x|p) for some C > 0 and the latter is integrable under μ. Using
that pq − p = q it further follows that

∫
|x − y|p πδ(dx, dy) = δp

∫
|T(x)|p μ(dx)

= δp
∫ |∇xf (x, a	)|p+pq−2p μ(dx)( ∫ |∇xf (z, a	)|q μ(dz)

)p(1−1/q)
= δp.

In particular, πδ ∈ Cδ(μ) and we can use it to estimate from below the supremum over Cδ(μ) giving

V(δ) − V(0)
δ

≥ 1
δ

∫
f (x + δT(x), a	

δ) − f (x, a	
δ) μ(dx)

=
∫ 1

0

∫
〈∇xf (x + tδT(x), a	

δ), T(x)〉μ(dx) dt.

For any t ∈ [0, 1], with δ → 0, the inner integral converges to

∫
〈∇xf (x, a	), T(x)〉μ(dx) =

(∫
|∇xf (x, a	)|q μ(dx)

)1/q
.

The last equality follows from the definition of T and a simple calculation. To justify
the convergence, first note that 〈∇xf (x + tδT(x), a	

δ), T(x)〉 → 〈∇xf (x, a	), T(x)〉 for all x ∈ Rd by
continuity of ∇xf and since a	

δ → a	. Moreover, as before in (5.1), one has |T(x)| ≤ c(1 + |x|) for some
c > 0, hence |〈∇xf (x + tδT(x), a	), T(x)〉| ≤ C(1 + |x|p) for some C > 0 and all t ∈ [0, 1]. The latter is
integrable under μ; hence convergence of the integrals follows from the dominated convergence
theorem. This concludes the proof. �
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Proof of theorem 2.4. We first show that

lim
δ→0

−∇ai V(0, a	
δ)

δ
=

∫
∇x∇ai f (x, a	)

∇xf (x, a	)
|∇xf (x, a	)|2−q μ(dx)

·
(∫

|∇xf (x, a	)|q μ(dx)
)1/q−1

(5.2)

for all i ∈ {1, . . . , k}. We start with the ‘≤’ inequality. For any a ∈Ao, we have

∇af (y, a) − ∇af (x, a) =
∫ 1

0
∇x∇af (x + t(y − x), a)(y − x) dt.

Let δ > 0 and recall that a	
δ ∈A	

δ converge to a	 ∈A	
0. Let B	

δ(μ, a	
δ) denote the set of ν ∈ Bδ(μ) which

attain the value:
∫

f (x, a	
δ) ν(dx) = V(δ). This is non-empty by assumption 2.3 and [9, lemma 7.16].

By [9, lemma 8.5] the function a → V(δ, a) is (one-sided) directionally differentiable at a	
δ for all

δ > 0 small and thus for all i ∈ {1, . . . , k}

sup
ν∈B	

δ (μ,a	
δ )

∫
∇ai f (x, a	

δ) ν(dx) ≥ 0.

Then, using Lagrange multipliers to encode the optimality of B	
δ(μ, a	

δ) in Bδ(μ), we obtain

−∇ai V(0, a	
δ) ≤ sup

ν∈B	
δ (μ,a	

δ )

∫
∇ai f (y, a	

δ)ν(dy) − ∇ai V(0, a	
δ)

= sup
ν∈Bδ (μ)

inf
λ∈R

( ∫ [∇ai f (y, a	
δ) + λ(f (y, a	

δ) − V(δ))
]
ν(dy)

−
∫ [∇ai f (x, a	

δ) + λ(f (x, a	
δ) − V(0, a	

δ))
]
μ(dx)

)

= inf
λ∈R

(
sup

π∈Cδ (μ)

∫ 1

0

∫ 〈
∇x∇ai f (x + t(y − x), a	

δ)

+ λ∇xf (x + t(y − x), a	
δ), y − x

〉
π (dx, dy) dt

− λ sup
π∈Cδ (μ)

∫ 1

0

∫
〈∇xf (x + t(y − x), a	

δ , y − x〉 π (dx, dy) dt
)

,

where we used a minimax argument as well as Fubini’s theorem. We note that the functions
above satisfy the assumptions of theorem 2.2 for a fixed λ. In particular, using exactly the same
arguments as in the proof of theorem 2.2 (i.e. Hölder’s inequality and a specific transport attaining
the supremum) we obtain by exchanging the order of lim sup and inf that

lim sup
δ→0

−∇ai V(0, a	
δ)

δ
≤ inf

λ∈R

((∫
|∇x∇ai f (x, a	) + λ∇xf (x, a	)|q μ(dx)

)1/q

− λ

(∫
|∇xf (x, a	)|q μ(dx)

)1/q
)

. (5.3)

For q = 2, the infimum can be computed explicitly and equals
∫〈∇x∇ai f (x, a	), ∇xf (x, a	)〉μ(dx)√∫ |∇xf (x, a	)|2 μ(dx)

.

For the general case, we refer to [9, lemma 8.6], noting that by assumption ∇xf (x, a	) 
= 0, we see
that the r.h.s. above is equal to the r.h.s. in (5.2).
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The proof of the ‘≥’ inequality in (5.2) follows by the very same arguments. Indeed, [9, lemma
8.5] implies that

inf
ν∈B	

δ (μ,a	
δ )

∫
∇ai f (x, a	

δ) ν(dx) ≤ 0,

for all i ∈ {1, . . . , k} and we can write

−∇ai V(0, a	
δ) ≥ inf

ν∈B	
δ (μ,a	

δ )

∫
∇ai f (y, a	

δ) ν(dy) − ∇ai V(0, a	
δ)

= inf
ν∈Bδ (μ)

sup
λ∈R

( ∫ [∇ai f (y, a	
δ) + λ(f (y, a	

δ) − V(δ))
]
ν(dy)

−
∫ [∇ai f (x, a	

δ) + λ(f (x, a	
δ) − V(0, a	

δ))
]
μ(dx)

)
.

From here on, we argue as in the ‘≤’ inequality and conclude that indeed (5.2) holds.
By assumption, the matrix ∇2

a V(0, a	) is invertible. Therefore, in a small neighbourhood of a	,
the mapping ∇aV(0, ·) is invertible. In particular, a	

δ = (∇aV(0, ·))−1(∇aV(0, a	
δ)) and by the first-

order condition a	 = (∇aV(0, ·))−1(0). Applying the chain rule and using (5.2) gives

lim
δ→0

a	
δ − a	

δ
= (∇2

a V(0, a	))−1 · lim
δ→0

∇aV(0, a	
δ)

δ

= −(∇2
a V(0, a	))−1

(∫
|∇xf (z, a	)|q μ(dz)

)1/q−1
·
∫ ∇x∇af (x, a	)∇xf (x, a	)

|∇xf (x, a	)|2−q μ(dx).

This completes the proof. �

Data accessibility. The codes used to generate figures in the paper are available on GitHub: http://github.com/
JanObloj/Robust-uncertainty-sensitivity-analysis.
Authors’ contributions. D.B., S.D., J.O. and J.W. formulated the mathematical problem, carried out the analysis,
established the main results and drew conclusions. J.O. and J.W. wrote the first draft of the paper. D.B. and
J.W. wrote the first draft of the appendix. S.D. and J.W. performed the numerical analysis. All the authors
proof read and corrected the manuscript, gave final approval for publication and agree to be held accountable
for the work performed therein.
Competing interests. The authors declare no competing interests.
Funding. This work was supported by the European Research Council [7th FP/ERC grant agreement no.
335421], the Vienna Science and Technology Fund (WWTF) [project MA16-021], the Austrian Science Fund
(FWF) [project P28661] and the National Science Foundation of China (grant nos 11971310 and 11671257).
Acknowledgements. We thank Jose Blanchet, Mike Giles, Daniel Kuhn and Peyman Mohajerin Esfahani for their
helpful comments on an earlier draft of this paper.

References
1. Armacost RL, Fiacco AV. 1974 Computational experience in sensitivity analysis for nonlinear

programming. Math. Program. 6, 301–326. (doi:10.1007/BF01580247)
2. Vogel S. 2007 Stability results for stochastic programming problems. Optimization 19, 269–288.

(doi:10.1080/02331938808843343)
3. Bonnans JF, Shapiro A. 2013 Perturbation analysis of optimization problems. New York, NY:

Springer.
4. Ghanem R, Higdon D, Owhadi H eds. 2017 Handbook of uncertainty quantification. Cham,

Switzerland: Springer.
5. Dupacova J. 1990 Stability and sensitivity analysis for stochastic programming. Ann. Oper. Res.

27, 115–142. (doi:10.1007/BF02055193)
6. Romisch W. 2003 Stability of stochastic programming problems. In Stochastic programming,

pp. 483–554. Amsterdam, The Netherlands: Elsevier. (doi:10.1016/S0927-0507(03)10008-4)
7. Asi H, Duchi JC. 2019 The importance of better models in stochastic optimization. Proc. Natl

Acad. Sci. USA 116, 22 924–22 930. (doi:10.1073/pnas.1908018116)
8. Rahimian H, Mehrotra S. 2019 Distributionally robust optimization: a review. (http://arxiv.

org/abs/1908.05659)

http://github.com/JanObloj/Robust-uncertainty-sensitivity-analysis
http://github.com/JanObloj/Robust-uncertainty-sensitivity-analysis
http://dx.doi.org/10.1007/BF01580247
http://dx.doi.org/10.1080/02331938808843343
http://dx.doi.org/10.1007/BF02055193
http://dx.doi.org/10.1016/S0927-0507(03)10008-4
http://dx.doi.org/10.1073/pnas.1908018116
http://arxiv.org/abs/1908.05659
http://arxiv.org/abs/1908.05659


18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210176

..........................................................

9. Bartl D, Drapeau S, Obłój J, Wiesel J. 2021 Supplementary material from “Sensitivity analysis
of Wasserstein distributionally robust optimization problems”. The Royal Society. Collection.
(https://doi.org/10.6084/m9.figshare.c.5730987)

10. Chiappori PA, McCann RJ, Nesheim L. 2010 Hedonic price equilibria, stable matching,
and optimal transport: equivalence, topology, and uniqueness. Econ. Theory 42, 317–354.
(doi:10.1007/s00199-009-0455-z)

11. Carlier G, Ekeland I. 2010 Matching for teams. Econ. Theory 42, 397–418.
(doi:10.1007/s00199-008-0415-z)

12. Peyré G, Cuturi M. 2019 Computational optimal transport. Found. Trends Mach. Learn. 11, 355–
607. (doi:10.1561/2200000073)

13. Pflug G, Wozabal D. 2007 Ambiguity in portfolio selection. Quant. Finance 7, 435–442.
(doi:10.1080/14697680701455410)

14. Fournier N, Guillin A. 2014 On the rate of convergence in Wasserstein distance of the empirical
measure. Probab. Theory Relat. Fields 162, 707–738. (doi:10.1007/s00440-014-0583-7)

15. Mohajerin Esfahani P, Kuhn D. 2018 Data-driven distributionally robust optimization using
the Wasserstein metric: performance guarantees and tractable reformulations. Math. Program.
171, 115–166. (doi:10.1007/s10107-017-1172-1)

16. Obłój J, Wiesel J. 2021 Robust estimation of superhedging prices. Ann. Stat. 49, 508–530.
(doi:10.1214/20-AOS1966)

17. Gao R, Kleywegt AJ. 2016 Distributionally robust stochastic optimization with Wasserstein
distance. (http://arxiv.org/abs/1604.02199)

18. Blanchet J, Murthy K. 2019 Quantifying distributional model risk via optimal transport. Math.
Oper. Res. 44, 565–600. (doi:10.1287/moor.2018.0936)

19. Blanchet J, Kang Y, Murthy K. 2019 Robust Wasserstein profile inference and applications to
machine learning. J. Appl. Probab. 56, 830–857. (doi:10.1017/jpr.2019.49)

20. Kuhn D, Esfahani PM, Nguyen VA, Shafieezadeh-Abadeh S. 2019 Wasserstein distributionally
robust optimization: theory and applications in machine learning. In Operations research &
management science in the age of analytics, pp. 130–166. INFORMS. (doi:10.1287/educ.2019.0198)

21. Shafieezadeh-Abadeh S, Kuhn D, Esfahani PM. 2019 Regularization via mass transportation.
J. Mach. Learn. Res. 20, 1–68.

22. Lam H. 2016 Robust sensitivity analysis for stochastic systems. Math. Oper. Res. 41, 1248–1275.
(doi:10.1287/moor.2015.0776)

23. Calafiore GC. 2007 Ambiguous risk measures and optimal robust portfolios. SIAM J. Optim.
18, 853–877. (doi:10.1137/060654803)

24. Lindsay BG. 1994 Efficiency versus robustness: the case for minimum Hellinger distance and
related methods. Ann. Stat. 22, 1081–1114. (doi:10.1214/aos/1176325512)

25. Black F, Scholes M. 1973 The pricing of options and corporate liabilities. J. Political Econ. 81,
637–654. (doi:10.1086/260062)

26. Bartl D, Drapeau S, Tangpi L. 2020 Computational aspects of robust optimized certainty
equivalents and option pricing. Math. Finance 30, 287–309. (doi:10.1111/mafi.12203)

27. Ben Tal A, Teboulle M. 1986 Expected utility, penalty functions, and duality in stochastic
nonlinear programming. Manage. Sci. 32, 1445–1466. (doi:10.1287/mnsc.32.11.1445)

28. Artzner P, Delbaen F, Eber J, Heath D. 1999 Coherent measures of risk. Math. Finance 9, 203–
228. (doi:10.1111/1467-9965.00068)

29. Ben Tal A, Teboulle M. 2007 An old-new concept of convex risk measures: the optimized
certainty equivalent. Math. Finance 17, 449–476. (doi:10.1111/j.1467-9965.2007.00311.x)

30. Markowitz H. 1952 Portfolio selection. J. Finance 7, 77–91. (doi:10.2307/2975974)
31. Pflug GC, Pichler A, Wozabal D. 2012 The 1/N investment strategy is optimal under high

model ambiguity. J. Bank. Finance 36, 410–417. (doi:10.1016/j.jbankfin.2011.07.018)
32. Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R. 2013 Intriguing

properties of neural networks. (http://arxiv.org/abs/1312.6199)
33. Goodfellow IJ, Shlens J, Szegedy C. 2014 Explaining and harnessing adversarial examples.

(http://arxiv.org/abs/1412.6572)
34. Li L, Zhong Z, Li B, Xie T. 2019 Robustra: training provable robust neural networks over

reference adversarial space. In Proc. 28th Int. Joint Conf. on Artificial Intelligence, pp. 4711–4717.
AAAI Press. (doi:10.24963/ijcai.2019/654)

35. Carlini N, Wagner D. 2017 Towards evaluating the robustness of neural networks. In 2017
IEEE Symp. on Security and Privacy (SP), pp. 39–57. IEEE. (doi:10.1109/SP.2017.49)

https://doi.org/10.6084/m9.figshare.c.5730987
http://dx.doi.org/10.1007/s00199-009-0455-z
http://dx.doi.org/10.1007/s00199-008-0415-z
http://dx.doi.org/10.1561/2200000073
http://dx.doi.org/10.1080/14697680701455410
http://dx.doi.org/10.1007/s00440-014-0583-7
http://dx.doi.org/10.1007/s10107-017-1172-1
http://dx.doi.org/10.1214/20-AOS1966
http://arxiv.org/abs/1604.02199
http://dx.doi.org/10.1287/moor.2018.0936
http://dx.doi.org/10.1017/jpr.2019.49
http://dx.doi.org/10.1287/educ.2019.0198
http://dx.doi.org/10.1287/moor.2015.0776
http://dx.doi.org/10.1137/060654803
http://dx.doi.org/10.1214/aos/1176325512
http://dx.doi.org/10.1086/260062
http://dx.doi.org/10.1111/mafi.12203
http://dx.doi.org/10.1287/mnsc.32.11.1445
http://dx.doi.org/10.1111/1467-9965.00068
http://dx.doi.org/10.1111/j.1467-9965.2007.00311.x
http://dx.doi.org/10.2307/2975974
http://dx.doi.org/10.1016/j.jbankfin.2011.07.018
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1412.6572
http://dx.doi.org/10.24963/ijcai.2019/654
http://dx.doi.org/10.1109/SP.2017.49


19

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210176

..........................................................

36. Wong E, Kolter JZ. 2017 Provable defenses against adversarial examples via the convex outer
adversarial polytope. (http://arxiv.org/abs/1711.00851)

37. Weng TW, Zhang H, Chen PY, Yi J, Su D, Gao Y, Hsieh CJ, Daniel L. 2018 Evaluating the
robustness of neural networks: an extreme value theory approach. (http://arxiv.org/abs/
1801.10578)

38. Araujo A, Pinot R, Negrevergne B, Meunier L, Chevaleyre Y, Yger F, Atif J. 2019 Robust neural
networks using randomized adversarial training. (http://arxiv.org/abs/1903.10219)

39. Mangal R, Nori AV, Orso A. 2019 Robustness of neural networks: a probabilistic and practical
approach. In Proc. 41st Int. Conf. on Software Engineering: New Ideas and Emerging Results,
pp. 93–96. IEEE Press. (doi:10.1109/ICSE-NIER.2019.00032)

40. Bastani O, Ioannou Y, Lampropoulos L, Vytiniotis D, Nori A, Criminisi A. 2016 Measuring
neural net robustness with constraints. (https://arxiv.org/abs/1605.07262)

41. Sinha A, Namkoong H, Volpi R, Duchi J. 2020 Certifying some distributional robustness with
principled adversarial training. (http://arxiv.org/abs/1710.10571v5)

42. Ho-Nguyen N, Wright SJ. 2020 Adversarial classification via distributional robustness with
wasserstein ambiguity. (http://arxiv.org/abs/2005.13815)

43. Chen Z, Kuhn D, Wiesemann W. 2018 Data-driven chance constrained programs over
Wasserstein balls. (http://arxiv.org/abs/1809.00210)

44. Huber P, Ronchetti E. 1981 Robust statistics. Wiley Series in Probability and Mathematical
Statistics, vol. 52. New York, NY: Wiley-IEEE.

45. Lam H. 2018 Sensitivity to serial dependency of input processes: a robust approach. Manage.
Sci. 64, 1311–1327. (doi:10.1287/mnsc.2016.2667)

46. Tibshirani R. 1996 Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B. Stat.
Methodol. 58, 267–288.

47. Blanchet J, Murthy K, Si N. 2019 Confidence regions in Wasserstein distributionally robust
estimation. (http://arxiv.org/abs/1906.01614)

48. Anderson EJ, Philpott AB. 2019 Improving sample average approximation using
distributional robustness. Optimization Online. See http://www.optimization-online.org/
DB_HTML/2019/10/7405.html.

49. Villani C. 2009 Optimal transport: old and new, Berlin, Germany: Springer.
50. Hansen LP, Marinacci M. 2016 Ambiguity aversion and model misspecification: an economic

perspective. Stat. Sci. 31, 511–515. (doi:10.1214/16-STS570)
51. Hansen LP, Sargent T. 2007 Robustness. Princeton, NJ: Princeton University Press.
52. Atar R, Chowdhary K, Dupuis P. 2015 Robust bounds on risk-sensitive functionals via Rényi

divergence. SIAM/ASA J. Uncertain. Quantif. 3, 18–33. (doi:10.1137/130939730)
53. Glasserman P, Xu X. 2014 Robust risk measurement and model risk. Quant. Finance 14, 29–58.

(doi:10.1080/14697688.2013.822989)
54. Carlier G, Duval V, Peyré G, Schmitzer B. 2017 Convergence of entropic schemes for optimal

transport and gradient flows. SIAM J. Math. Anal. 49, 1385–1418. (doi:10.1137/15M1050264)
55. Peyré G, Cuturi M. 2019 Computational optimal transport: with applications to data science.

Found. Trends Mach. Learn. 11, 355–607. (doi:10.1561/2200000073)
56. Komorowski M, Costa MJ, Rand DA, Stumpf MP. 2011 Sensitivity, robustness, and

identifiability in stochastic chemical kinetics models. Proc. Natl Acad. Sci. USA 108, 8645–8650.
(doi:10.1073/pnas.1015814108)

http://arxiv.org/abs/1711.00851
http://arxiv.org/abs/1801.10578
http://arxiv.org/abs/1801.10578
http://arxiv.org/abs/1903.10219
http://dx.doi.org/10.1109/ICSE-NIER.2019.00032
https://arxiv.org/abs/1605.07262
http://arxiv.org/abs/1710.10571v5
http://arxiv.org/abs/2005.13815
http://arxiv.org/abs/1809.00210
http://dx.doi.org/10.1287/mnsc.2016.2667
http://arxiv.org/abs/1906.01614
http://www.optimization-online.org/DB_HTML/2019/10/7405.html
http://www.optimization-online.org/DB_HTML/2019/10/7405.html
http://dx.doi.org/10.1214/16-STS570
http://dx.doi.org/10.1137/130939730
http://dx.doi.org/10.1080/14697688.2013.822989
http://dx.doi.org/10.1137/15M1050264
http://dx.doi.org/10.1561/2200000073
http://dx.doi.org/10.1073/pnas.1015814108

	Introduction
	Main results
	Applications
	Financial economics
	Neural networks
	Uncertainty quantification
	Statistics
	Out-of-sample error

	Further discussion and literature review
	Discussion of related literature
	Link to the central limit theorem of [RSPA20210176C47]

	Proofs
	References

