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Abstract

The focus of this study is the anti-cancer effects of Cudrania tricuspidata stem (CTS) extract
on cervical cancer cells. The effect of CTS on cell viability was investigated in HPV-positive
cervical cancer cells and HaCaT human normal keratinocytes. CTS showed significant
dose-dependent cytotoxic effects in cervical cancer cells. However, there was no cytotoxic
effect of CTS on HaCaT keratinocytes at concentrations of 0.125-0.5 mg/mL. Based on this
cytotoxic effect, we demonstrated that CTS induced apoptosis by down-regulating the E6
and E7 viral oncogenes. Apoptosis was detected by DAPI staining, annexin V-FITC/PI
staining, cell cycle analysis, western blotting, RT-PCR, and JC-1 staining in SiHa cervical
cancer cells. The mMRNA expression levels of extrinsic pathway molecules such as Fas,
death receptor 5 (DR5), and TNF-related apoptosis-inducing ligand (TRAIL) were increased
by CTS. Furthermore, CTS treatment activated caspase-3/caspase-8 and cleavage of poly
(ADP-ribose) polymerase (PARP). However, the mitochondrial membrane potential and
expression levels of intrinsic pathway molecules such as Bcl-2, Bcl-xL, Bax, and cyto-
chrome C were not modulated by CTS. Taken together, these results indicate that CTS
induced apoptosis by activating the extrinsic pathway, but not the intrinsic pathway, in SiHa
cervical cancer cells. These results suggest that CTS can be used as a modulating agent in
cervical cancer.

Introduction

Cervical cancer is one of the most common diseases affecting women worldwide and remains a
high cause of mortality among women in developing countries [1-2]. Epidemiological and
clinical data suggest that infection with high-risk human papilloma virus (HPV) types, such as
types 16 and 18, plays a major role in the multi-factorial etiology of cervical cancer [3]. High-
risk HPV oncoproteins E6 and E7 play important roles in maintaining cervical cancer cell
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growth. Oncoproteins E6 and E7 inactivate tumor suppressor proteins p53 and pRb, respec-
tively [4]. High-risk HPV oncoprotein E6 associates with and degrades p53, while HPV protein
E7 competes with E2F for retinoblastoma protein (pRb) binding sites [5].

Cudrania tricuspidata is a deciduous tree belonging to the family Moraceae that is mainly
distributed in Korea, China, and Japan. The entire C. tricuspidata plant has been exploited as
an important folk remedy for cancer in Korea during the last few decades, while it has also
been used as a traditional medicine for curing neuritis and inflammation in other parts of Asia
[6]. In addition, several effects of C. tricuspidata extract have been reported, including antioxi-
dant activity [7] and inhibitory effects on nitric oxide synthase [8]. However, the anti-cancer
effects of the extract of the stem of C. tricuspidata on cervical cancer cells have not been
investigated.

Thus, the aims of this study were to investigate the anti-cancer activity of Cudrania tricuspi-
data stem (CTS) extract on HPV-positive cervical cancer cells and to investigate the apoptotic
mechanisms of CTS. Here, we report that CTS treatment causes apoptosis via the extrinsic
pathway, as well as through repression of HPV-16 oncoproteins E6 and E7 and alteration of
protein levels of p53 and p-pRb.

Materials and Methods
Reagents and antibodies

CellTiter 96 AQyueous One Solution Cell Proliferation Assay Reagent [MTS, 3-(4,
5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] was
purchased from Promega (Madison, W1, USA). Propidium iodide (PI) and 4’,6-diamidino-
2-phenylindole (DAPI) stain were purchased from Sigma-Aldrich (St. Louis, MO, USA).
NE-PER Nuclear and Cytoplasmic Extraction Reagents were purchased from Pierce (Rockford,
IL, USA). Antibodies specific to PARP, caspase-3, caspase-8, p53, Bcl-2, Bcl-xL, Bax, Bid, pRb,
p-pRb, and cytochrome C were purchased from Cell Signaling Technology (Beverly, MA,
USA). The anti-rabbit IgG horseradish peroxidase (HRP)-conjugated secondary antibody and
anti-mouse IgG HRP-conjugated secondary antibody were purchased from Millipore (Billerica,
MA, USA). Antibodies specific to p27, p21, and glyceraldehyde 3-phospahte dehydrogenase
(GAPDH) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). JC-1
(5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazolycarbocyanine chloride) was purchased
from Enzo (Farmingdale, NY, USA). General-caspase inhibitor Z-VAD-fmk and caspase-8
inhibitor Z-IETD-fmk were purchased from R&D systems (Minneapolis, MN, USA). The FIT-
C-Annexin V Apoptosis Detection Kit I was purchased from BD Biosciences (San Jose, CA,
USA).

Methods of extraction

Cudrania tricuspidata stem (CTS) extract was purchased from Korea Plant Extract bank
(KPEB), Korea Research Institute of Bioscience and Biotechnology (KRIBB) (Ochang, Chung-
buk, Korea). In brief, the dried stem of C. tricuspidata was washed with sterile water and sub-
jected to extraction with methanol (MeOH) at 30°C for 3 days. The solvent was evaporated
under reduced pressure to yield a crude extract, as described in a previous report [9].

High performance liquid chromatography (HPLC) analysis

The extract was dissolved in methanol (HPLC grade) and filtered through a 0.45-um syringe
filter (Millipore, Billerica, MA, USA) prior to HPLC (ACME 9000 system, Younglin, Anyang,
Korea) analysis. The mobile phases were 0.1% (v/v) acetic acid in water (A) and 0.1% (v/v)
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acetic acid acetonitrile (B). The solvent gradient system was as follows: 92:8 (%, v/v) A:B for

2 min, 90:10 (%, v/v) A:B for 27 min, 70:30 (%, v/v) A:B for 50 min, decreased to 10% A at

51 min, 0:100 (%, v/v) A:B for 60 min, and finally 92:8 (%, v/v) A:B at 70 min. The flow rate
was 1 mL/min. The injection volume was 20 pL. The UV detector was operated at 280 nm. The
separation was performed on an ODS column (5 pm, 4.6 x 250 mm, Agilent Technologies,
Santa Clara, CA, USA).

Cell culture

HPV-16-positive SiHa and CaSKki cervical cancer cells were purchased from the American
Type Culture Collection (ATCC; Manassas, VA, USA). Cells were cultured in Dulbecco’s mod-
ified Eagle’s medium (DMEM; Hyclone Laboratories, Logan, UT, USA) containing 10% (v/v)
heat-inactivated fetal bovine serum (FBS; Hyclone Laboratories). Cells were incubated at 37°C
in an atmosphere of 5% CO,/95% air with saturated humidity.

Cell viability assays

Cell viability was assessed by the MTS dye reduction assay, which measures mitochondrial
respiratory function. Cervical cancer cells were seeded (12 x 10* cells/mL) in 100 uL medium/
well in 96-well plates, incubated overnight, and treated with various concentrations of CTS, as
mentioned in the figure legends, for 24 h. Cell viability was calculated by assessing MTS metab-
olism as previously reported [10]. In brief, media samples (100 puL) were removed and incu-
bated with 100 pL of MTS-PMS mix solution for 1 h at 37°C. Optical absorbance was
measured at 492 nm using an ELISA reader (Apollo LB 9110, Berthold Technologies GmbH &
Co. KG, Bad Wilbad, Germany).

DAPI staining

Apoptotic nuclear morphology was observed using DAPI staining. SiHa cells were seeded in
2-well slides and treated with the specified concentrations of CTS for 24 h, after which the
2-well slides were washed with phosphate-buffered saline (PBS). Next, SiHa cells were fixed
with 4% paraformaldehyde and stained with DAPI staining solution. The 2-well slides were
washed with PBS and mounted on microscope slides with mounting solution. Stained cells
were observed using fluorescence microscopy (Olympus, Tokyo, Japan).

Annexin V and propidium iodide staining

Cervical cancer cells (2.5 x 10° cells/mL) were seeded in 60-mm culture dishes and incubated
overnight. Cells were treated with CTS for 24 h, harvested using trypsin-EDTA, and washed
with PBS. Annexin V and PI staining were performed using the FITC-Annexin V Apoptosis
Detection Kit I (BD Biosciences, San Jose, CA, USA) according to the manufacturer’s instruc-
tions. Data was analyzed by flow cytometry using a FACSCalibur instrument and CellQuest
software (BD Biosciences, San Jose, CA, USA).

Cell cycle analyses by flow cytometry

The cell cycle was analyzed by propidium iodide (PI) staining and flow cytometry. SiHa cells
(2.5 x 10° cells/well) were seeded in 60-mm culture dishes and treated with various concentra-
tions of CTS for 24 h. Cells were harvested with trypsin-EDTA and fixed with 80% ethanol.
Next, the cells were washed twice with cold PBS and centrifuged, after which the resulting
supernatants were discarded. The pellet was resuspended and stained with PBS containing

50 pg/mL PI and 100 pg/mL RNase A for 20 min in the dark. DNA content was analyzed by
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flow cytometry using a FACSCalibur instrument and CellQuest software (BD Biosciences, San
Jose, CA, USA).

Real-time quantitative polymerase chain reaction

Cells treated with CTS were harvested. RNA was extracted using an easy-BLUE™ Total RNA
Extraction Kit (iNtRon Biotechnology, SungNam, Korea) according to the manufacturer’s
instructions as previously reported [10]. cDNA products were obtained using M-MuLV reverse
transcriptase (New England Biolabs, Beverly, MA, USA). Real-time quantitative PCR was per-
formed with a relative quantification protocol using Roter-Gene 6000 series software 1.7 (QIA-
GEN, Venlo, Netherlands) and the SensiFAST™ SYBR NO-ROX Kit (BIOLINE, London,
UK). The expression levels of all target genes were normalized to that of housekeeping gene
GAPDH. Each sample was run with the following primer sets: E6, 5-GCA GCC CTT GAA
TTA CCC AT-3' (forward), 5'-CAG AGG TTG GAC AGG GAA GAA-3' (reverse); E7, 5'-
TGA AGG ACA TGG CTT AGA AGT G-3' (forward), 5'-GGT GCA AGG GTC ACA GTG
TT-3' (reverse); TRAIL, 5'-AAG TTT GTC GTC GTC GGG GT-3' (forward), 5'-TGG TGC
AGG GACTTC TCT CT-3' (reverse); Fas, 5'- TGA AGG ACA TGG CTT AGA AGT- 3’ (for-
ward), 5'-GGT GCA AGG GTC ACA GTG TT-3' (reverse); DR5, 5'-CAG AGG GAT GGT
CAA GGT CG- 3, 5-TGA TGA TGC CTG ATT CTT TGT GG-3'; and GAPDH, 5-TGG
GCT ACA CTG AGC ACC AG-3' (forward), 5'-GGG TGT CGT TGT TGA AGT CA-3'
(reverse).

Western blot analysis

Cells were treated with the specified concentrations of CTS for 24 h, harvested, washed with PBS,
and recentrifuged (1,890 x g, 5 min, 4°C). The resulting cell pellets were resuspended in lysis
buffer containing 50 mM Tris (pH 7.4), 1.5 M sodium chloride, 1 mM EDTA, 1% NP-40, 0.25%
sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), and a protease inhibitor cocktail. The
cell lysates were incubated on ice for 1 h and clarified by centrifugation at 17,010 x g for 30 min
at 4°C. Protein content was quantified using a Bradford assay (Bio-Rad, Hercules, CA, USA) and
a UV spectrophotometer. The cell lysates were separated by 10-12% SDS polyacrylamide gel
electrophoresis (SDS-PAGE). Proteins were transferred to polyvinylidene difluoride membranes
(PVDE; Millipore, Billerica, MA, USA), which were blocked in 5% non-fat dried milk dissolved
in Tris buffered saline containing Tween-20 (2.7 M NaCl, 53.65 mM KCl, 1 M Tris-HCL, pH 7 4,
0.1% Tween-20) for 1 h at room temperature. The membranes were incubated overnight at 4°C
with specific primary antibodies. After washing, the membranes were incubated with the second-
ary antibodies (HRP conjugated anti-rabbit or anti-mouse IgG) for 1 h at room temperature.
After washing, the blots were analyzed using West-Zol Plus and a western blot detection system
(iNtRON Biotechnology, SungNam, South Korea).

Nuclear and cytoplasmic fractionation

The CTS-treated cells were collected and fractionated using NE-PER Nuclear and Cytoplasmic
Extraction Reagents (Thermo Fisher Scientific Inc., Rockford, IL, USA) according to the manu-
facturer’s protocol.

Analysis of mitochondrial membrane potential (MMP)

MMP (Ay,,) was evaluated by JC-1 staining and flow cytometry. SiHa cells were seeded in
60-mm culture dishes (2.5 x 10° cells/well) and treated with various concentrations of CTS.
Cells were harvested with trypsin-EDTA and transferred to 1.5-mL tubes. JC-1 (5 ug/mL) was
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added to the cells and mixed until it was completely dissolved, after which the cells were incu-
bated in the dark for 10 min at 37°C in an incubator. The cells were centrifuged (300 x g, 5
min, 4°C), washed twice with PBS, and resuspended in 200 uL PBS. The solutions were divided
using a FACSCalibur instrument and analyzed by CellQuest software (BD Biosciences, San
Jose, CA, USA). The entire protocol was performed in minimal light.

Silencing of endogenous HPV16 E6 and E7 expressions by siRNAs

The siRNAs of E6 and E7 and scrambled siRNA were purchased from Dharmacon (Dharma-
con, Lafayette,CO). The E6 siRNA sequence and the E7 siRNA sequence were used as
described in previously reported [11]. To suppress transcription of the endogenous HPV16 E6
and E7 genes, SiHa cells were transiently co-transfected with the synthetic siRNAs for HPV16
E6 and E7 or a nontargeting siRNA using Lipofectamine RNAiMAX reagent (Invitrogen)
according to the manufacturer's instructions.

Statistical analysis

Data are presented as the mean + SEM from at least three independent experiments. Statistical
significance was assessed with Student’s t-test. “p < 0.05 or **p < 0.005 was considered statisti-
cally significant.

Results
Identification of phenolic compounds in CTS

We identified potential medicinal components (Fig 1, Table 1) and a large number of chloro-
genic acids (Table 2) in the CTS extract using HPLC. Table 2 lists the components in the CTS
extract, which included chlorogenic acid, (+)-catechin, caffeic acid, phloretic acid, veratric acid,
hesperidin, quercetin, and naringenin. The CTS extract contained diverse phenolic acids and
were rich in chlorogenic acid (64.42 mg/g). Chlorogenic acid has been reported to have anti-
cancer and antioxidant properties [12-15]. Quercetin, hesperidin, and other phenolic acids
such as caffeic acid have also been reported to exhibit anti-cancer effects in several types of can-
cer [16-18]. However, these compounds were present at low concentrations in the CTS extract.

CTS induces cytotoxic effects in cervical cancer cells and normal
keratinocytes

The cytotoxic effects of CTS were assessed in several cell lines using the MTS assay. Cervical
cancer cell lines and HaCaT normal keratinocytes were treated with various concentrations
and time periods (Fig 2). As shown in Fig 2B, the viability of cervical cancer cells was decreased
in a dose- and time-dependent manner by CTS extract. The viability of the CaSki HPV16-posi-
tive cells was decreased in a time- and dose-dependent manner by CTS extract, but to a lesser
degree than that observed in the SiHa HPV16-positive cells. In addition, CTS had no cytotoxic
effect in HaCaT human normal keratinocytes concentrations of 0.125-0.5 mg/mL (Fig 2A).
Therefore, we decided to perform a study on the mechanism underlying apoptosis induced by
CTS extract in SiHa cervical cancer cells.

CTS induces morphological changes and apoptosis in SiHa cells

Phase-contrast microscopy showed that CTS induced cell death and morphological changes in
SiHa cells in a dose-dependent manner after a 24 h treatment (Fig 3A). DAPI staining was
used to observe nuclear condensation, a marker of apoptosis. Nuclear condensation was signifi-
cantly and dose-dependently increased in the CTS-treated cells in comparison with that of the

PLOS ONE | DOI:10.1371/journal.pone.0150235 March 9, 2016 5/17



el e
@ ' PLOS ‘ ONE Effects of CTS Extract in Cervical Cancer Cells

A
66000 14 Standard
500.00)
. 400.00) 9 16
>
£ 15
& =200.00) 17
5] i,
=
G 10
> 1
200.00)
11 1,13
100.00 3 5
AR
6
4
0.00) A Jl L L} A '\
0.00 10.00 20.00 20.00 40.00 50.00 €0.00 70.00
Time (min)
B £000.00) 5 Cudrania tricuspidata stem (CTS)
4000.00)
-
z 7
= 2000.00f
o
=
=3
=
o
> 200009
11
1000.00) 13
15
el JLL_J\ i
-0.00} ~ -
0.00 10.00 20.00 20.00 20.00 £0.00 €0.00 70.00
Time (min)

Fig 1. The HPLC analyses of composition in Cudrania tricuspidata stem (CTS) extract. The seventeen
kinds of the phenolic acid composition of the sample were analyzed by comparing the spectrum of the sample
and standards components matched to create a standard curve from Peak area per component to quantify
the amount of change. (A) The seventeen kinds of the reference phenolic acid compounds. (B) Cudrania
tricuspidata stem (CTS) extract. The HPLC analysis showed the presence of eight compounds
corresponding to 8 among 17 standard compounds. The 5, 7, 11 peaks represented chlorogenic acid, caffeic
acid, and veratric acid, respectively.

doi:10.1371/journal.pone.0150235.g001

control cells (Fig 3B and 3C). Annexin V-FITC/PI staining is generally used to detect apoptosis
and necrosis. Apoptosis was further confirmed by annexin V-FITC and PI-staining after a 24 h
treatment with CTS. The SiHa cells treated with CTS at concentrations of 0.125-0.5 mg/mL for
24 h showed a significantly increased proportion of apoptotic cells in comparison with that of
the control cells, indicating that CTS induced apoptosis. However, there were no alterations in
CTS treated HaCaT cells (Fig 3D).

CTS inhibits E6/E7 expression and regulates expression of E6/
E7-targeting anti-tumor factors

E6 and E7 oncoproteins are known to cause degradation of p53 and pRb, respectively. There-
tore, down-regulation of E6 and E7 oncogenes would be expected to result in restoration of
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Table 1. Volatile compounds identified in Cudrania tricuspidata stem (CTS) extract.

No.

0o N o o~ WD =

©

10
11
12
13
14
15
16
17

Phenolic compounds

Gallic acid
Homogentisic acid
Protocatechuic acid
Gentisic acid
Chlorogenic acid
(+)-Catechin
Caffeic acid
Phloretic acid
p-Coumaric acid
Ferulic acid
Veratric acid
Naringin
Hesperidin
Quercetin
Naringenin
Hesperitin
Biochanin

Standard Curve

y = 30118x + 42.036
y = 13708x—2.8616
y = 27223x + 40.724
y = 3285.2x—4.6768
y = 28445x + 118.08
y = 10473x—62.966
y = 60848x + 51.855
y = 10075x + 6.1534
y = 94434x + 127.03
y =56951x + 62.199
y =31591x + 15.576
y = 32969x + 35.837
y = 28248x + 11.964
y = 25080x—42.462
y = 56671x + 62.852
y = 61525x + 64.162
y =50770x + 51.274

CTS extract

Not Detected
Not Detected
Not Detected
Not Detected

Not Detected
Not Detected

Not Detected

Not Detected
Not Detected

The seventeen kinds of the reference phenolic acid composition of the sample were analyzed by comparing the spectrum of the sample and standards
components matched to create a standard curve from Peak area per component to quantify the amount of change.

doi:10.1371/journal.pone.0150235.1001

p53 and pRb levels [19-20]. HPV-16 E6 and E7 mRNA expression levels were investigated by
quantitative RT-PCR. E6 mRNA expression was decreased in CTS treated SiHa cells compared
with that of the non-treated control cells. In addition, E7 mRNA expression was also decreased
(Fig 4A). The expression level of p-pRb was down-regulated, but pRb expression was
unchanged in CTS-treated SiHa cells (Fig 4B). CTS dose-dependently increased the expression
level of p53, resulting in modulation of downstream factors p21 and p27. As shown in Fig 4B,

Table 2. Quantitative HPLC analyses of phenolic compounds in the Cudrania tricuspidata stem (CTS) extract.

compounds

Chlorogenic acid
(+)-Catechin
Caffeic acid

Phloretic acid
Veratric acid

Phenolic

Hesperidin

Quercetin

Naringenin
Total

#1

89,062.62
484.22
37,200.83
1,378.75
22,186.75
10,541.11
1,751.90
2,255.98

Peak area

#2

93,515.91
431.78
37,207.60
1,559.26
22,509.57
10,737.77
1,832.04
2,493.72

#3

92,651.37
424.37
36,255.37
1,425.37
22,365.37
10,657.37
1,789.37
2,565.37

#1

62.54
1.04
12.21
2.72
14.04
7.45
1.43
0.77
102.21

Contents of phenolic compound (mg/g)

#2

65.67
0.94
12.21
3.08
14.24
7.59
1.49
0.86
106.10

#3

65.06
0.93
11.90
2.82
14.15
7.54
1.46
0.88
104.74

Average

64.42
0.97
12.11
2.88
14.14
7.53
1.46
0.84
104.35

SD

1.66
0.06
0.18
0.19
0.10
0.07
0.03
0.06
1.97

The seventeen kinds of the phenolic acid composition of the sample were analyzed by comparing the spectrum of the sample and standards components
matched to create a standard curve from Peak area per component to quantify the amount of change. Quantitative HPLC analyses of phenolic
compounds were performed three times.

doi:10.1371/journal.pone.0150235.1002
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Fig 2. Cytotoxic effects of CTS extract on cervical cancer cells and normal keratinocytes. (A) HaCaT, (B) SiHa and CaSki cells were treated for 24-48
h with various concentrations of CTS extract, after which cell viability was investigated using the MTS assay. Results of *p < 0.05 and **p < 0.005 were
considered statistically significant. The CTS-treated cells were compared to the control cells.

doi:10.1371/journal.pone.0150235.g002

p21 and p27 expression levels were increased in a dose-dependent manner by CTS treatment
as expected.

CTS inhibits cell cycle progression and modulates cell cycle-related
factors

To assess the effect of CTS on cell cycle progression, we examined cell cycle status by flow
cytometry. In the previous experiments, expression levels of p53 and downstream genes p21
and p27 were increased following treatment with CTS (Fig 4B). Compared with the non-
treated control cells, CTS-treated cells showed significant and dose-dependent accumulation in
the sub-G1-phase (Fig 5B). However, there were no significant changes to the populations of
cells in the GO/GI, S, and G2/M phases following treatment with CTS (Fig 5A).

The effects of CTS are independent of the intrinsic pathway

Mitochondrial dysfunction is the most important factor in the intrinsic apoptosis pathway.
When the mitochondria membrane potential collapses, cytochrome C is released into the
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Fig 3. Effects of CTS on SiHa cervical cancer cell morphological changes and apoptosis. (A) Microscopic images of SiHa cells treated with CTS for

24 h. The photographs were taken by phase-contrast microscopy at 100x magnification. (B) Fluorescence microscopic images of SiHa cells treated with CTS
for 24 h. Nuclear condensation and chromatin shrinkage were observed. (C) The data on apoptotic nuclei of whole DAPI stained cells were summarized as
bar graphs. Results of *p < 0.05 and **p < 0.005 were considered statistically significant. (D) After treatment with the indicated concentration of CTS for 24 h,
SiHa and HaCaT cells were stained with annexin V-FITC/PI.

doi:10.1371/journal.pone.0150235.9003

cytosol, after which it forms the apoptosome with Apaf-1 and caspase-9 [21]. To measure
mitochondrial membrane potential collapse following CTS treatment, we performed JC-1
staining and FACS analysis. As shown in SIA Fig, the JC-1 peak was not shifted following CTS
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Fig 4. Effects of CTS treatment on oncoprotein E6/E7 mRNA levels and protein levels of E6/E7 targeting p53, pRb, and p-pRb. (A) mRNA levels of

oncoproteins E6 and E7 as detected by qRT-PCR. (B) Western blot analyses of pRb, p-pRb, p53, p21, and p27. SiHa cells were treated with the indicated
concentration of CTS for 24 h.

doi:10.1371/journal.pone.0150235.9004
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sub-G1 phase. Results of **p < 0.005 were considered statistically significant. CTS-treated cells were compared to untreated cells.

doi:10.1371/journal.pone.0150235.9005

treatment. In addition, the western blot analyses showed that CTS treatment did not alter the
expression levels of pro-apoptotic factor Bax or those of anti-apoptotic factors Bcl-2 and Bcl-
xL. In addition, cytochrome C was not released into the cytosol (S1B Fig). Thus, we conclude
that amplification of the apoptotic signal after CTS treatment is independent of signaling via
the intrinsic apoptosis pathway.

CTS-induced apoptosis is mediated via death receptor signaling

Because we demonstrated that the intrinsic apoptosis pathway was not involved in CTS-
induced apoptosis, we next focused on the extrinsic apoptosis pathway. The extrinsic apoptosis
pathway receives signals through the binding of extracellular death ligand proteins to proapop-
totic death receptors (DRs) [22]. The extrinsic pathway transmits signals from extracellular
ligands through proapoptotic DRs to the apoptotic caspase machinery [23]. In addition, Poly
(ADP-ribose) polymerase (PARP) is involved in apoptosis, as well as a number of other cellular
processes. We investigated expression levels of extrinsic pathway-related factors TRAIL, DR5,
and Fas in SiHa cells following CT'S treatment (Fig 6A). Our results showed that CTS treatment
upregulates mRNA levels of TRAIL, DR5, and Fas. Protein expression levels of caspase-3, cas-
pase-8, PARP, and Bid, were cleaved in a dose-dependent manner by CTS (Fig 6B). In addition,
we identified the specific caspases involved in the pro-apoptotic mechanism of CTS. SiHa cells
were pretreated with caspases inhibitors, including a general caspase inhibitor and a caspase-8
inhibitor. As shown in Fig 6C, pretreatment with general caspase inhibitor Z-VAD-FMK prior
to CT'S treatment significantly blocked CTS-induced apoptosis. A similar inhibitory effect on
CTS-induced apoptosis was produced by caspase-8 inhibitor Z-IETD-FMK. These results
show that caspase-3, caspase-8, and PARP are activated via DR-mediated signaling during
CTS-induced apoptosis.

Down-regulation of E6 and E7 genes enhanced CTS induced apoptosis

To investigate whether CTS-induced apoptosis would be affected by E6/E7 levels, E6/E7
siRNA was transfected and treated with CTS. Apoptosis activating proteins such as caspase-3,
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doi:10.1371/journal.pone.0150235.g006

caspase-8, and PARP were more cleaved under E6/E7 siRNA transfection and CTS treatment

(Fig 7). p-pRb expression level was decreased in E6/E7 siRNA transfected SiHa cells compared
to control siRNA transfected cells. However, p53 expression level was not altered (Fig 7). These

results show that CTS might support induction of apoptosis through down-regulation of E6/
E7 mRNA expressions.
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doi:10.1371/journal.pone.0150235.g007

Discussion

The main objective of our study was to confirm the anti-cancer efficacy and associated mecha-
nisms of CTS in human cervical cancer cells. CTS extract inhibited cervical cancer cell prolifera-
tion in HPV-positive SiHa and CaSKki cells. The cytotoxic efficacy of CTS in HPV-16-positive
SiHa cells was slightly better than its efficacy in CaSki cells (Fig 2). This effect might be due to the
fact that the number of HPV genome copies in CaSki cells is higher than that of SiHa cells [24].
This finding suggests that the total number of HPV copies in the cells may have influenced their
susceptibility to the proapoptotic effects of CTS [24]. In addition, we demonstrated that CTS
down-regulated expression levels of oncogenes E6 and E7 in HPV-16-positive cell lines. As
expected based on the decreased expression level of E6, we confirmed that p53 expression was
increased in dose-dependent manner. Interestingly, decreased expression of E7 was not associ-
ated with altered pRb expression; however, p-pRb was decreased in a dose-dependent manner by
CTS (Fig 4B). This result reminded earlier reports demonstrating that inhibition of E7 resulted in
reduced phosphorylation of pRb without changing overall pRb protein expression [20].

CTS extract contains several phenolic compounds (Fig 1). Chlorogenic acid is present at the
highest concentration among them. Chlorogenic acid has been reported to have anticancer,
antioxidant, and antidiabetic effects [14, 25-26]. In addition, chlorogenic acid is the second
major bioactive component in coffee after caffeine [25]. Chlorogenic acid stimulates glucose
transport in L6 skeletal muscle via AMPK activation, which contributes to the beneficial effects
for diabetes [25]. Moreover, chlorogenic acid is an antioxidant that may slow the release of glu-
cose into the bloodstream after a meal [26]. In addition, chlorogenic acid can induce cellular
DNA damage and apoptosis in lung cancer cells without affecting normal lung fibroblasts [14].
However, the anti-cancer effects of chlorogenic acid in cervical cancer cells have not been com-
prehensively investigated. Caffeic acids are found in many natural plants [27] and have been
shown to suppress tumor growth by inhibiting tumor cell proliferation and enhancing antioxi-
dant activity [28]. A previous study showed that caffeic acids inhibited proliferation, adhesion,
and migration by A549 human lung cancer cells and HT29-D4 colon cancer cells [29]. Addi-
tionally, hesperidin, naringenin and quercetin have been reported to exhibit anti-cancer effects
in several cancer cell types [16-17, 30-31].
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Apoptosis is mediated by the intrinsic and extrinsic pathways. The intrinsic pathway is
mediated by mitochondrial outer membrane permeabilization (MOMP) and cytochrome ¢
release from the mitochondria into the cytoplasm [32-33]. In the cytosol, cytochrome ¢
induces assembly of the apoptosome, which contains the adaptor protein Apaf-1 and apopto-
sis-initiating protease caspase-9. Apoptosome formation activates caspase-9, which activates
effector caspases [34]. The extrinsic pathway receives signals through the binding of extracellu-
lar protein ligands to proapoptotic DRs located on the cell surface [23]. Although several DRs
have been described, we focused on Fas (CD95) and DR5 and their respective ligands such as
Fas ligand (Fas L) and TRAIL [35]. DRs have an intracellular death domain that recruits
adapter proteins and caspase-8 [36]. Binding of the death ligand to the DR results in formation
of the death-inducing signaling complex (DISC), composed of the death receptor, FADD and
caspase-8 [37]. The DISC activates a downstream signaling cascade resulting in apoptosis [38-
40]. We investigated which pathways are involved in apoptosis induced by CTS in SiHa cervi-
cal cancer cells. Although intrinsic pathway-related factors were not affected by CT'S treatment
(S1 Fig), expression levels of extrinsic pathway-related factors such as Fas, DR5, TRAIL, and
caspase-8, were affected by CTS treatment (Fig 6).

Our results show that CTS has a profound anti-cancer effect against cervical cancer cells.
This is the first demonstration of the ability of CTS to inhibit expression of HPV-16 E6 and E7
oncogenes, and to induce apoptosis mediated by the extrinsic pathway in cervical cancer cells.
However, further studies should identify the specific compounds in CT'S responsible for its
anticancer effects.

Supporting Information

S1 Fig. Effects of CTS on mitochondrial membrane potential and cytochrome C release in
SiHa cervical cancer cells. (A) The difference in JC-1 colors was analyzed by flow cytometry.
JC-1 aggregates (orange) are a feature of healthy cells, whereas JC-1 monomers (green) are a
feature of apoptotic cells. (B) Western blot analysis of anti-apoptotic factors Bcl-2 and Bcl-xL,
pro-apoptotic factor Bax and cytochrome C in SiHa cervical cancer cells. SiHa cells were
treated with the indicated concentration of CTS for 24 h.
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