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A B S T R A C T   

Autoimmune diseases (ADs) are characterized by their complexity and a wide range of clinical differences. 
Despite patients presenting with similar symptoms and disease patterns, their reactions to treatments may vary. 
The current approach of personalized medicine, which relies on molecular data, is seen as an effective method to 
address the variability in these diseases. This review examined the pathologic classification of ADs, such as 
multiple sclerosis and lupus nephritis, over time. Acknowledging the limitations inherent in pathologic classi-
fication, the focus shifted to molecular classification to achieve a deeper insight into disease heterogeneity. The 
study outlined the established methods and findings from the molecular classification of ADs, categorizing 
systemic lupus erythematosus (SLE) into four subtypes, inflammatory bowel disease (IBD) into two, rheumatoid 
arthritis (RA) into three, and multiple sclerosis (MS) into a single subtype. It was observed that the high 
inflammation subtype of IBD, the RA inflammation subtype, and the MS "inflammation & EGF" subtype share 
similarities. These subtypes all display a consistent pattern of inflammation that is primarily driven by the 
activation of the JAK-STAT pathway, with the effective drugs being those that target this signaling pathway. 
Additionally, by identifying markers that are uniquely associated with the various subtypes within the same 
disease, the study was able to describe the differences between subtypes in detail. The findings are expected to 
contribute to the development of personalized treatment plans for patients and establish a strong basis for 
tailored approaches to treating autoimmune diseases.   

1. Introduction 

Autoimmune diseases (ADs) arise when the immune system errone-
ously targets and destroys healthy body cells. Currently, over 50 
different ADs are recognized in the Medical Subject Headings (MeSH), 
with common types including rheumatoid arthritis (RA), systemic lupus 
erythematosus (SLE), inflammatory bowel disease (IBD), and multiple 
sclerosis (MS). Although the mortality rate associated with ADs is 
significantly lower than that of cancer, the impact of ADs on individuals 
and society is no less than that of cancer. ADs often lead to various 
physical symptoms such as pain, fatigue, weight changes, and joint 
swelling [1], which can severely limit daily activities and diminish 
quality of life, affecting work, educational pursuits, household re-
sponsibilities, and leisure activities. In extreme cases, some ADs may 
cause serious health issues, including organ damage and dysfunction, 
and can become life-threatening. Furthermore, the long-term treatment 

of ADs increases public health costs, including medical services, 
disability benefits, and lost productivity; thus, imposing a considerable 
economic burden on healthcare systems [2]. 

Despite significant advancements in understanding human ADs in 
recent years, the precise causes of many such diseases remain elusive. 
ADs are characterized by a wide variability in pathophysiology, clinical 
presentations, and responses to treatment. For instance, SLE, known for 
its systemic involvement, exhibits a broad spectrum of clinical mani-
festations [3], from mild skin rashes to severe kidney damage [4]. 
Variability in SLE can be seen in the disease phenotype, as evidenced by 
the presence or absence of specific complications such as glomerulone-
phritis or neurological involvement [5], and in the disease course, with 
some patients experiencing relapses while others suffer from ongoing 
activity [6]. Studies have consistently shown SLE’s heterogeneity at 
multiple levels, including serology, epigenetics, immunophenotyping, 
and biomarkers [7–11]. IBD, consisting mainly of Crohn’s disease (CD) 
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and ulcerative colitis (UC), represents a group of inflammatory condi-
tions affecting the gastrointestinal tract [12]. Although CD and UC share 
certain clinical features, they are distinct in their pathogenesis, lesion 
locations, histology, and endoscopy findings, suggesting different un-
derlying mechanisms [13]. Moreover, each subtype has its specific 
biomarkers, highlighting the heterogeneity within CD and UC [14]. For 
example, mucosal healing in CD patients treated with corticosteroids is 
achieved in less than one-third of cases, and large retrospective cohort 
studies support the effectiveness of methotrexate in maintaining clinical 
remission for approximately one-third of children with CD [15]. A 
ten-year follow-up study showed that about half of the CD patients 
developed severe stenosis or penetrating disease[16]. Similar hetero-
geneity has also been reported in RA, where differences in factors like 
age and environment contribute to variations in disease states and 
clinical phenotypes [17]. MS also shows heterogeneity in clinical man-
ifestations and disease course predictability [18]. Furthermore, there 
exists heterogeneity in the response to drug treatment across autoim-
mune diseases. The limitations of traditional immunomodulatory drugs 
used to treat autoimmune diseases lie in their broad and nonspecific 
nature. Patients with similar clinical symptoms might have different 
responses to the same medication, necessitating individualized drug 
selection and dosage adjustment [19]. Therefore, revealing the hetero-
geneity of autoimmune diseases is important for exploring disease 
diversity. 

With the emergence of precision medicine, there has been an 
increased emphasis on addressing the complexity and diversity of dis-
eases. Transcriptomic information has provided an extensive range of 
biomedical insights for investigating disease mechanisms, identifying 
clinical diagnostic markers, and discovering drug targets. The ad-
vancements in molecular technologies have significantly influenced the 
understanding of autoimmune diseases. Along with technological ad-
vances, the study of heterogeneity in autoimmune diseases has gone 
through the following stages: I. Researchers employed a low-throughput 
gene expression assay, RT-qPCR, to assess gene expression levels. 
Despite its lower throughput, RT-qPCR’s high accuracy has been 
instrumental in examining the heterogeneity of autoimmune diseases. 
For instance, a study utilizing RT-qPCR demonstrated that the origin of 
different stromal cells (synoviocytes or skin fibroblasts) contributes to 
variability in cytokine production (such as IL-23, IL-17, etc.) and re-
ceptor expression. This variation could account for the differing re-
sponses to IL-23 or IL-17 inhibitors across various autoimmune diseases 
[20]. II. As technology advanced, high-throughput microarray technol-
ogies, capable of measuring extensive gene expression data, have been 
extensively applied to explore the heterogeneity in autoimmune dis-
eases. For example, Daniel Toro-Domínguez et al. used microarray data 
alongside disease activity scores to thoroughly investigate SLE hetero-
geneity, eventually classifying SLE patients into three distinct subtypes 
[21]. III. RNA-seq technology, offering higher resolution than microarry, 
enables the identification of new transcripts and splice variants, thereby 
delivering more detailed and comprehensive insights for the molecular 
phenotyping of autoimmune diseases. The surge in data volume has also 
expanded the community of researchers dedicated to studying the het-
erogeneity of autoimmune diseases. A Bulk RNA-seq-based study 
including seven systemic autoimmune diseases (including systemic 
lupus erythematosus, RA, SSC, pSjS, MCTD, PAPS, and UCTD) identified 
four unique subtypes [22]. Furthermore, single-cell RNA sequencing 
technologies have unveiled the transcriptome’s heterogeneity and 
complexity at the individual cell level, significantly advancing autoim-
mune disease research [23]. However, gene expression analysis involves 
more than just quantification; it often necessitates considering the 
spatial aspects of gene expression. Recent contributions from spatial 
transcriptomics technology to autoimmune disease research include a 
study on psoriasis, which revealed distinct molecular profiles between 
patients with mild and severe forms of the disease [24]. It is anticipated 
that novel transcriptomic molecular techniques will introduce fresh 
perspectives and methods, along with more precise results, for the 

classification studies of autoimmune diseases. 
Therefore, in this study, we have reviewed the process and results of 

pathological and molecular typing studies. To define the scope of our 
research, a comprehensive literature search was performed on PubMed, 
employing 26 common autoimmune diseases as keywords, in addition to 
terms like "molecular subtype", "classification", "subtype", and "hetero-
geneity". Our selection criteria included diseases with at least two sub-
types within the same disease category, enabling us to summarize and 
analyze the commonalities and heterogeneities of these diseases. Among 
them, 15 studies met our criteria, covering four types of autoimmune 
diseases: systemic lupus erythematosus (SLE), rheumatoid arthritis 
(RA), multiple sclerosis (MS), and inflammatory bowel disease (IBD). 
These four diseases are common and representative autoimmune dis-
eases. Over the past 20 years, the incidence of these diseases has 
increased. In addition, patients with these diseases are more prone to 
complications from other autoimmune diseases, which significantly af-
fects their quality of life [25]. These diseases involve various tissues and 
organs of the human body and have diverse manifestations. In the 
context of autoimmune diseases (ADs), significant heterogeneity among 
patients, even with the same disease, has garnered considerable atten-
tion from researchers. Recently, there has been a surge in studies 
focusing on the classification of these diseases, leading to an accumu-
lation of substantial transcriptomic data and typing results. Therefore, 
summarizing and examining the research findings on the molecular 
subtypes of these four diseases, and analyzing the heterogeneity and 
similarities among different subtypes, hold significant importance for a 
deeper understanding of the pathogenesis of ADs and for advancing 
precise treatment strategies. In summary, this study selected four 
representative ADs with the goal of synthesizing existing research out-
comes on the molecular subtypes of autoimmune diseases. The investi-
gation began by reviewing the timeline of the pathological classification 
process for diseases such as MS and LN. Compared to pathological 
classification, molecular subtype methods offer advantages like objec-
tivity, stability, and assistance in exploring mechanisms of disease onset 
and development. Consequently, this study outlines the general pro-
cedures for molecular typing studies of ADs, the commonly utilized data, 
and the biological characterization of ten molecular subtypes across four 
ADs to examine the heterogeneity within subtypes of the same disease 
and some common pathogenic mechanisms across many ADs. This 
research further characterizes different subtypes of the same disease, as 
well as similar subtypes across various autoimmune diseases, based on 
markers for each subtype. Lastly, it summarizes the drugs effective 
against each subtype. This study may provide valuable insights into 
disease treatment and offer a relatively generalized framework for 
professionals in related fields. 

2. Pathological classification methods for autoimmune diseases 

The clinical manifestations of ADs can vary widely among in-
dividuals, and the absence of precise assessment methods for disease 
course complicates the diagnosis, treatment, and research of these 
conditions. The emergence of pathological classification has allowed 
clinicians to employ unified terminology to describe disease progres-
sion. Thus, summarizing progress in pathological classification research 
of ADs is beneficial for understanding and diagnosing ADs. The focus 
here is primarily on summarizing pertinent findings of pathological 
subtyping in MS and LN. 

In 1996, the National Multiple Sclerosis Society (NMSS) Advisory 
Committee established the first clinical subtyping criteria for MS, sug-
gesting six concepts to unify the clinical manifestations of MS. 
Relapsing-remitting (RR) MS is characterized by abrupt impairments in 
brain function followed by varied degrees of recovery and stability be-
tween episodes. Primary-progressive (PP) MS progresses from onset, 
sometimes with stable periods and temporary minor improvements. 
Secondary-progressive (SP) MS progresses after the initial RR disease 
course, with or without occasional recurrences, mild remissions, and 
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periods of stability. Progressive-relapsing (PR) MS advances from the 
onset, with several acute relapses, with or without complete recovery. 
Benign MS sees patients retaining full nervous system functions 15 years 
after disease onset. Malignant MS progresses rapidly, causing severe 
impairment of multiple nervous system functions or death within a short 
period [26]. With advances in imaging and molecular marker technol-
ogies, Lublin et al. updated the 1996 criteria in 2013 to include two new 
disease processes — clinically isolated syndrome and radiologically 
isolated syndrome (CIS and RIS) — and incorporated disease activity 
(imaging and relapses) and progression in the classification criteria 
[27]. Although the Lublin criteria have been widely used in clinical 
settings, they do not accurately describe disease subtypes in early re-
lapsing or late progressive MS patients [28–33]. To address this, David 
Pitt et al. proposed a pathology-based approach in 2022, centered 
around the concept of ’pathological axes’. This framework aims to 
define MS based on the extent and nature of pathological processes 
rather than solely on clinical presentations [34]. This approach quan-
tifies the activity and type of each pathological process to classify MS 
patients. However, the limited availability of clinical biomarkers re-
stricts the clinical application of this method. 

LN, a major cause of death and disability among patients with SLE, 
was initially classified by the World Health Organization (WHO) in 1975 
and 1978 into five classes based on clinical renal biopsy findings and 
glomeruli involvement [35]. Class I showed no detectable glomerular 
abnormalities under the microscope, while Class II involved purely 
mesangial immune deposition, subdivided further depending on 
mesangial hypercellularity presence. Class III involved less than 50% of 
proliferative glomerulonephritis, Class IV more than 50%, and Class V 
was defined as Membranous lupus nephritis. The International Study of 
Kidney Diseases in Children (ISKDC) revised the WHO criteria in 1982, 
removing the glomerular involvement criteria and further subclassifying 
the disease into six categories [36]. In 2003, the International Society of 
Nephrology/Renal Pathology Society (ISN/RPS) introduced new criteria 
that clarified the ambiguous aspects of the WHO classification, refined 
the definitions of activity and chronicity, and underscored the corre-
sponding clinical lesions[37]. In 2018, the RPS updated the prior version 
of the criteria by reviewing and refining each category based on the 
earlier standards and incorporated the activity index (AI) and chronicity 
index (CI) scoring[38]. Despite these advancements and the broad 
acceptance of these criteria, their reliance mainly on light microscopy 
observation rather than on the underlying pathological mechanisms 
remains a limitation[39]. 

We have presented a chronological overview of the research progress 
in the pathological classification of MS and LN (Fig. 1), highlighting the 
significant value of these pathological classification methods in under-
standing and diagnosing ADs. However, conventional methods of cate-
gorizing autoimmune diseases primarily depend on pathological 
classification, which entails the observation of clinical manifestations, 
anatomical pathology changes, and other features for disease 

categorization. This approach has several drawbacks. First, as this 
classification method depends on the clinical manifestations of the dis-
ease, different clinicians may introduce subjectivity in its classification 
[27]. This may lead to unclear allocation of specific pathological sub-
types for patients with less obvious symptoms. Second, pathological 
classification methods often overlook the molecular mechanisms un-
derlying diseases, which are crucial for understanding, preventing, and 
treating diseases. In contrast, molecular classification methods address 
some of these limitations and possess objective and stable characteris-
tics. Molecular classification categorizes diseases based on gene 
expression, protein composition, and other molecular features. This 
approach provides a novel perspective for understanding and classifying 
autoimmune diseases. This approach enables the exploration of the 
fundamental biological processes of diseases and the identification of 
potential mechanisms that pathological classification alone cannot 
achieve. Furthermore, molecular classification aids in a deeper under-
standing of disease progression, prediction of disease outcomes, and 
formulation of more accurate treatment strategies. Hence, molecular 
classification is gaining increasing significance in autoimmune disease 
research. 

3. Molecular level classification methods of autoimmune 
diseases 

The diversity of autoimmune diseases (ADs) is apparent not only in 
the clinical symptoms observed across different individuals but also at 
the molecular level. The aim of subtyping diseases at the molecular level 
is to uncover the biological mechanisms underlying these variations and 
to facilitate the classification of patient samples. Considering the variety 
of methods used by researchers and the different perspectives from 
which molecular subtypes of ADs have been studied, current research 
presents a wide array of study designs and results, utilizing various 
bioinformatics tools and techniques. This review offers a detailed 
overview of the typical process and the data commonly used in existing 
studies, focusing on the crucial steps, methods, and tools employed in 
research design. 

3.1. Common data types for autoimmune classification 

Transcriptome data, which have the advantage of high density, have 
become the main type of data used for many disease subtype classifi-
cation studies. Nevertheless, differences exist in the transcriptome data 
utilized for investigating subtypes of autoimmune diseases due to vari-
ations in the affected sites of different diseases, the study period, and the 
direction of subtype classification. 

The largest number of studies on SLE has been published, and most of 
these studies involve data. From 2016 to 2022, a total of six SLE clas-
sification studies covering 6172 patients were published [21,40–44]. 
Most of the data can be downloaded from the GEO database, with a 

Fig. 1. The pathological classification of MS and LN. The blue part represents MS, and the yellow part represents LN. MS: multiple sclerosis. LN: lupus nephritis. 
WHO: World Health Organization. NMSS: National Multiple Sclerosis Society Advisory Committee. ISKDC: the International Study of Kidney Diseases in Children. 
ISN/RPS: International Society of Nephrology/Renal Pathology Society. 
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small amount coming from the PRECISESADS IMI project [43]. In recent 
years, with the development of single-cell transcriptomes, the classifi-
cation of ADs has been combined with single-cell data to explore the 
molecular subtypes and subtype-specific cells of patients with SLE [44]. 
Given that SLE is a complex disease affecting multiple systems and or-
gans and considering the diverse clinical manifestations and organ 
damage observed in different patients, it is challenging to establish a 
single organ or tissue as a universal standard for sequencing. Nonethe-
less, as nearly all SLE patients undergo hematological changes, current 
studies on SLE typing predominantly rely on data derived from blood 
samples (Table 1). 

RA, an autoimmune disease, is mainly characterized by joint dam-
age. The data for classification studies often come from synovial biopsies 
or blood tests of the patients. Initial studies lacked healthy control 
samples for RA, leading researchers to use sequenced samples from 
osteoarthritis(OA) patients as controls for the analysis [45]. Subsequent 
studies, benefiting from a larger collection of sequencing samples, some 
studies still retain OA data and use normal samples and OA as controls to 
identify RA-specific DEGs [46] (Table 1). 

IBD, is a chronic gastrointestinal inflammatory disorder influenced 
by multiple factors. Intestinal mucosal biopsy, particularly from the 
organ most affected, has become the primary data source for IBD typing 
studies. Depending on the IBD pathological classification, different 
sections of the intestine are selected for mucosal collection. For UC, the 
sigmoid colon, located 15 to 20 cm from the anal verge, is often chosen 
for biopsy. For CD, biopsies are usually taken from the ileum site 
(Table 1). 

MS predominantly impacts the optic nerve, brain, and cervical spinal 
cord’s white matter. The unique nature of the pathogenesis sites makes 
sampling challenging. Currently, the primary data source for MS typing 
studies is microarray data from patients’ blood samples [47] (Table 1). 

3.2. The general process for subtyping of autoimmune diseases 

The traditional classification of ADs includes five steps: data pro-
cessing; feature matrix generation; clustering; subtype functional defi-
nition, and classifier construction, as depicted in Fig. 2. 

3.2.1. Data processing 
During the initial analysis step, data processing commonly encom-

passes quality control, batch effect removal, probe annotation, data 
normalization, and data scaling. After eliminating abnormal data and 
ineffective samples, the final gene expression profile was obtained, 

which served as the raw material for subsequent classification analysis. 

3.2.2. Feature matrix generation 
Upon acquiring the gene expression profile, researchers often select 

one or more features pertinent to the disease or their research interests, 
such as differentially expressed genes (DEGs), disease activity indices, 
and specific biological markers like neutrophil content. Methods like 
differential analysis, correlation calculations, and Weighted Gene Co- 
expression Network Analysis(WGCNA)[48] are employed to create 
feature-related matrices from these features. WGCNA builds an undi-
rected weighted co-expression network from gene expression data to 
identify gene modules with high cooperation. It is frequently used to 
pinpoint candidate genes associated with phenotypes through the 
module-phenotype relationships. Notably, some studies bypass the sec-
ond step and directly employ the gene expression profile post-data 
processing as a feature matrix for the clustering analysis. 

3.2.3. Clustering 
Clustering aims to categorize a dataset into distinct groups, grouping 

similar items together to simplify complex data structures. This method 
can identify the disease subtypes. Researchers apply various clustering 
algorithms to divide complex data with unknown class labels into 
similar groups, which often display molecular-level differences such as 
variations in immune cell infiltration, dysregulated genes, and enriched 
pathways. The heterogeneity within these groups may indicate different 
pathogenic factors, disease mechanisms, and varying drug response and 
treatment effectiveness within the same disease. Thus, precise clustering 
of disease data is vital for developing more effective, personalized 
treatment strategies. 

Three essential steps condense cluster analysis. Initially, evaluating 
the dataset’s clustering tendency is imperative, determining if the data 
intrinsically possesses a meaningful clustering structure. This evaluation 
is critical as clustering methods can produce results even without clear 
inherent clusters. The Hopkins statistic is used to assess clustering pro-
pensity. Secondly, identifying the optimal cluster number is essential. 
Various statistical metrics, including gap statistics [49], silhouette co-
efficients [50], sum of squared error (SSE), Bayesian information criteria 
(BIC), cumulative distribution function (CDF), and Calinski-Harabasz 
index, assist in determining the most appropriate cluster number. The 
R package NbClust [51], provides 30 indicators to help select the 
optimal number. Finally, choosing the suitable clustering algorithm for 
implementation follows the establishment of the optimal number of 
clusters. These algorithms include K-means clustering, hierarchical 
clustering, consensus clustering, non-negative matrix factorization 
(NMF), and affinity propagation(AP) [52], with several R packages such 
as ConsensusClusterPlus [53], mclust [54], NMF [55], CrossICC [56], 
and apcluster [57], facilitating these steps’ practical application. 

The significance of clustering trends in disease data and the chosen 
clustering algorithms profoundly affects classification outcomes. In each 
included study, researchers utilized specific methods to test the classi-
fication’s accuracy and reliability. I. Employing multiple clustering 
methods to achieve consistent typing results enhances result reliability. 
For instance, Cui et al. determined the optimal number of subtypes using 
three unsupervised clustering methods (NbClust, PAM, and Vegan) after 
identifying labeled genes for subtype classification and assigning cate-
gory labels to each sample [41]. II. Statistical metrics determine the 
optimal subtyping results. After subtyping, metrics such as gap statistics 
[49], silhouette coefficients, cumulative distribution function (CDF), etc., 
were used to determine the optimal subtyping results. For example, a 
study classifying systemic lupus erythematosus (SLE) subtypes based on 
neutrophils utilized CDF for optimal subtype determination[42]. III. 
Subtype results are validated using validation sets. In a study on ulcer-
ative colitis (UC), iterative consensus clustering (crossICC) categorized 
patients into three subtypes using bulk transcriptomic data from three 
sources. The genes characterizing these subtypes were validated in three 
other independent bulk transcriptome datasets, showing stable 

Table 1 
The SLE, RA, IBD, and MS classification of research data statistics.  

Disease PMID Patients Normal Data Type Source 

SLE  27040498  924 72 Microarray BLOOD 
29938934 1216 92 
34305454 1123 102 
35858908 404 43 
35947992 6232 791  

99 18 RNA-seq 
IBD  36923403  362 26 Microarray ILEUM 

268 42 COLON 
36845139 630 68 
37443022 208 0 Microarray  
27742763  21 11 RNA-seq ILEAL 

RA  30831253 
33230538  

300 40(OA 51) Microarray SYNOVIAL 
62 0   
190 28 RNA-seq 

29468833 123 0(OA 6) 
31461658 87 0   

67 0 BLOOD 
MS  16837931  363 0 Microarray BLOOD 

23019656 29 28 

SLE: Systemic Lupus Erythematosus; RA: Rheumatoid Arthritis; IBD: Inflam-
matory Bowel Disease; MS: Multiple Sclerosis. 
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performance across the validation sets. This result ensures the stability 
and accuracy of these three isoforms in the disease population [58]. 
Therefore, we recommend the use of multiple clustering methods for 
subtyping and incorporating validation mechanisms to determine reli-
able subtyping results. This approach not only would help assess data 
quality but also ensure the reliability of the subtypes produced by the 
chosen clustering algorithm. 

3.2.4. Subtype functional definition 
After identifying the disease subtype, understanding its function and 

heterogeneity becomes crucial. This insight aids in exploring disease 
pathogenesis and informs personalized medicine in drug development. 
Specifically, the researchers will first identify gene sets specific to each 
subtype based on differential expression analysis, correlation analysis, 
and WGCNA. Here, the researchers entered the subtype as phenotypic 
information into the WGCNA [48] to identify the subtype-specific 
functional modules that make up the specific gene set of the subtype. 
Based on these gene sets, researchers have conducted functional 
enrichment analyses, including overrepresentation analysis (ORA), gene 
set enrichment analysis (GSEA)[59], and gene set variation analysis 
(GSVA)[60]. Immune infiltration analyses were also performed using 
tools such as CIBERSORTx[61] and IOBR[62] to delve deeper into the 
functional characteristics and heterogeneity of the subtypes. 

3.2.5. Constructing the classifier 
Finally, researchers have applied methods such as decision trees, 

logistic regression, naive Bayes, support vector machines (SVMs), and 
neural networks to construct subtype classifier models or drug response 
prediction models. These models assist in identifying disease subtypes 
and predicting aspects such as drug responses, recurrence, and remission 
for newly diagnosed patients. Integrating subtype research findings with 
clinical applications enhances our understanding of disease character-
istics, paving the way for tailored medical services for patients. 

3.3. Experimental design for different disease classifications 

3.3.1. Feature selection 
Selecting features for disease subtype classification is essential prior 

to clustering. Selecting all genes for classification is impractical from 
both biological and algorithmic perspectives. Moreover, choosing genes 
that do not reflect disease heterogeneity can obscure the true disease 
subtypes, yielding inaccurate results. Hence, employing feature selec-
tion to extract and transform expression profile information is crucial. In 
feature selection, researchers pick features that are either strongly 
associated with disease onset and progression or capable of dis-
tinguishing subtypes. Bioinformatics techniques then convert the 
expression profile into a feature matrix linked to selected features. 
Clustering this feature matrix identifies the disease subtypes. The feature 
matrix plays a pivotal role in determining the final disease subtype 
outcome, forming the foundation of subtype studies. 

In order to retain the expression profile information, certain studies 
opted not to perform additional operations on the expression profile, 
instead utilizing the preprocessed expression profile directly as a matrix 
for clustering. For example, peripheral blood mononuclear cell data was 
used by Ottoboni et al. to classify all genes in the expression profile as 
features of disease subtypes. In 141 untreated patients, two disease 
subtypes (MSA and MSB) of multiple sclerosis (MS) exhibiting varying 
disease activity were identified[47]. Another study also used peripheral 
blood profiles from relapsing-remitting multiple sclerosis (RRMS) pa-
tients to classify them into two distinct MS subtypes [63]. 

Currently, the generation of feature matrices predominantly relies on 
DEGs between the disease and normal control. In one investigation, the 
DESeq2 package [64] was utilized to identify 1241 upregulated DEGs in 
the synovial tissue expression profiles of patients with RA compared to 
healthy controls. These DEGs served as features for subtyping, leading to 
the delineation of three distinct disease subtypes [65]. In cancer tissue 
typing research, the most variably expressed features are often 
employed for unsupervised subdivision into distinct subtypes [66]. 
However, due to the inherent variability of the immune system [67], this 
approach is not suitable for blood samples from patients with immune 
disorders. In blood samples, characteristics with the highest variability 
may relate to processes not associated with systemic autoimmune dis-
eases (SADs), such as infections. Barturen et al. opted to concentrate on 
DEGs and Differentially Methylated CpGs (DMCs), disregarding highly 
variable features unrelated to the pathology under examination. A total 
of 1821 DEGs and 4144 DMCs were selected to categorize seven SADs 

Fig. 2. Common flow chart for subtype classification. The traditional subtype division procedure is divided into the following five steps. Step 1. Data Preprocessing: 
Perform data quality control and standardization; Step 2. Feature Matrix Generation: Choose crucial biomarkers for subtype classification; Step 3. Clustering: Employ 
clustering algorithms to determine distinct disease subtypes; Step 4. Subtype functional definition: Analyze the functions and heterogeneity of each subtype; Step 5. 
Classifier construction: Construct classifier models for precision medicine and drug response prediction. 
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into four subtypes [22]. 
To screen important DEGs more precisely, researchers commonly 

integrate data like disease activity indicators or protein interaction 
networks to create a feature matrix for distinguishing disease subtypes. 
For example, Cui et al. identified 92 DEGs associated with disease ac-
tivity by assessing the correlation between disease activity score and 
longitudinal gene expression data. These DEGs were then utilized as 
identifying markers for SLE [41]. Another study screened and clustered 
genes linked with the SLEDAI and revealed three subtypes [21]. Based 
on the functional enrichment analysis of 876 genes that were differen-
tially expressed between the RA group and the control group and be-
tween the RA group and the OA group, Kim et al. constructed 
protein–protein interaction networks using open databases such as 
BIOGRID[68], HPRD[69], IntAct[70], Reactome [71], and STRING[72] 
to analyze PPIN. They further identified 56 genes through the network 
centrality analysis [46]. 

Furthermore, two studies have classified disease subtypes based on 
neutrophil abundance, given their crucial role in initiating and sus-
taining intestinal inflammation. Neutrophils, by generating chemokines 
and reactive oxygen species (ROS), disrupting the epithelial barrier, 
recruiting and activating other immune cells, and triggering redox- 
sensitive inflammatory pathways [73], may exacerbate intestinal 
inflammation and contribute to the formation of malignant lesions 
through the release of neutrophil extracellular traps (NETs) [74]. NETs 
may also intensify autoimmune diseases like rheumatoid arthritis and 
systemic lupus erythematosus [75]. Thus, in a study on ulcerative colitis 
(UC) subtype study, researchers determined subtypes based on 
neutrophil-associated differential expression genes [76]. Initially, the 
limma [77] tool was used to identify DEGs between disease and normal 
controls. Subsequently, CIBERSORT was applied to estimate the pro-
portion of patients with immune cell infiltration, and these findings 
were used as phenotypic input for WGCNA. Following WGCNA analysis, 
a red module associated with neutrophils was identified, and genes 
within this module were intersected with DEGs to define subtype fea-
tures. In another study, SLE patients were classified into two subtypes: 
high neutrophilic (NEUT_H) and low neutrophilic (NEUT_L), based on 
neutrophil levels. Initially, ssGSEA analysis with the immune cell gene 
set [78] was conducted to assess enrichment scores for various immune 
cell subpopulations. Data from the Immunology Database and Analysis 
Portal (ImmPort; https://immport.niaid.nih.gov)[79] was then used to 
acquire immune-related genes. These gene expression profiles were the 
input for WGCNA, combined with ssGSEA results as phenotypic data for 
each immune cell. Through this process, functional modules with strong 
correlations to neutrophils were identified. This methodology was 
applied across four independent datasets, identifying eight features from 
the intersection of neutrophil-related functional modules to classify 
disease subtypes [42]. In addition, when we have identified the func-
tional modules of a specific cell/pathway, we can also use Cytoscape’s 
CytoHubba [80] for further characterization screening. 

Beyond common features, some studies construct specific typing 
matrices for analysis by creating scores and reducing dimensionality. 
For example, MyPROSLE, a molecular patient portrait model by Toro- 
Dominguez et al., involved collecting data from 6134 whole-blood SLE 
patients and 757 healthy controls across 10 cohorts. Utilizing the Tmod 
R package [81], and the premise that genes may co-express in specific 
biological functions, gene expression data at the individual level was 
summarized into 606 co-expressed gene modules related to regulatory 
biology and immune mechanisms. To quantify each gene module’s de-
viation from the normal state in patients, the module score (M-score) 
was calculated. Disease subtypes were classified using the M-score ma-
trix, resulting in the identification of two clinically and molecularly 
distinct SLE subtypes [43]. Additionally, a study employing K-means 
clustering and module partitioning to map the blood fingerprint selected 
the module most closely associated with the disease activity index. 
Subsequently, the correlation coefficient matrix of this module and 
blood module was obtained, and hierarchical clustering of the 

correlation coefficient matrix was performed to identify disease sub-
types [40]. 

3.3.2. Functional definition 
For the functional definition, researchers typically employ functional 

enrichment, immune infiltration, and pathway activity assessment to 
unravel the pathogenesis and define the functions of each subtype. If 
different subtypes do not provide distinct functional definitions, classi-
fication efforts are reassessed. This reevaluation aids in the selection of 
subtype features and refines the classification approach. In this section, 
we outline the methodologies employed to define functions and char-
acterize heterogeneity in the typing studies of ADs (Table 2). 

4. The review of the molecular subtypes biological results for 
the four ADs 

Currently, due to variations in the research timeline, data selection, 
and methodology, different studies examining the subtypes of the same 
disease may produce different results. Nevertheless, we observed con-
sistency among the various subtyping results for the same disease. 
Therefore, in this review, we compiled and summarized the molecular 
subtyping results for four ADs (SLE, IBD, RA, and MS), focusing on the 
same disease, to explore the similarities and connections between 
different studies. 

4.1. Systemic lupus erythematosus 

SLE is a complex autoimmune disease characterized by immune 
system dysregulation, including aberrant immune activation, impaired 
regulatory cell function, antinuclear antibody production, and cytokine 
balance disturbances. These factors significantly contribute to SLE’s 
onset and progression. Molecular classification studies have refined 
SLE’s different functional subtypes, enhancing the understanding of 
disease mechanisms. This summary outlines common characteristics 
among SLE functional subtypes, categorizing SLE into four primary 
functional subtypes: neutrophil, interferon, lymphocyte, and plasma cell 
subtypes. 

4.1.1. Neutrophil subtype 
Neutrophils, as the most abundant immune cells in humans, play a 

crucial role in inflammation and various systemic autoimmune diseases. 
Recent studies have shown that neutrophils, especially low-density 
granulocytes (LDGs), are key in triggering autoimmune responses and 
organ damage in SLE patients[47]. Neutrophil subtypes were described 

Table 2 
The tools used for functional definition and heterogeneity of subtypes in 
different studies.  

Disease PMID Defining Function / Characterizing Heterogeneity 

SLE  27040498 modular analysis[82]; QuSAGE[83]  
29938934 GO[84]; EnrichR[85]; CIBERSORT[86]  
34305454 GO[84];gene expression deviation (GED)  
35858908 ssGSEA; GO[84]; KEGG[87]  
35947992 modular analysis 

IBD  36923403 GSVA[60]; CIBERSORT[86]; IOBR[62]   
37443022 GO[84]; KEGG[87]; CIBERSORT[86]; GSVA[60]   
27742763 Reactome[71]; GSAA[88]   
36845139 GSVA[60]; ssGSEA; ESTIMATION 

RA  30831253 DAVID[89]; GSEA[59]   
33230538 GSEA[59]; GO[84]; KEGG[87]; xCell[90]; ssGSEA   
29468833 DAVID[89]; CIBERSORT[86]   
31461658 Single cell annotation; Ingenuity Pathway Analysis (IPA); 

Reactome[71]; KEGG[87] 
MS  23019656 Ingenuity Pathway Analysis (IPA http://www.ingenuity. 

com)  
16837931 PANTHER[91]; GSEA[59] 

SLE: Systemic Lupus Erythematosus; RA: Rheumatoid Arthritis; IBD: Inflam-
matory Bowel Disease; MS: Multiple Sclerosis. 
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in five SLE-related categorization studies[21,40–43], and numerous in-
vestigations found a strong connection between the neutrophil subtype 
and immunological, inflammatory, bacterial infections, and renal 
manifestations, such as hematuria or proteinuria, particularly linked to 
severe nephritis risk. This subtype is associated with platelets and dis-
ease progression through various cytokines, including BCL, IL1RA, 
MMP8, IL6, TGF-β, and BAFF, with a positive correlation between 
SLEDAI scores and neutrophil percentage. Elevated neutrophil counts in 
remission patients may increase relapse risk. Additionally, in a subtyp-
ing study[42], neutrophil subtypes exhibited relatively less CD8+ T cells 
infiltration than other subtypes. Researchers believe that a reduction in 
CD8+ T cells may weaken the T-cell response to SLE infection, thereby 
exacerbating the severity of SLE. (Fig. 3-A). 

4.1.2. Interferon subtype 
Type I interferons, a class of cytokines, play a crucial role in the 

human immune response. Type I interferon, a major pathogenic factor in 
SLE, is associated with more active disease levels and severe manifes-
tations, like nephritis [92]. Two studies [40,41]. defined 
interferon-related subtypes, one identifying an IFN-centric viral 
infection-related pattern due to strong dysregulation in virus-related 
modules. Further research into gender and age revealed a higher prev-
alence of the interferon subtype in children and women, potentially due 
to children’s PBMC increased sensitivity to viral RNA transfection by the 
influenza virus and the effect of female estrogen secretion on SLE ac-
tivity. Additionally, ethnic differences were noted, with black patients 
showing a stronger tendency towards the interferon subtype [41]. 
Despite limited studies directly defining interferon subtypes, interferon 

signatures are commonly identified in other SLE typing studies. In the 
Systemic Lupus Erythematosus (SLE) typing study published in 2022 
[43], findings revealed dysregulation of interferon along with several 
other factor modules. It was observed that significant dysregulation of 
neutrophilic granulocyte/inflammation, plasma cell/cell cycle, and 
platelet signals coincided with high dysregulation of interferon signals, 
but not in the absence of such conditions. In other words, interferon 
signatures can be dysregulated alone, but when other signatures are 
dysregulated, interferon is co-dysregulated. This result may explain why 
interferon dysregulation is a common feature in SLE. Another study on 
SLE[93] focused on the Type I interferon-stimulating gene (ISG), 
observing that neutrophils and low-density granulocytes (LDGs) 
demonstrated increased ISG activity, potentially offering evidence for a 
pattern of co-dysregulation between interferon and neutrophils 
(Fig. 3-B). 

4.1.3. Lymphocyte subtype 
Lymphocytes, including T, B, and NK cells, are central to immune 

response regulation and execution. Abnormalities in lymphocyte func-
tion in SLE patients have provided targets for treatment and interven-
tion. For instance, the T cell-related cytokine IL-2 is a therapeutic target 
for SLE and other ADs[94]. Studies investigating B cells have become a 
prominent area of SLE research. This focus has led to substantial prog-
ress in developing B cell-targeted therapies for SLE, exemplified by 
Belimumab, a BAFF inhibitor [95], and Telitacicept, a B lymphocyte 
stimulator inhibitor [96]. Dysregulated genes on NK cells are also po-
tential new therapeutic targets for SLE[97]. In conclusion, lymphocytes 
play a critical role in both the development and treatment of SLE. 

Fig. 3. Summary of the biological conclusions of ADs subtypes research. The figure describes the biological characteristics of each disease subtype at the molecular, 
cellular, organ and other levels. The blue part represents SLE (A: Neutrophil subtype, B: Interferon subtype, C: Lymphocyte subtype, D: Plasma cell subtype). The 
green part represents IBD (E: High metabolism subtype, F: High inflammation subtype); The pink part represents RA (G: Inflammation subtype, H: Joint damage 
subtype, I: Neutrophil subtype); The yellow part represents MS (J: Inflammation & EGF). 
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Two SLE subtyping studies [21,40] have defined lymphocyte sub-
types in SLE, linking them with clinical manifestations like secondary 
Sjögren’s syndrome, photosensitive rash, antiphospholipid syndrome, 
and elevated aspartate aminotransferase activity, indicating hepatic 
dysfunction. A study observed a decrease in lymphocyte proportion with 
increasing disease activity index [21] and over-expression of the type I 
interferon-related pathway in lymphocyte-driven subtypes with low 
SLEDAI values. A Mendelian R4andomization study further established 
a causal relationship between lymphocyte abundance-related variations 
and SLE[44](Fig. 3-C). 

4.1.4. Plasma cell subtype 
Plasma cells, also known as effector B cells, are a type of human 

immune cell and can be classified as long- or short-lived. In patients with 
SLE, long-lived plasma cells are thought to be responsible for producing 
anti-RNA and anti-cardiolipin antibodies [98], which are markers of SLE 
[99]. Subtypes associated with plasma cells were identified in two 
studies [40,43]. A study based on co-expressed gene modules found that 
the plasma cell/cell cycle and neutrophil/inflammation modules 
showed opposite patterns of dysregulation in patients, identifying two 
distinct subtypes. The plasma cell subtype is predominantly associated 
with autoantibody-mediated diseases and is linked to clinical manifes-
tations in the dermis, musculoskeletal components, and arthritis. 
Another study revealed that type I interferon promotes T-cell-inde-
pendent B-cell proliferation and differentiation into early plasma cells, 
possibly through a previously described interferon-plasma cell 
co-dysregulation mechanism [100]. Another study revealed that plas-
macyte signaling was stronger in African Americans, who also exhibited 
the highest levels of disease activity. In addition, anti-dsDNA antibody 
titers were most strongly correlated with the SLEDAI in African Ameri-
cans. Therefore, the researchers concluded that African American pa-
tients might respond better to B-cell depletion therapy than white 
patients (Fig. 3-D). 

4.2. Inflammatory bowel disease 

The clinical manifestations of IBD primarily include diarrhea, 
abdominal pain, decreased appetite, fatigue, intestinal bleeding, intes-
tinal obstruction, and other extraintestinal manifestations (EIMs) 
involving the musculoskeletal system, skin, and hepatobiliary tract 

[101]. These manifestations significantly impact patients’ quality of life. 
Based on molecular subtyping studies of IBD, we categorized IBD into 
two molecular subtypes: the high inflammation subtype and the high 
metabolism subtype. 

4.2.1. High metabolism subtype 
Three studies [58,102,103] defined the high metabolic subtype as 

having an abundance of anti-inflammatory immune cells, such as M2 
macrophages and regulatory T cells (Tregs). These studies also suggested 
an enrichment of multiple metabolic pathways, including retinol 
metabolism, steroid hormone metabolism, niacin and nicotinamide 
metabolism, bile acid metabolism, and fatty acid metabolism, as well as 
lower levels of proinflammatory cytokines. In one study, the gene 
expression pattern of the metabolism-related subtypes was associated 
with the ileum and thus named the ileum-like subtype [103]. This 
subtype is primarily distinguished by the activation of lipid and xeno-
biotic metabolism pathways [94]. Importantly, previous research has 
linked abnormal lipid metabolism and specific lipid levels to IBD[94]. 
For example, fatty acids not only influence the composition of intestinal 
microbiota in the human body [104], but they may also influence the 
occurrence and progression of IBD via inflammatory status and immune 
signaling transduction[105]. 

Furthermore, another study revealed that the metabolism-related 
subtype exhibited activation of immune cell pathways, especially 
adaptive immunity pathways, such as B cells and T follicular helper 
(Tfh) cells. B cells and Tfh cells were found to be associated with 
elevated IgG levels and disease deterioration in patients with UC [106, 
107] (Fig. 3-F). 

4.2.2. High inflammation subtype 
The high inflammation subtype, identified in three studies [58,76, 

102], is characterized by marked inflammatory features, including sig-
nificant enrichment in inflammation and immune-related pathways 
such as interferon-γ/α response, TNF-α signaling pathway, IL-6 JAK--
STAT3 signaling pathway [102], and others including complement and 
coagulation cascades, cytokine-cytokine receptor interaction, and 
Toll-like receptor signaling pathway [76]. It also involves the upregu-
lation of proinflammatory markers at the mRNA level, such as S100A8, 
S100A9, TNF-α, IL-1β, IL-6, IL-17, INF-γ. Furthermore, this subtype is 
characterized by the infiltration of proinflammatory immune cells, 

Fig. 4. The common features of the three inflammation subtypes. The summary on the left depicts commonalities among similar subtypes based on markers. In the 
Venn diagram, green represents the High Inflammation subtype of Inflammatory Bowel Disease (IBD), pink represents the Inflammation subtype of Rheumatoid 
Arthritis (RA), and yellow represents the "Inflammation & EGF" subtype of Multiple Sclerosis (MS). On the right, the figure illustrates how Jakinibs block the release 
of inflammatory cytokines, such as interleukins and interferons, by acting on Janus kinase (JAK). 
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notably neutrophils, and mast cells [58], with neutrophils forming 
extracellular traps that may contribute to the progression of UC towards 
cancer [75] (Fig. 3-E). 

Another study highlighted a general downregulation of metabolic 
pathways in the high inflammation subtype, alongside decreased levels 
of intestinal barrier-related proteins, suggesting a potential link between 
this subtype and poorer prognoses due to increased inflammatory ac-
tivity and compromised intestinal barriers. Additionally, genes upre-
gulated in the high inflammation subtype showed consistency with 
those upregulated in depression, hinting at a possible association be-
tween this subtype and the occurrence of depression in patients with 
IBD. The damage to the intestinal barrier might allow inflammation to 
impact the brain[108], providing a rationale for the observed link be-
tween this subtype and depression, as well as the noted improvement in 
IBD patients with high inflammation upon treatment with the antide-
pressant drug paroxetine[102](Fig. 3-E). 

4.3. Rheumatoid arthritis 

RA is characterized as a common autoimmune arthritis marked by 
chronic inflammation of the synovium, leading to complex disease 
heterogeneity and nonlinear dynamic interactions. As RA progresses, it 
often results in irreversible bone tissue damage, causing persistent pain 
and significantly impaired joint functionality. Molecular subtyping 
studies have categorized RA patients into multiple subtypes based on the 
enrichment of different cells and pathways, promoting the development 
of subtype-specific treatments. This study compiles current molecular 
subtyping research in RA into three functional subtypes: inflammation, 
joint damage, and neutrophil subtypes. 

4.3.1. Inflammation subtype 
The characteristics of inflammation subtypes have been described in 

three studies [45,46,65], which are associated with both synovial and 
systemic inflammation levels, as well as the presence of autoantibodies. 
Although specific characteristics of the inflammation subtypes vary 
across studies, a common observation is the significant increase in 
various immune cell populations, such as B cells, T cells, CD8+ T cells, 
CD4+ T cells, Th2 cells, regulatory T cells, dendritic cells, macrophages, 
and plasma cells. Additionally, there is an enrichment of proin-
flammatory pathways, including immune cell-related pathways, IL-17, 
IFN-a/B, IFN-c, JAK-STAT, NF-κB, TNF, and toll-like receptor (TLR) 
signaling. Certain studies have taken further steps to provide a more 
detailed classification of inflammation subtypes. This classification is 
based on functional variances in proinflammatory pathways, with 
pathways like P53-PI3K-AKT and BCR, JAK-STAT, NF-κB, and TCR 
being utilized as markers to identify distinct inflammation subtypes 
[46]. 

Observations have been made that the traits of both purely inflam-
matory and higher inflammation subtypes are remarkably alike, 
showing elevated immune cell counts, enhancement of proinflammatory 
pathways, and significant expression of lymphoid and myeloid eigen-
genes. A shared characteristic between purely inflammatory and higher 
inflammation subtypes is their association with seropositivity, for 
instance, ACPA, which in some studies has been linked to improved 
treatment outcomes compared to other subtypes[45,46,65]. This finding 
is consistent with the results of a longitudinal cohort study spanning 25 
years of RA[109], where patients with autoantibody-positive RA expe-
rienced more significant improvements than those with 
autoantibody-negative RA when treated with the same strategy, espe-
cially regarding long-term outcomes (mortality and functional 
disability). It suggests that autoantibody-positive and 
autoantibody-negative RA might have distinct pathogeneses and could, 
therefore, represent different subtypes (Fig. 3-G). 

4.3.2. Joint damage subtype 
The joint damage subtypes have been defined in two studies [46,65] 

and is characterized by moderate scores in most pro-inflammatory 
signaling pathways or only high scores in some pro-inflammatory 
pathways, hence being considered low-inflammatory. However, this 
subtype often leads to more severe joint damage and less favorable 
treatment results compared to the inflammation subtypes. 

Subtypes related to joint damage are notably involved in pathways 
primarily concerning joint damage, tissue remodeling, and synovial 
proliferation. There is also a marked increase in the expression of reg-
ulatory factors critical for fibroblast invasion and molecules essential for 
osteoclastogenesis[65], particularly in synovial fibroblast linings. These 
cell-related pathways and markers, prevalent in joint damage subtypes, 
specifically contribute to bone and cartilage degradation in the body 
[46,65,110]. Another distinct trait of this subtype is the experience of 
pain not linked to systemic inflammation markers. Despite minimal 
tissue inflammation and low inflammation-related gene expression, 
patients with this subtype still report tenderness and swelling in multiple 
joints [45], leading to a significantly high pain severity score, adversely 
affecting their quality of life[45] (Fig. 3-H). 

4.3.3. Neutrophil subtype 
The neutrophil subtype, as defined in one study [65], shows 

considerable neutrophil infiltration and raised fibroid eigengene scores. 
Predominant enrichment pathways include MAPK, PI3K-Akt, p53, 
TGF-β, VEGF, and Wnt signaling pathways. Due to a significant overlap 
in related pathways, neutrophil and joint damage subtypes exhibit some 
similar features, such as poorer outcomes, and more active endothelial 
and fibroblasts than inflammation subtypes [65] (Fig. 3-I). 

4.4. Multiple sclerosis 

We summarized the results of two molecular subtyping studies of MS 
and found that both identified subtypes with strong enrichment of genes 
related to inflammation and the epithelial growth factor EGF. The 
lymphocyte-related pathways include T cell receptor, B cell receptor, 
TLR signaling pathway, interleukins, NFAT, and IFN signaling path-
ways. EGF-related pathways include ILK, JAK-STAT, PI3K, Ras, EGF, 
and EGFR, along with pathways linked to angiogenesis and apoptosis. 
Complex interactions exist between lymphocyte-related pathways and 
EGF-related pathways. For instance, the JAK-STAT pathway, acting 
downstream of EGFR, is involved in the IL-6 (gp130) receptor family, 
influencing B cell differentiation, plasma cell production, and acute- 
phase response [111]. PI3K interacts with EGFR to regulate cell prolif-
eration, differentiation, apoptosis, and migration and plays a critical 
role in B cell development, function, and B cell receptor signaling [112]. 

In the early inflammatory stage of MS, B cells and T cells play 
essential roles. Patients with these MS subtypes may present increased 
lymphocytes in their bloodstream, suggesting a potential for improved 
outcomes with early, aggressive treatment [47]. Further research in-
dicates that these patients, compared to those with less pronounced 
phenotypes, are more likely to relapse and show more active disease 
course when treated with GA and IFN-β. One study highlighted a sig-
nificant enrichment of IFN-induced and viral response gene sets in the 
high-performing MS subset through GSEA analysis [63]. Type I IFN 
activates transcription of interferon-stimulated genes (ISGs) such as 
IFP35 through the JAK-STAT pathway, contributing to MS inflammation 
via innate immune mechanisms [113]. 

In summary, the main subtypes identified in the MS subtyping 
studies are characterized by enrichment of lymphocyte and EGF-related 
pathways. These pathways are primarily involved in immunity, 
inflammation, and cellular proliferation and growth in the body. Yet, the 
specific connections between these pathways in MS remain unclear, 
suggesting heterogeneity within MS that indicates different subtypes 
requiring further study (Fig. 3-J). 
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5. Characteristics and biomarkers of heterogeneity and 
commonalities among different molecular subtypes 

To more comprehensively characterize subtypes and explore the 
heterogeneity among them within the same disease, ten subtype-specific 
markers for four autoimmune diseases were summarized. Markers for all 
subtypes of the same disease were systematically collected, and shared 
characteristics between subtypes were eliminated, retaining only those 
markers unique to a single subtype (Supplementary Table 1). Addi-
tionally, subtypes with analogous names across various diseases have 
been identified, such as neutrophil subtypes in SLE and RA, as well as 
inflammation-associated subtypes in IBD, RA, and MS. To further 
examine the concordance of these similar subtypes across different 
diseases, an intersection of biomarkers for similar subtypes was 
analyzed, delving into the potential mechanisms at the molecular level 
of shared markers between similar subtypes. Hence, this review presents 
a detailed analysis of the characteristics of each disease subtype using 
subtype-specific markers and delineates similar subtypes across various 
autoimmune diseases. 

5.1. The heterogeneity among SLE subtypes 

In this research, SLE has been categorized into four subtypes: 
neutrophil, interferon, lymphocyte, and plasma cell. Given that the 
plasma cell subtype displays only three specific traits, and the specific 
markers of the lymphocyte subtype are mainly related to pathway dys-
regulation common to various autoimmune diseases, the focus is pre-
dominantly on elucidating the heterogeneity within the neutrophil and 
interferon subtypes. 

Specific markers for neutrophil subtypes include BAFF, BCL2, 
MMP8, IL-6, TNF-α, and antinuclear antibody production, alongside 
cytokine-mediated signaling pathways. BCL-2, a protein that inhibits 
apoptosis, when overexpressed, extends the lifespan of neutrophils and 
blocks apoptosis [114]. This prolongation allows the release of inflam-
matory cytokines like IL-6 and TNF-α [115], which activate pathways 
such as NF-κB[116] to regulate immune response, thereby promoting 
neutrophil overactivation and inflammatory responses [117]. Addi-
tionally, TNF-α induced abnormal neutrophil apoptosis [118], and 
excessive MMP8 may lead to extracellular matrix degradation, cell 
membrane rupture, and nuclear component release, intensifying the 
inflammatory response [119]. Moreover, BAFF overexpression can in-
crease B cell survival and differentiation into plasma cells, raising 
antibody production such as antinuclear antibodies (ANA) [120], and 
the binding of ANAs to nuclear components [121] further stimulates 
abnormal neutrophil activation, triggering inflammation. Therefore, in 
neutrophil subtypes, excessive neutrophil survival with aberrant 
apoptosis promotes abnormal neutrophil activation and inflammation. 

Interferon, a significant pathogenic factor in SLE, is closely associ-
ated with its pathogenesis [92,122]. In the interferon subtype, specific 
characteristics are observed, primarily as abnormal interferon pathway 
activation and abnormal chemokine gene expression, such as IP10 
(CXCL10) and MCP2 (CCL8). The production of these chemokines is 
induced by interferon. Their overexpression under interferon stimula-
tion prolongs autoimmune processes, leading to leukocyte recruitment 
at inflammation sites, thereby exacerbating autoimmune disease pro-
gression like SLE [123,124]. Furthermore, this subtype significantly 
expresses components of the complement pathway, such as C4, and 
autoantibodies like anti-Sm/ribonucleoprotein (RNP), anti-DNA, and 
anti-SSA are progressively increased in response to interferon stimula-
tion [125], These chemokines and autoantibodies may be affected by 
interferon regulation, leading to specific manifestations in patients with 
the interferon subtype, which distinguishes their clinical presentation 
from that of patients with other subtypes of SLE. 

5.2. The heterogeneity between IBD subtypes 

IBD can be clearly categorized into two disease subtypes, namely, the 
high metabolism subtype and the high inflammation subtype. As ex-
pected, the biomarkers for the high-metabolism subgroup predomi-
nantly included genes related to lipid metabolism and transport, such as 
APOA1, APOB, MTTP, SLC2A2, and TM6SF2, as well as various path-
ways associated with metabolism, including amino acid and oligopep-
tide SLC transporters, bile acid metabolism, biological oxidation, fatty 
acid metabolism, glucose metabolism, lipid and lipoprotein metabolism, 
nicotinate and nicotinamide metabolism, retinol metabolism, and ste-
roid hormone metabolism. 

In contrast, the biomarkers for the high inflammation subtype pri-
marily include proinflammatory factors such as IL-17, IL-1β, IL-22, IL-6, 
INF-γ, and TNF-α and proinflammatory markers such as S100A8 and 
S100A9. The specific pathways involved are mainly related to immune 
responses and inflammation, including pathways such as the IL-6 JAK- 
STAT3 signaling pathway, inflammatory response, TNF-alpha signaling 
via NF-κB, and Toll-Like Receptor signaling pathway. 

5.3. The heterogeneity among RA subtypes 

We categorized rheumatoid arthritis (RA) into three subtypes, 
namely, the inflammation subtype, joint damage subtype and neutrophil 
subtype. 

By analyzing specific markers within inflammation and joint injury 
subtypes (Supplementary Table 1), it was found that most markers of the 
inflammation subtype, such as IL-17, IFN, JAK-STAT, NF-κB, TNF, TCR, 
BCR, and TLR, are associated with inflammation and immunity. 
Conversely, the joint injury subtype’s specific traits are mainly charac-
terized by the TGF-β family, its receptor, and their coding genes (e.g., 
BMP6). The inflammation subtype’s clinical and molecular features 
involve increased inflammation and immune cells, with its main 
markers typically associated with inflammation. The joint injury sub-
type, characterized by milder inflammatory symptoms and more pro-
nounced pain, includes cellular markers primarily of fibroblasts and 
osteoclasts. The interaction between these two cells affects the Treg and 
Th17 cell balance and exacerbates RA bone destruction by promoting 
RANKL expression on synovial fibroblasts [126]. Osteoclasts are crucial 
in bone loss and joint destruction in RA, suggesting the joint damage 
subtype may cause more joint damage than the inflammation subtype. 
TGF-β, a key feature of the joint damage subtype, promotes synoviocyte 
growth and differentiation and is essential for articular cartilage meta-
bolic homeostasis and structural integrity [127]. TGF-β signaling can 
trigger bone remodeling and destruction, potentially leading to joint 
damage and dysfunction. Inhibiting TGF-β signaling might also alleviate 
osteoarthritis [128]. In summary, TGF-β as an important feature is 
highly associated with osteoarthritis and arthritis and is an important 
feature and marker of heterogeneity of joint injury subtypes. Addition-
ally, the "neuronal neuron" factor observed in the joint injury subtype 
may be linked to more severe pain symptoms in patients with this 
subtype. 

In RA, there is both commonality and heterogeneity between 
neutrophil and joint injury subtypes. The neutrophil subtype shares 
some pathways with the joint injury subtype, and the two subtypes share 
many similar features and markers, including TGF-β. As a crucial marker 
of the joint damage subtype, TGF-β might play a similar role in the 
neutrophil subtype by influencing the growth and differentiation of 
synovial cells, leading to increased bone resorption and decreased bone 
formation. This can further exacerbate osteoporosis and bone destruc-
tion in RA patients [129], resulting in clinical features in patients with 
the neutrophil subtype similar to those of the joint damage subtype, such 
as suboptimal treatment outcomes and the activation of endothelial cells 
and fibroblasts. However, there is heterogeneity between the neutrophil 
and joint damage subtypes. The hypothesis is that the distinctive feature 
of the neutrophil subtype is the extensive infiltration of neutrophils and 
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a decrease in TGF-β expression, whereas the joint damage subtype is 
characterized mainly by an increase in TGF-β expression. Existing 
research indicates a complex regulatory relationship between neutro-
phils and TGF-β, where neutrophils can inhibit the differentiation of 
mesenchymal progenitor cells (MPCs) into osteoblasts through TGF-β 
and promote osteoclastogenesis [129]. Additionally, neutrophil extra-
cellular traps (NETs) released by neutrophils can inhibit the expression 
of TGF-β and TGFBR2 [130]. Conversely, TGF-β can inhibit neutrophil 
activity [131], and in some disease states, blocking TGF-β activity leads 
to a significant increase in neutrophil levels[132,133], indicating that an 
increase in neutrophil levels might reflect a decrease in TGF-β expres-
sion, a mechanism that might play a significant role in the neutrophil 
subtype and contribute to the heterogeneity between the neutrophil and 
joint damage subtypes. 

5.4. The commonalities among the molecular subtypes of the four ADs 

In four autoimmune diseases, three inflammation-related subtypes 
were defined: the high inflammation subtype in IBD, the inflammation 
subtype in RA, and the "inflammation & EGF" subtype in MS. In auto-
immune diseases, inflammation is closely associated with disease onset 
and progression. The immune system’s erroneous attack on normal cells 
triggers an inflammatory response, leading to pain and damage, while 
chronic inflammation results in abnormal immune system activation 
and dysregulation, initiating autoimmune diseases. These three sub-
types exhibit a marked enrichment of inflammatory pathways and 
increased immune cell presence in the diseases. By summarizing 
subtype-specific markers and factors (including genes, pathways, clin-
ical indicators, etc.), it was observed that the markers of these three 
subtypes are closely related, with many markers shared among them. 

We found that IFNs, cytokines, multiple proinflammatory in-
terleukins (IL-6, IL-22, IL-17, and IL-1β), the JAK-STAT signaling 
pathway, and chemokines were shared among the inflammation sub-
types of the three disease groups. These features may either promote 
inflammatory responses or play a role in the regulation of inflammation. 
They are not only strongly associated with inflammation but also 
interlinked; for instance, cytokines such as interleukins, interferons, and 
chemokines are soluble messengers that allow immune cells to 
communicate. Abnormalities in their signaling can lead to an imbalance 
in the immune response, contributing to autoimmune diseases [134]. 
IL-6, as an inflammatory cytokine, can significantly influence the dif-
ferentiation and activation of T-lymphocytes through the induction of 
the JAK-STAT3 pathway [135], and interferon can promote the tran-
scription of IFN-stimulated genes (ISGs) by activating the JAK-STAT 
signaling pathway, affecting the body’s autoimmune and inflamma-
tory responses [136]. It has been shown that the JAK-STAT signaling 
pathway plays a role in the development of both inflammatory and 
autoimmune diseases, with many cytokines involved in these diseases 
using JAK and STAT to interrupt intracellular signals [137], The shared 
features that we observed in the three inflammation subtypes can just be 
categorized as Jak-STAT and its associated cytokines. We suggest that 
the features shared by these inflammation subtypes may exhibit a uni-
fied inflammatory pattern centered on the activation of the Jak-STAT 
pathway in IBD, RA, and MS. The effectiveness of JAK inhibitors 
(Jakinibs) in treating autoimmune diseases also indicates that the 
JAK-STAT-related signaling pathway could be a potential therapeutic 
target for these conditions. Jakinibs work by reducing inflammation and 
the activation of immune cells through the inhibition of Jak activity and 
blocking various cytokines [138]. The therapeutic action of Jakinibs is 
aimed at alleviating inflammation. In the section "Drugs or Treatment 
Methods Beneficial for Four AD Molecular Subtypes," it was found that 
most drugs specific to the three types of inflammation are linked to 
Jakinibs, which have been demonstrated to limit Th1 and Th17 differ-
entiation by targeting the JAK2/TYK2-STAT3/STAT4 axis [139]; IFN-β 
activates the JAK-STAT (JAK1/TYK2-STAT2) signaling pathway, 
thereby modulating the immune response [140]; and paroxetine acts 

through the immune 5-HT system and JAK2-STAT3 pathway in cells to 
provide anti-inflammatory benefits [141]. In summary, infliximab, 
glatiramer acetate, and paroxetine are identified as more effective drugs 
for the inflammation subtypes of RA, MS, and IBD, respectively. The 
mechanisms of these drugs are linked to the JAK-STAT signaling 
pathway. Hence, it is hypothesized that Jakinibs might offer greater 
therapeutic benefits to patients with these three types of inflammation 
subtypes. 

In molecular subtype studies of four autoimmune diseases, both SLE 
and RA patients exhibited neutrophil subtypes.Through comparison, We 
found that TGF-β is a common marker for both neutrophil subtypes.The 
roles of neutrophils and TGF-β, which are important factors in immune 
regulation and inflammation modulation, have been described in many 
studies of autoimmune diseases, and their mechanisms of involvement 
in SLE and RA have been revealed by an increasing number of studies. 
Studies have shown that TGF-β is involved in the production and regu-
lation of γδ Tregs in patients with SLE and may be associated with the 
pathogenesis of SLE[142]. In RA, TGF-β’s role in regulating the activity 
of synovial fibroblasts by enhancing MMP-11 expression, leading to 
matrix degradation and remodeling, indicates its contribution to disease 
occurrence[143]. The relationship between neutrophils and TGF-β in 
disease has been discussed previously, neutrophil extracellular traps 
generated by neutrophils have the effect of inhibiting the expression of 
TGF-β, and blocking TGF-β can increase the level of neutrophils. 
Therefore, we speculate that the mutual influence of neutrophils and 
TGF-β may be one of the important reasons for the heterogeneity of the 
neutrophil subtype. However, further research is needed to understand 
the common mechanism of action in autoimmune diseases. 

The study not only delved into the heterogeneity of the same disease 
subtype but also focused on the similarity among different subtypes of 
autoimmune diseases. Given that various autoimmune diseases share 
common causative genes and risk factors, investigating their similarities 
can enhance understanding of the pathogenesis of autoimmune diseases 
(AD). The research conducted by Barturen et al.[22] provided valuable 
insights by examining seven systemic autoimmune diseases—including 
SLE, RA, SSC, pSjS, MCTD, PAPS, and UCTD—as a collective unit, and 
identified four principal clusters: the inflammatory, lymphoid, inter-
feron, and undefined clusters, each presenting distinct immune cell 
compositions and molecular characteristics. For instance, increased 
levels of MMP8 and CRP were observed in the inflammatory cluster, 
while the interferon cluster showed an expression of various 
interferon-related molecules (e.g., anti-dsDNA, anti-SM, anti-SSB, 
anti-U1RNP, PFLC, anti-SSA, TNFα, MCP2, BAFF, IP10). Some shared 
features like CCP2, CENTB, and PC.IGM were found to be slightly 
enriched in the lymphoid and undefined clusters, with a notable 
depletion in the interferon cluster. Similar patterns, such as the inter-
feron subtype in SLE, inflammation subtype in RA, high inflammation 
subtype in IBD, and "inflammation & EGF" subtype in MS, were observed 
in this study. These consistencies underscore our findings, suggesting the 
importance of these shared features across different autoimmune dis-
eases. Future research will likely deepen the understanding of molecular 
typing in ADs and aid in a more precise exploration of disease hetero-
geneity and shared pathogenesis. 

6. Drugs or treatment methods beneficial for four AD molecular 
subtypes 

In practical medicine, due to the complexity of ADs, increasingly 
intensive treatment regimens are often necessary, and it may be required 
to attempt various treatments multiple times. If a patient does not 
respond well to conventional treatments, new drug regimens may be 
considered. However, these drugs typically act through a broad range of 
mechanisms and can have significant side effects. Unlike the personal-
ized therapies in oncology, treatments for autoimmune diseases gener-
ally lack individualization [144]. Recognizing that different drugs may 
elicit varied responses across populations, and even the same drug may 
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produce different effects and side effects within a single patient popu-
lation, this study has categorized different subtypes of autoimmune 
diseases. This categorization aims to assist clinicians in making more 
precise therapeutic decisions for individual patients and in the rational 
use of multiple drugs and treatment methods. 

6.1. Beneficial drugs and treatment methods in SLE 

To illustrate the specificity of drug and treatment responses across 
different subtypes, the results of typing studies related to drug responses 
were summarized, along with the drugs and treatments beneficial to 
various disease subtypes (Table 3). Corticosteroids were found to have 
the most significant effect in the neutrophilic subtype of SLE. As glu-
cocorticoids, corticosteroids are the main treatment for various in-
flammatory and autoimmune diseases, effectively controlling symptoms 
such as joint swelling and pain. However, they can also cause adverse 
effects like gastrointestinal bleeding, osteoporosis, and psychiatric is-
sues [145,146], with some patients experiencing glucocorticoid resis-
tance. Since corticosteroids inhibit a wide range of inflammatory cells 
and the neutrophil subtype is characterized by an enrichment of neu-
trophils, these drugs may reduce the inflammatory response in this 
subtype by inhibiting neutrophils and decreasing the inflammatory 
mediators they release. 

In the interferon subtype, hydrocortisone was particularly effective 
in reducing disease activity, likely because it enhances IFN-γ mediated 
indoleamine 2,3-dioxygenase (IDO) activity; thus, increasing IDO mRNA 
and protein levels in the body [147]. This mechanism, which reduces 
immune response intensity and suppresses inflammation, may explain 
the beneficial effect of hydrocortisone on patients with the interferon 
subtype. 

Although the plasma cell subtype of SLE did not have a subtype- 
specific drug mentioned, this subtype tends to occur more frequently 
in individuals of Black ethnicity, who have been found to respond better 
to B-cell depletion therapy than Caucasian patients [148]. Thus, it is 
hypothesized that B-cell depletion therapy might be more effective in 
patients of this subtype. Additionally, because B-cell depletion therapy 
targets the entire B-cell population and affects plasma cells, it may be an 
important treatment for individuals with the plasma cell subtype, 
regardless of ethnicity. 

6.2. Beneficial drugs in IBD 

In studies on IBD, the antidepressant paroxetine proved effective in 
reducing bowel severity, alleviating weight loss, and significantly 
lowering Disease Activity Index (DAI) scores for colitis symptom 
severity in patients with the high inflammation subtype of IBD. Parox-
etine, a medication commonly used to treat depression, is of particular 
interest as patients with IBD are more likely to experience depressive 
symptoms than the general population [149], offering a novel 
perspective on treating IBD. 

6.3. Beneficial drugs in RA 

In research on RA, it was found that infliximab had a greater positive 
response in subtypes primarily characterized by inflammatory symp-
toms, significantly more than in subtypes with non-inflammatory 
symptoms. Infliximab, a biologic preparation produced through 
biotechnology from biological macromolecules, is frequently used in 
treating autoimmune, and inflammatory diseases, and tumors. Despite 
its effectiveness, biologic preparations, including infliximab, can cause 
side effects such as infections and allergic reactions. Since infliximab can 
inhibit the TNF-dependent cytokine cascade in RA patients [150] and 
TNF is one of the characteristics of the inflammation subtype of RA, 
indicates it may suitability for this specific RA patient group(Table 3). 

6.4. Beneficial drugs in MS 

In the present study, we summarized strongly performing MS pa-
tients as the "inflammation & EGF" subtype, which has a greater likeli-
hood of relapse than weakly performing MS patients and shows a more 
active course of disease related to glatiramer acetate (GA) and inter-
feron-β (IFN-β) treatment. Researchers speculate that this may be related 
to the greater number of active B cells and T cells in this group of pa-
tients. cells in such patients. GA and IFN-β belong to the group of 
immunomodulatory drugs (IVDs), both of which are commonly used as 
first-line therapeutic agents for MS and have the advantages of reducing 
disease recurrence, delaying disability progression, and minimizing side 
effects [151]; however, in previous treatments, approximately 20%−

50% of patients did not respond well to treatment with GA and IFN-beta. 
Our study may help clinicians screen MS patients who are better treated 
with GA and IFN-β therapies. 

7. Discussion 

Our research group has committed many years to the study of mo-
lecular subtyping in ADs, with a focus on SLE[41], LN, and IgA ne-
phropathy (IgAN) [152], while also exploring overarching similarities 
among various ADs. This paper reviews 15 molecular typing studies 
across four different ADs. We have systematically arranged pathological 
classification studies of Multiple Sclerosis (MS) and LN chronologically, 
highlighting some advantages of molecular classification over patho-
logical classification. The analysis of molecular subtypes of ADs is 
summarized in five steps: I) Quality control and normalization of orig-
inal gene expression data. II) Establishment of feature matrices based on 
differentially expressed genes (DEGs) or features identified through 
other methods. III) Classification of subtypes and validation of their 
reliability. IV) Exploration of heterogeneity between subtypes and 
characterization of subtype-specific functions and features through dif-
ferential expression analysis, functional enrichment analysis, immune 
infiltration analysis, among other methods. V) Development of subtype 
classification models using techniques like decision trees and support 
vector machines. 

Recent progress in molecular subtyping research of autoimmune 
diseases (ADs) has facilitated linking distinct subtyping outcomes across 
various studies focusing on the same condition. This integration involves 
identifying common dysregulated genes, immune cells, and pathways 
among subtypes, enabling a deeper characterization of subtypes within 
each disease. This review concentrates on four ADs—SLE, RA, IBD, and 
MS—and categorizes them into several subtypes based on their molec-
ular profiles. For SLE, we identify four subtypes: neutrophil subtype, 
interferon subtype, lymphocyte subtype, and plasma cell subtype. The 
neutrophil subtype is associated with immune responses, inflammation, 
bacterial infections, and renal manifestations; the interferon subtype is 
characterized by widespread dysregulation and a higher prevalence 
among females, children, and black individuals; the lymphocyte subtype 
is associated with various clinical manifestations and liver dysfunction; 
and the plasma cell subtype is mediated by multiple autoantibodies and 

Table 3 
Drugs/treatments applicable to the SLE, RA, IBD, and MS subtypes.  

Disease Subtype Drugs/Treatment 

SLE Neutrophil subtype Corticosteroids 
Interferon subtype Hydrocortisone 
Lymphocyte subtype  
Plasma cell subtype B-cell depletion therapy 

IBD High metabolism subtype  
High inflammation subtype Paroxetine 

RA Inflammation subtype Infliximab 
Joint damage subtype  
Neutrophil subtype  

MS "inflammation & EGF" subtype GA (Glatiramer acetate); 
IFN-β (Interferon beta) 

SLE: Systemic Lupus Erythematosus; RA: Rheumatoid Arthritis; IBD: Inflam-
matory Bowel Disease; MS: Multiple Sclerosis. 
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correlated with clinical manifestations such as cutaneous, muscular, 
skeletal, and arthritic involvement. IBD is classified into two subtypes: 
high metabolism subtype and high inflammation subtype. The high 
inflammation subtype is characterized by neutrophils displaying sig-
nificant inflammatory features, whereas the high metabolism subtype 
exhibits low inflammatory features and upregulation of multiple meta-
bolic and metabolic homeostasis-related pathways. RA is divided into 
three subtypes: inflammation subtype, joint damage subtype, and 
neutrophil subtype. The inflammation subtype exhibits high inflam-
matory features and serum positivity; the joint damage subtype is 
associated with various factors causing joint damage, displaying high 
pain scores and a tendency toward seronegativity; and the neutrophil 
subtype is characterized by prominent neutrophil infiltration and a poor 
prognosis. MS is summarized as an "inflammation & EGF" subtype with 
lymphocyte and other inflammatory characteristics, with epidermal 
growth factor related to cell proliferation and apoptosis. Previous 
studies have integrated transcriptome data and methylation data of 
seven ADs for comprehensive molecular stratification of ADs, stratified 
multiple ADs as a whole, and finally uniformly divided multiple ADs into 
four clusters: inflammatory cluster, lymphatic cluster, interferon cluster, 
and undefined cluster[22]. Among these, the inflammatory, lymphatic, 
and interferon clusters represent distinct molecular patterns and can be 
considered stable subtypes of the disease. Our study elucidates multiple 
subtypes characterized by inflammation, lymph, and interferon, offering 
a nuanced perspective beyond joint subtype classification. Different ADs 
often exhibit significant variations in organ involvement, genetic or 
environmental risk factors, and pathophysiological mechanisms [153]. 
Our study adopts a more nuanced approach, focusing on individual ADs 
and categorizing each into specific subtypes distinguished by charac-
teristic cells and different disease manifestations. These findings hold 
significant implications for future clinical trials and personalized drug 
utilization in ADs. 

Despite notable progress in molecular subtyping of autoimmune 
diseases (ADs), the field remains in its early stages. This is primarily due 
to the heterogeneity stemming from diverse autoantibodies in individual 
patients, which complicates the molecular subtyping process of ADs. 
Furthermore, molecular subtyping research has predominantly focused 
on multi-organ ADs such as SLE and RA, with limited attention given to 
organ-specific subtypes. Multi-organ ADs exhibit greater diversity, of-
fering a more robust biological basis for subtyping. SLE, in particular, 
has been extensively studied in subtyping efforts, facilitated by the ease 
of blood sample collection, which enables extensive data accumulation. 
Single-cell transcriptome sequencing has emerged as a powerful tool in 
ADs research [23], allowing for the exploration of cellular diversity in 
immune-inflammatory tissues, the identification of pathogenic cell 
populations, and the elucidation of disease development mechanisms. 
However, the limited availability of single-cell RNA sequencing samples 
presents a significant challenge to advancing subtyping studies. 
Although several tools for integrating bulk and single-cell tran-
scriptomes have been developed [154–156], there is a shortage of 
matched bulk and single-cell sequencing data in ADs research, making it 
challenging to integrate these datasets. This scarcity of data poses 
challenges in transferring subtype information during the analysis pro-
cess, potentially leading to information loss. 

The integration of multiomics data, including epigenomic, tran-
scriptomic, and proteomic data, could unveil intricate details of the 
molecular subtypes of ADs. This thorough analysis will enhance our 
understanding of disease mechanisms and heterogeneity, ultimately 
establishing a more precise foundation for personalized treatment ap-
proaches. By using these enriched multi-omics datasets, researchers can 
delve deeper into ADs, advancing treatment protocols and fostering the 
development of new pharmaceuticals. In this review, we delineate the 
specificity of different subtypes within the same disease based on 
subtype-specific markers, thereby investigating disease-specific patho-
genesis and summarizing the drugs beneficial for each subtype. For 
instance, we observed that in the neutrophil subtype of SLE, the 

combination of excessive neutrophil survival and abnormal apoptosis 
leads to abnormal neutrophil activation and inflammatory responses, 
potentially contributing to disease development. The inflammation 
subtype of RA is primarily linked to inflammation and immunity. The 
distinctive features of the joint damage subtype of RA are mainly asso-
ciated with the TGF-β family, TGF-β receptor, and their related coding 
genes. Building upon this, we identified similar subtypes across different 
diseases and explored common autoimmune disease pathogenesis. We 
discovered that both SLE and RA have neutrophilic subtypes, while the 
high inflammation subtype of IBD, the inflammation subtype of RA, and 
the "inflammation & EGF" subtype of MS exhibit similarities. Addition-
ally, we found that the inflammation subtype of these three diseases and 
their beneficial drugs are associated with the JAK-STAT signaling 
pathway. However, most studies did not provide detailed drug dosage 
information to further investigate differences in drug dosage among 
subtypes. Variations in drug targets, individual differences in drug 
metabolism, and drug tolerance may result in differing therapeutic ef-
fects and adverse reactions in patients during drug administration. 
Exploring the optimal dosage of beneficial drugs for different patient 
subtypes, considering patient-specific conditions and disease charac-
teristics, can enhance treatment efficacy, minimize adverse reactions, 
and improve patient quality of life. In the future, through the utilization 
of emerging bioinformatics technologies, we anticipate expanding our 
study sample size and conducting more comprehensive molecular typing 
of additional autoimmune diseases. This will furnish us with more 
extensive data to accurately define the functional subtypes of these 
diseases and explore shared molecular mechanisms and potential con-
nections among a broader range of autoimmune diseases. 
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Affections Inflammatoires Digestives. Gastroenterology 1990;98(4):811–8. 

[15] Turner D, et al. Methotrexate following unsuccessful thiopurine therapy in 
pediatric Crohn’s disease. Am J Gastroenterol 2007;102(12):2804–12. quiz 2803, 
2813. 

[16] Solberg IC, et al. Clinical course in Crohn’s disease: results of a Norwegian 
population-based ten-year follow-up study. Clin Gastroenterol Hepatol 2007;5 
(12):1430–8. 

[17] Klareskog L, Catrina AI, Paget S. Rheumatoid arthritis. Lancet 2009;373(9664): 
659–72. 

[18] Hansen MR, Okuda DT. Precision medicine for multiple sclerosis promotes 
preventative medicine. Ann N Y Acad Sci 2018;1420(1):62–71. 

[19] Jiang J, et al. Type I Interferons in the Pathogenesis and Treatment of 
Autoimmune Diseases. Clin Rev Allergy Immunol 2020;59(2):248–72. 

[20] Noack M, Miossec P. Synoviocytes and skin fibroblasts show opposite effects on 
IL-23 production and IL-23 receptor expression during cell interactions with 
immune cells. Arthritis Res Ther 2022;24(1):220. 

[21] Toro-Domínguez D, et al. Stratification of Systemic Lupus Erythematosus Patients 
Into Three Groups of Disease Activity Progression According to Longitudinal Gene 
Expression. Arthritis Rheuma 2018;70(12):2025–35. 

[22] Barturen G, et al. Integrative Analysis Reveals a Molecular Stratification of 
Systemic Autoimmune Diseases. Arthritis Rheuma 2021;73(6):1073–85. 

[23] Zeng L, et al. Research progress of single-cell transcriptome sequencing in 
autoimmune diseases and autoinflammatory disease: a review. J Autoimmun 
2022;133:102919. 

[24] Castillo RL, et al. Spatial transcriptomics stratifies psoriatic disease severity by 
emergent cellular ecosystems. Sci Immunol 2023;8(84):eabq7991. 

[25] Conrad N, et al. Incidence, prevalence, and co-occurrence of autoimmune 
disorders over time and by age, sex, and socioeconomic status: a population- 
based cohort study of 22 million individuals in the UK. Lancet 2023;401(10391): 
1878–90. 

[26] Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results 
of an international survey. National Multiple Sclerosis Society (USA) Advisory 
Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 
1996;46(4):907–11. 

[27] Lublin FD, et al. Defining the clinical course of multiple sclerosis: the 2013 
revisions. Neurology 2014;83(3):278–86. 

[28] Kuhlmann T, et al. Acute axonal damage in multiple sclerosis is most extensive in 
early disease stages and decreases over time. Brain 2002;125(Pt 10):2202–12. 

[29] Kuhlmann T. Relapsing-remitting and primary progressive MS have the same 
cause(s)–the neuropathologist’s view: 2. Mult Scler 2013;19(3):268–9. 

[30] Lassmann H. Relapsing-remitting and primary progressive MS have the same 
cause(s)–the neuropathologist’s view: 1. Mult Scler 2013;19(3):266–7. 

[31] Luchetti S, et al. Progressive multiple sclerosis patients show substantial lesion 
activity that correlates with clinical disease severity and sex: a retrospective 
autopsy cohort analysis. Acta Neuropathol 2018;135(4):511–28. 

[32] Tallantyre EC, et al. Greater loss of axons in primary progressive multiple 
sclerosis plaques compared to secondary progressive disease. Brain 2009;132(Pt 
5):1190–9. 

[33] Stevenson VL, et al. Primary and transitional progressive MS: a clinical and MRI 
cross-sectional study. Neurology 1999;52(4):839–45. 

[34] Pitt D, et al. Toward precision phenotyping of multiple sclerosis. Neurol 
Neuroimmunol Neuroinflamm 2022;9(6). 

[35] Appel GB, et al. Renal involvement in systemic lupud erythematosus (SLE): a 
study of 56 patients emphasizing histologic classification. Med (Baltim) 1978;57 
(5):371–410. 

[36] Painter DM. Renal disease: classification and atlas of glomerular diseases. 
Pathology 1996;28:215. 

[37] Weening JJ, et al. The classification of glomerulonephritis in systemic lupus 
erythematosus revisited. Kidney Int 2004;65(2):521–30. 

[38] Bajema IM, et al. Revision of the International Society of Nephrology/Renal 
Pathology Society classification for lupus nephritis: clarification of definitions, 
and modified National Institutes of Health activity and chronicity indices. Kidney 
Int 2018;93(4):789–96. 

[39] Yu F, et al. Redefining lupus nephritis: clinical implications of pathophysiologic 
subtypes. Nat Rev Nephrol 2017;13(8):483–95. 

[40] Banchereau R, et al. Personalized immunomonitoring uncovers molecular 
networks that stratify lupus patients. Cell 2016;165(3):551–65. 

[41] Cui M, et al. Blood Genomics identifies three subtypes of systemic lupus 
erythematosus: "IFN-High," "NE-High," and "Mixed". Mediat Inflamm 2021;2021: 
6660164. 

[42] Li H, Yang P. Identification of biomarkers related to neutrophils and two 
molecular subtypes of systemic lupus erythematosus. BMC Med Genom 2022;15 
(1):162. 

[43] Toro-Domínguez D, et al. Scoring personalized molecular portraits identify 
Systemic Lupus Erythematosus subtypes and predict individualized drug 
responses, symptomatology and disease progression. Brief Bioinform 2022;23(5). 

[44] Perez RK, et al. Single-cell RNA-seq reveals cell type-specific molecular and 
genetic associations to lupus. Science 2022;376(6589)). p. eabf1970. 

[45] Orange DE, et al. Identification of Three Rheumatoid Arthritis Disease Subtypes 
by Machine Learning Integration of Synovial Histologic Features and RNA 
Sequencing Data. Arthritis Rheuma 2018;70(5):690–701. 

[46] Kim KJ, et al. Compendium of synovial signatures identifies pathologic 
characteristics for predicting treatment response in rheumatoid arthritis patients. 
Clin Immunol 2019;202:1–10. 

[47] Ottoboni L, et al. An RNA profile identifies two subsets of multiple sclerosis 
patients differing in disease activity. Sci Transl Med 2012;4(153). 153ra131. 

[48] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network 
analysis. BMC Bioinforma 2008;9:559. 

[49] Tibshirani R, Walther G, Hastie T. Estimating the Number of Clusters in a Data Set 
Via the Gap Statistic. J R Stat Soc Ser B 2001;63:411–23. 

[50] Kaufman, L. and P. Rousseeuw, Finding Groups in Data: An Introduction To 
Cluster Analysis. 1990. 

[51] Charrad M, et al. NbClust: an R Package for Determining the Relevant Number of 
Clusters in a Data Set. J Stat Softw 2014;61(6). p. 1 - 36. 

[52] Brusco MJ, et al. Affinity propagation: an exemplar-based tool for clustering in 
psychological research. Br J Math Stat Psychol 2019;72(1):155–82. 

[53] Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with 
confidence assessments and item tracking. Bioinformatics 2010;26(12):1572–3. 

[54] Scrucca L, et al. mclust 5: clustering, classification and density estimation using 
gaussian finite mixture models. R J 2016;8(1):289–317. 

[55] Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. 
BMC Bioinforma 2010;11:367. 

[56] Zhao Q, et al. CrossICC: iterative consensus clustering of cross-platform gene 
expression data without adjusting batch effect. Brief Bioinform 2020;21(5): 
1818–24. 

[57] Bodenhofer U, Kothmeier A, Hochreiter S. APCluster: an R package for affinity 
propagation clustering. Bioinformatics 2011;27(17):2463–4. 

[58] Mo S, et al. A precise molecular subtyping of ulcerative colitis reveals the immune 
heterogeneity and predicts clinical drug responses. J Transl Med 2023;21(1):466. 

[59] Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach 
for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 
102(43):15545–50. 

[60] Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinforma 2013;14:7. 

[61] Steen CB, et al. Profiling cell type abundance and expression in bulk tissues with 
CIBERSORTx. Methods Mol Biol 2020;2117:135–57. 

[62] Zeng D, et al. IOBR: multi-omics immuno-oncology biological research to decode 
tumor microenvironment and signatures. Front Immunol 2021;12:687975. 

[63] van Baarsen LG, et al. A subtype of multiple sclerosis defined by an activated 
immune defense program. Genes Immun 2006;7(6):522–31. 

[64] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion 
for RNA-seq data with DESeq2. Genome Biol 2014;15(12):550. 

[65] Jung SM, Park KS, Kim KJ. Deep phenotyping of synovial molecular signatures by 
integrative systems analysis in rheumatoid arthritis. Rheumatol (Oxf) 2021;60(7): 
3420–31. 

[66] Hoadley KA, et al. Multiplatform analysis of 12 cancer types reveals molecular 
classification within and across tissues of origin. Cell 2014;158(4):929–44. 

[67] Liston A, Carr EJ, Linterman MA. Shaping Variation in the Human Immune 
System. Trends Immunol 2016;37(10):637–46. 

[68] Oughtred R, et al. The BioGRID interaction database: 2019 update. Nucleic Acids 
Res 2019;47(D1). p. D529-d541. 

[69] Keshava Prasad TS, et al. Human protein reference database–2009 update. 
Nucleic Acids Res 2009;37(Database issue):D767–72. 

[70] Kerrien S, et al. The IntAct molecular interaction database in 2012. Nucleic Acids 
Res 2012;40(Database issue):D841–6. 

[71] Fabregat A, et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res 
2018;46(D1). p. D649-d655. 

[72] Szklarczyk D, et al. The STRING database in 2021: customizable protein-protein 
networks, and functional characterization of user-uploaded gene/measurement 
sets. Nucleic Acids Res 2021;49(D1). p. D605-d612. 

[73] Biasi F, et al. Inflammatory bowel disease: mechanisms, redox considerations, and 
therapeutic targets. Antioxid Redox Signal 2013;19(14):1711–47. 

[74] Dinallo V, et al. Neutrophil extracellular traps sustain inflammatory signals in 
ulcerative colitis. J Crohns Colitis 2019;13(6):772–84. 

[75] Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in 
disease: potential Anti-NETs therapeutics. Clin Rev Allergy Immunol 2021;61(2): 
194–211. 

[76] Zhang C, et al. Identifying neutrophil-associated subtypes in ulcerative colitis and 
confirming neutrophils promote colitis-associated colorectal cancer. Front 
Immunol 2023;14:1095098. 

[77] Ritchie ME, et al. limma powers differential expression analyses for RNA- 
sequencing and microarray studies. Nucleic Acids Res 2015;43(7):e47. 

X. Cheng et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref6
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref7
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref7
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref7
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref8
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref8
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref9
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref9
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref10
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref10
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref11
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref11
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref12
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref12
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref13
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref13
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref14
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref14
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref14
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref15
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref15
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref15
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref16
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref16
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref16
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref17
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref17
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref18
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref18
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref19
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref19
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref20
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref20
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref20
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref21
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref21
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref21
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref22
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref22
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref23
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref23
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref23
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref24
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref24
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref25
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref25
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref25
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref25
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref26
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref26
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref26
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref26
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref27
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref27
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref28
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref28
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref29
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref29
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref30
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref30
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref31
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref31
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref31
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref32
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref32
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref32
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref33
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref33
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref34
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref34
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref35
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref35
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref35
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref36
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref36
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref37
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref37
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref38
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref38
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref38
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref38
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref39
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref39
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref40
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref40
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref41
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref41
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref41
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref42
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref42
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref42
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref43
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref43
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref43
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref44
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref44
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref45
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref45
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref45
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref46
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref46
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref46
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref47
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref47
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref48
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref48
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref49
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref49
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref50
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref50
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref51
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref51
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref52
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref52
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref53
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref53
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref54
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref54
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref55
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref55
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref55
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref56
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref56
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref57
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref57
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref58
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref58
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref58
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref59
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref59
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref60
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref60
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref61
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref61
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref62
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref62
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref63
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref63
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref64
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref64
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref64
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref65
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref65
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref66
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref66
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref67
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref67
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref68
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref68
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref69
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref69
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref70
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref70
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref71
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref71
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref71
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref72
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref72
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref73
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref73
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref74
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref74
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref74
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref75
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref75
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref75
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref76
http://refhub.elsevier.com/S2001-0370(24)00078-3/sbref76


Computational and Structural Biotechnology Journal 23 (2024) 1348–1363

1362

[78] Bindea G, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the 
immune landscape in human cancer. Immunity 2013;39(4):782–95. 

[79] Bhattacharya S, et al. ImmPort: disseminating data to the public for the future of 
immunology. Immunol Res 2014;58(2-3):234–9. 

[80] Chin CH, et al. cytoHubba: identifying hub objects and sub-networks from 
complex interactome. BMC Syst Biol 2014;8(Suppl 4(Suppl 4):S11. 

[81] Zyla J, et al. Gene set enrichment for reproducible science: comparison of CERNO 
and eight other algorithms. Bioinformatics 2019;35(24):5146–54. 

[82] Chaussabel D, et al. A modular analysis framework for blood genomics studies: 
application to systemic lupus erythematosus. Immunity 2008;29(1):150–64. 

[83] Yaari G, et al. Quantitative set analysis for gene expression: a method to quantify 
gene set differential expression including gene-gene correlations. Nucleic Acids 
Res 2013;41(18):e170. 

[84] Gene Ontology Consortium: going forward. Nucleic Acids Res, 2015. 43(Database 
issue): p. D1049-D1056. 

[85] Kuleshov MV, et al. Enrichr: a comprehensive gene set enrichment analysis web 
server 2016 update. Nucleic Acids Res 2016;44(W1):W90–7. 

[86] Newman AM, et al. Robust enumeration of cell subsets from tissue expression 
profiles. Nat Methods 2015;12(5):453–7. 

[87] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res 2000;28(1):27–30. 

[88] Xiong Q, et al. Integrating genetic and gene expression evidence into genome- 
wide association analysis of gene sets. Genome Res 2012;22(2):386–97. 

[89] Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of 
large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4(1): 
44–57. 

[90] Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular 
heterogeneity landscape. Genome Biol 2017;18(1):220. 

[91] Mi H, et al. The PANTHER database of protein families, subfamilies, functions and 
pathways. Nucleic Acids Res 2005;33(Database issue):D284–8. 

[92] Postal M, et al. Type I interferon in the pathogenesis of systemic lupus 
erythematosus. Curr Opin Immunol 2020;67:87–94. 

[93] Deng Y, et al. Expression characteristics of interferon-stimulated genes and 
possible regulatory mechanisms in lupus patients using transcriptomics analyses. 
EBioMedicine 2021;70:103477. 

[94] Agouridis AP, Elisaf M, Milionis HJ. An overview of lipid abnormalities in 
patients with inflammatory bowel disease. Ann Gastroenterol 2011;24(3):181–7. 

[95] Levy RA, et al. 10 Years of belimumab experience: What have we learnt? Lupus 
2021;30(11):1705–21. 

[96] Dhillon S. Telitacicept: First Approval. Drugs 2021;81(14):1671–5. 
[97] Humbel M, et al. Restoration of NK Cell Cytotoxic Function With Elotuzumab and 

Daratumumab Promotes Elimination of Circulating Plasma Cells in Patients With 
SLE. Front Immunol 2021;12:645478. 

[98] Liu Z, Zou Y, Davidson A. Plasma cells in systemic lupus erythematosus: the long 
and short of it all. Eur J Immunol 2011;41(3):588–91. 

[99] Clarke J. IL-17 sustains plasma cells in SLE. Nat Rev Rheuma 2020;16(12):666. 
[100] Banchereau J, Pascual V. Type I interferon in systemic lupus erythematosus and 

other autoimmune diseases. Immunity 2006;25(3):383–92. 
[101] Rogler G, et al. Extraintestinal Manifestations of Inflammatory Bowel Disease: 

Current Concepts, Treatment, and Implications for Disease Management. 
Gastroenterology 2021;161(4):1118–32. 

[102] Ning L, et al. Identification and investigation of depression-related molecular 
subtypes in inflammatory bowel disease and the anti-inflammatory mechanisms 
of paroxetine. Front Immunol 2023;14:1145070. 

[103] Weiser M, et al. Molecular classification of Crohn’s disease reveals two clinically 
relevant subtypes. Gut 2018;67(1):36–42. 

[104] den Besten G, et al. The role of short-chain fatty acids in the interplay between 
diet, gut microbiota, and host energy metabolism. J Lipid Res 2013;54(9): 
2325–40. 

[105] Shores DR, et al. New insights into the role of fatty acids in the pathogenesis and 
resolution of inflammatory bowel disease. Inflamm Bowel Dis 2011;17(10): 
2192–204. 

[106] Long Y, et al. The Imbalance of Circulating Follicular Helper T Cells and Follicular 
Regulatory T Cells Is Associated With Disease Activity in Patients With Ulcerative 
Colitis. Front Immunol 2020;11:104. 

[107] Long Y, et al. Activated inducible co-stimulator-positive programmed cell death 1- 
positive follicular helper T cells indicate disease activity and severity in ulcerative 
colitis patients. Clin Exp Immunol 2020;202(1):106–18. 

[108] Carloni S, et al. Identification of a choroid plexus vascular barrier closing during 
intestinal inflammation. Science 2021;374(6566):439–48. 

[109] Matthijssen XME, et al. Enhanced treatment strategies and distinct disease 
outcomes among autoantibody-positive and -negative rheumatoid arthritis 
patients over 25 years: a longitudinal cohort study in the Netherlands. PLoS Med 
2020;17(9):e1003296. 

[110] Croft AP, et al. Distinct fibroblast subsets drive inflammation and damage in 
arthritis. Nature 2019;570(7760):246–51. 

[111] Aliyu M, et al. Interleukin-6 cytokine: An overview of the immune regulation, 
immune dysregulation, and therapeutic approach. Int Immunopharmacol 2022; 
111:109130. 

[112] Jellusova J, Rickert RC. The PI3K pathway in B cell metabolism. Crit Rev Biochem 
Mol Biol 2016;51(5):359–78. 

[113] Cohen JR, et al. Altered aortic protease and antiprotease activity in patients with 
ruptured abdominal aortic aneurysms. Surg Gynecol Obstet 1987;164(4):355–8. 

[114] Graninger WB, et al. Cytokine regulation of apoptosis and Bcl-2 expression in 
lymphocytes of patients with systemic lupus erythematosus. Cell Death Differ 
2000;7(10):966–72. 

[115] Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and 
inflammation. Nat Rev Immunol 2013;13(3):159–75. 

[116] Hayden MS, Ghosh S. Regulation of NF-κB by TNF family cytokines. Semin 
Immunol 2014;26(3):253–66. 

[117] Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res 2011;21(2):223–44. 
[118] Maianski NA, Roos D, Kuijpers TW. Tumor necrosis factor alpha induces a 

caspase-independent death pathway in human neutrophils. Blood 2003;101(5): 
1987–95. 

[119] Pittayapruek P, et al. Role of Matrix Metalloproteinases in Photoaging and 
Photocarcinogenesis. Int J Mol Sci 2016;17(6). 
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