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Future ocean biomass losses may widen
socioeconomic equity gaps

Daniel G. Boyce® 2™ Heike K. Lotze® 2, Derek P. Tittensor?, David A. Carozza® & Boris Worm® 2

Future climate impacts and their consequences are increasingly being explored using multi-
model ensembles that average across individual model projections. Here we develop a sta-
tistical framework that integrates projections from coupled ecosystem and earth-system
models to evaluate significance and uncertainty in marine animal biomass changes over the
215t century in relation to socioeconomic indicators at national to global scales. Significant
biomass changes are projected in 40%-57% of the global ocean, with 68%-84% of these
areas exhibiting declining trends under low and high emission scenarios, respectively. Given
unabated emissions, maritime nations with poor socioeconomic statuses such as low nutri-
tion, wealth, and ocean health will experience the greatest projected losses. These findings
suggest that climate-driven biomass changes will widen existing equity gaps and dis-
proportionally affect populations that contributed least to global CO, emissions. However,
our analysis also suggests that such deleterious outcomes are largely preventable by
achieving negative emissions (RCP 2.6).
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nderstanding future changes in ocean health and service

provision will be critical to achieving sustainable devel-

opment while addressing socioeconomic inequality and
conflicts over marine resources over the coming century!l. Pro-
jections of future change under differing scenarios are crucial to
help build such understanding. Global climate models (GCM:s)
resolve physical processes to make such projections for the cli-
mate system, and earth system models (ESMs) build on GCMs to
also resolve biogeochemical processes?. Most recently, through
the coupling of ESMs to global marine ecosystem models
(MEMs), it is now possible to project how marine life, from
microbes to top predators, will change under different greenhouse
gas emissions, ocean warming, and fishery exploitation scenar-
ios3~°. Such projections are increasingly being included in policy
documents such as the Intergovernmental Panel on Climate
Change Reports®=8 and used by international organizations such
as the Food and Agricultural Organization of the United Nations
(FAO) and the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services (IPBES), and inform
decision-makers of how climate-driven ecological changes may
affect biodiversity, food production and human well-being®10.
Such projections are also beginning to be incorporated into
applied ocean management settings™!1.

Despite increasing reliance on such coupled models, the
variability among individual projections, possibly due to differ-
ences in the structure, assumptions, and processes of the under-
lying models, can be a barrier to the effective interpretation and
implementation of findings!?-16. Projections of change from
single models often deviate from and sometimes conflict with
others!”-18, prompting researchers to combine projections into
multi-model ensemble averages (MMEAs). This MMEA
approach is most commonly implemented as a “model democ-
racy” considering all projections to be equally plausible and has
been widely adopted as a more reliable alternative to individual
projections>>1219.20 " Following the growing use of MMEAs,
there have lately been calls to adopt alternative statistical
approaches better suited for evaluating projection uncertainty?!,
exploring causation??, and increasing the statistical rigor of
MMEA analyses!4.

Combining ensemble projections using methods that allow
statistical hypothesis testing would be a logical step toward
increasing the rigor of MMEA analyses. While statistical
hypothesis testing is a “gold standard” for distinguishing signals
of change from other sources of variation?3, and a requirement of
most peer-review processes, it has rarely been implemented in
MMEA analyses. The non-independence of models and the
potential for extreme projections to dominate an ensemble
average can bias the MMEA results in ways not yet fully
understood!424. Given the often-conflicting and uncertain nature
of individual model projections, especially at high latitudes>17-20,
and the increasing extent to which projected changes are being
used in applied settings®”->10, the inability to resolve the sig-
nificance and uncertainty of MMEA trends is a critical knowledge
gap. Filling this gap, via hypothesis testing, would build con-
fidence in the reliability of ensemble trends and may facilitate a
greater understanding of how climate change impacts are related
to the broader dimensions of socio-economic development, which
is thus far largely unresolved. For instance, projections of marine
ecosystem responses to climate change could be used to explore
feasibility pathways towards meeting several of the sustainable
development goals (SDGs), including those aimed at reducing
hunger (SDG2), improving health, well-being (SDG3), and eco-
nomic inequalities (SDG10), and avoiding adverse ecosystem
effects due to climate change (SDG14).

Here, we address these knowledge gaps by estimating the rates
of climate-driven ensemble-averaged animal biomass changes

and their statistical significance over the 21st century and then
relating these future biomass changes to present-day indicators of
fisheries productivity, human stressors, and socioeconomic status
(SES). Ensemble-averaged biomass changes and their significance
were estimated using longitudinal models (also known as mixed-
effects or hierarchical models). Longitudinal models are used in
disciplines such as the health sciences?>~27, psychology, finance,
ecology?8, and fisheries?® to understand shared associations that
are manifest as multiple individual time-series. For example,
longitudinal models have been used in epidemiological studies to
statistically account for confounding differences in time-series of
demographic health metrics, including body mass?°, blood pres-
sure?’, and diabetes?® that may be due to variation between
individuals, study methodologies, populations, and other factors,
to enable robust conclusions about associations that operate
globally. The approach is ideally suited to ensemble projections,
where many time-series derived from models with potentially
different architectures are used to describe an unknown—but
shared—climate response through time. Despite their wide-
spread application in other disciplines, longitudinal models
remain thus far unused in ensemble climate forecasting.

We obtained annual time series of projected unfished marine
animal biomass on a global 1 x1° grid from the Fisheries, and
Marine Ecosystems Model Inter-comparison Project (Fish-
MIP339), which includes six global MEMs forced with the stan-
dardized output of two ESMs under two emission scenarios
(Representative Concentration Pathways; RCP2.6 and RCP8.5).
While the MEMs have very different underlying structures and
assumptions (see Methods), the validity of their projections have
been extensively validated against empirical observations®31-32,
Notwithstanding their increasing application and validation, the
skill of MEM projections is not yet suitably high to warrant their
use in applied ocean management at the requisite taxonomic and
spatial scales (see Supplementary Discussion).

For each emissions scenario and within each 1° grid cell, a
longitudinal model was used to estimate the long-term trend in
marine animal biomass (B,; % yr~!) and its uncertainty (standard
error; 0,; % yr~!) while accounting for temporal autocorrelation.
While examining the trends individually (yellow in Fig. 1b, c)
would prohibit the evaluation of any shared pattern of biomass
change across the ensembles, combining the projections to esti-
mate a single “pooled” trend (red in Fig. 1b, ¢) would introduce
bias due to the possibly correlated projections (collinearity33).
The longitudinal approach optimizes the trade-off between these
two approaches. The individual trends (yellow circles in Fig. 1c)
are adjusted toward the pooled trend (white vertical line in
Fig. 1c), with those that are less probable—e.g., they contain less
data, have a high variance, and are far from the pooled trend (e.g.,
J in Fig. 1b, c) being adjusted to the greatest extent. The resulting
estimates of change, or random effects predictions (blue shaded
circles in Fig. 1d), are then used to estimate the multi-model
longitudinal rate of change (white vertical line in Fig. 1d), along
with its statistical uncertainty (blue density in Fig. 1d), and sig-
nificance. Our analysis did not include different ecosystem model
initializations or fishing scenarios. Therefore, the overall projec-
tion uncertainty estimated by the longitudinal models primarily
relates to the structure and parameterization of the ecosystem
models, rather than to initialization or scenario factors!>19,
although these factors could be included in future analyses. See
the methods section and refs. 2834 for further details.

After analyzing the geographic patterns of ensemble biomass
trends and their significance, we explore how these changes relate
to socioeconomic indicators at national to global scales. Specifi-
cally, we compare marine biomass changes to indicators of fish-
eries productivity, human stressors, and SES to explore how
impacts may affect different maritime states and their prospects
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Fig. 1 Projecting ecological change. a Projections of marine animal biomass under different emission scenarios are obtained by coupling the standardized
output from two earth system models to six global marine ecosystem models. b Biomass trends (lines) are estimated from model projections (points)
individually (yellow) and collectively in a single pooled sample (red). ¢ Individual time trends (yellow shaded circles) are adjusted toward the pooled trend
(red shaded density) according to their distance from it and their variability; more variable trends that are far from the pooled trend are adjusted the most
(e.g., D). d Adjusted individual trends or random effects predictions (blue points) are used to derive the multi-model longitudinal biomass trend, and its
statistical uncertainty (blue shaded density). The overall trend distribution often has a similar mean but a significantly larger variance than the pooled or

individual trends.

for sustainable development. The longitudinal approach allows
for the statistical uncertainty of the multi-model longitudinal
trends to be carried forward through our analyses, thus building
robustness. This work complements previous Fish-MIP
studies>?0 by using a statistical approach that estimates the sig-
nificance of ensemble trends in biomass, and by evaluating the
broader socioeconomic implications.

Results

Global patterns of multi-model ensemble animal biomass. To
evaluate present-day patterns of marine animal biomass, we
calculated the multi-model ensemble mean biomass within each
grid cell between 2006 and 2016 in standardized units of per-
centage of the global maximum (%; Fig. 2a). Peak biomass levels
emerged in most upwelling regions, and at high temperate

latitudes (~50-60°N and °S). The lowest animal biomass con-
centrations were observed at lower latitudes (<30°N and °S),
particularly in the oligotrophic gyres. Average biomass was
positively related to latitudinal gradients in average net primary
production (NPP) and negatively related to gradients in sea
surface temperature (SST), especially between ~50°N and °S, but
less so at higher latitudes (Fig. 2a). Here, the prevalence of dia-
toms was often elevated, potentially increasing the fraction of
NPP transferred to consumers rather than to the microbial loop,
leading to higher animal biomass than would be expected from
NPP or SST alone*. A linear regression model containing all three
variables explained substantially more of the spatial variation in
animal biomass (78%) than did any single variable (17-51%).
These findings suggest that observed biomass patterns are
explained by both biogeochemical (SST and NPP) and ecological
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Fig. 2 Global patterns of marine animal biomass and projected change. a Average standardized biomass of marine animals from multi-model projections
for the contemporary period (2006-2016). Left: Map depicts animal biomass density in each grid cell, relative to the global maximum and normalized. Gray
lines depict the 200 m isobath. Right: graph shows the latitudinal variation in present-day animal biomass (black), SST (red), NPP (blue), and diatom
frequency (yellow). b, € Maps of projected future change in animal biomass between 2006 and 2100, relative to the reference period (2006-2016) under a
worst-case scenario RCP8.5 (b) and strong mitigation scenario RCP2.6 (¢). White depicts grid cells containing non-significant trends (p > 0.05) or
containing insufficient data for analysis. Circular histograms depict the proportion of grid cells where analyses were possible that contained increasing
(blue) or declining (red) changes. Inner opaque shading depicts changes that were statistically significant (p <0.05), and outer shading depicts those that
were both statistically significant and non-significant. Histograms show the distribution of all statistically significant predicted changes per grid cell with
global means denoted as red arrows. Projected changes in b, ¢ were estimated using longitudinal models. Data sources are listed in Table 1.

variables (species composition) and highlight the importance of
accurately incorporating microbial food chain dynamics and size-
based predation3® as do most of the MEMs used here3. As we
omitted cells containing <3 projections, biomass patterns could
not be examined in many nearshore locations.

Projected future changes in marine animal biomass. Climate
change scenarios had a large effect on projected biomass trends.
Under a worst-case scenario (RCP8.5, Fig. 2b), 84% of statistically

significant trends (p < 0.05) projected a decline in animal biomass
over the 21st century, with a global median change of —22%.
Rapid biomass declines were projected across most ocean areas
(60°S to 60°N) but were particularly pronounced in the North
Atlantic Ocean. Under a strong mitigation scenario (RCP2.6,
Fig. 2c), 68% of significant trends exhibited declining biomass,
with a global median change of —4.8%. Despite the overall pre-
valence of negative trends, some large biomass increases (>75%)
were projected, particularly in the high Arctic Oceans.
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Our analysis suggests that statistically significant biomass
changes between 2006 and 2100 will occur in 40% (RCP2.6) or
57% (RCP8.5) of the global ocean, respectively (Fig. 2b, c). For the
remaining cells, the signal of biomass change was not separable
from the background variability. The estimates of biomass change
and their uncertainty were different from those obtained using
multi-model ensemble averaging (see Supplementary Methods for
details). When present, differences between longitudinal vs.
MMEA trends tended to be large and driven by trends identified
by the longitudinal models as non-significant. By using long-
itudinal models, these highly uncertain estimates can be identified
and removed (Fig. 2b, ¢), or statistically accounted for in
subsequent analyses.

Relating future biomass changes to SES. To explore the con-
sequences of projected biomass changes within a broader ecolo-
gical and societal context, we related them to present-day
geographical patterns of fisheries productivity, human stressors
and indicators of SES. Indicators of fisheries productivity inclu-
ded annual reported and estimated commercial fishery landings,
as well as illegal and unreported fishing activity (Table 1, Sup-
plementary Table 1). Stressors included both multivariate indices
of cumulative human impacts3®, as well as individual stressors
such as pollution, for example. SES indicators assessed develop-
ment and nutritional status, social condition, ecological health,
and climate change vulnerability of 106 maritime states (see
Methods section, Table 1, and Supplementary Table 1 for a
complete list of indicators). The SES indicators were split into
those for which higher scores denoted improved condition
(states), and those where increasing scores indicated reduced
condition (pressures). Except for officially reported FAO fishery
landings, which are made available at the scale of FAO statistical
areas (n = 18), all spatial relationships between projected biomass

changes and fisheries and human stressors were tested at the scale
of marine ecoregions?’, while SES indicators were examined at
the scale of individual states’ exclusive economic zones (EEZs).

Under a worst-case emission scenario (RCP8.5), consistent
negative relationships emerged between projected animal biomass
change and fisheries productivity: greater biomass declines were
projected for areas that currently support higher fishery yields
(Fig. 3a, d). This implies that fisheries yield may decline
disproportionally in more productive fishing grounds. This
relationship was observed using two separate sources of landings
data (Fig. 3d; ref. 38), suggesting that it is robust across data
sources and spatial scales. The Northeast Atlantic is a notable
outlier to this global relationship, as it supports the second-largest
fishery landings by area but is projected to experience relatively
small biomass losses when averaged spatially (Fig. 3a). The
apparent higher resistance of Northeast Atlantic marine ecosys-
tems to climate effects is hypothesized to be related to elevated
ocean temperatures and species diversity there, relative to the
Northwest Atlantic3®40, which can promote stability*!. The
Arctic is another outlier, supporting virtually no fishery landings
at present, but projected to experience the greatest animal
biomass increases (>30%) over the next century under RCP8.5
(Fig. 3a).

Understanding future redistributions of fisheries biomass may
be useful in anticipating and mitigating potential conflicts over
fish and related social systems!. For instance, a northward shift in
the distribution of Atlantic mackerel after 2007 instigated a
conflict over fishing quotas between the European Union (EU),
Norway, Iceland and the Faroe Islands, eroding the sustainability
of the fishery*2. The response of fisheries to projected redistribu-
tions of biomass will depend on additional factors such as
profitability of fishing in potentially remote locations, which may
be less accessible, the location of marine protected areas, and
species-specific responses to climate change and other stressors.

Table 1 Data sources.

Index Category Authority Units Resolution
Biomass projections

Animal biomass Projection Fish-MIP30 % 1°
Oceanographic

Temperature Environment NODC WOA °C 1°

Primary production Environment MODIS (NASA) gCm=2yr1 1°
Diatoms Environment Ref. 60 % 1°
Fisheries productivity

FAO fish landings Fisheries FAO tkm?2 FAO areas
Commercial fish landings Fisheries Ref. 38 kg km=2yr=1 Ecoregion
lllegal, unreported fishery landings Fisheries Ref. 38 kg km=2 yr—1 Ecoregion
Human stressors

Ocean acidity Stressor Ref. 36 - Ecoregion
Human impact index Stressor Ref. 36 - Ecoregion
Pollution from ship activity Stressor Ref. 36 - Ecoregion
Hypoxia Stressor Ref. 39 % Ecoregion
Socioeconomic status

Human development index State United Nations - EEZ
Ocean health index State Ref. 67 - EEZ

Gross domestic product State World bank US$ person EEZ

CO, emissions State World bank t person EEZ
Economic adaptive capacity State Ref. 68 - EEZ
Fishery dependency index Pressure Ref. 12 - EEZ

Food deficit Pressure World bank kcal person d— EEZ
Undernourishment Pressure FAO % EEZ
Economic vulnerability Pressure Ref. 68 - EEZ

Food insecurity Pressure Ref. 12 - EEZ
Fish-MIP Fisheries and Marine Ecosystem Model Intercomparison Project, NODC WOA National Oceanographic Center World Ocean Atlas, FAO Food and Agricultural Organization, MODIS moderate
resolution imaging spectroradiometer, NASA National Aeronautics and Space Administration, EEZ exclusive economic zone. (-) denotes indices that are unitless.
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Under RCP8.5, significant negative relationships were also
found between the spatial distribution of biomass change and
both cumulative (Fig. 3b) and individual (Fig. 3d) human
stressors. This result suggests that the greatest climate-driven
biomass losses will occur in locations that presently experience
multiple additional human stressors, most of which are not

accounted for by the MEMs used here3. Therefore, the biomass
changes that we describe may be conservative estimates, as there
will be additional impacts from fishing, bycatch, pollution, and
other human impacts, which could make ecological communities
more susceptible to the effects of climate change. These
interactions were much weaker under the strong mitigation
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Fig. 3 Biomass changes in relation to fisheries, stressors, and socioeconomic indicators. a-c Bivariate relationships between the projected animal
biomass changes under a worst-case emission scenario (RCP8.5) and a total fisheries landings within 18 FAO statistical areas, b average cumulative human
impacts within marine ecoregions, and ¢ the human development index of maritime states. Bivariate maps (left panels) depict the spatial distribution of the
relationships shown in the right panels. Dark and light blue depict projected biomass increase, red, orange, and yellow depict decline; horizontal line
denotes no change in biomass. Symbol size in (a) depicts the geographic size of the FAO areas. d Estimated slopes from relationships between spatial
gradients in 17 indicators of fisheries productivity, human stressors, and socioeconomic status (see methods for details) and projected biomass changes.
Green circles are biomass changes under RCP2.6 and purple squares under RCP8.5; lines depict the 95% Cls. Darker, opaque points denote statistically
significant interactions (p < 0.05), and lighter, semi-transparent points are non-significant. The sample sizes of the relationships are in parentheses.
Negative slopes indicate stronger biomass declines in locations where indicators are largest and vice versa. All indicators in a-d have been standardized to

units of variance from the mean.

scenario (RCP2.6) but remained statistically significant for several
indicators (green points in Fig. 3d).

Furthermore, under RCP8.5, consistent relationships were also
observed between projected animal biomass changes and SES
indicators (Fig. 3c, d), with more severe declines projected in
regions with low SES. For example, Fig. 3c shows geographic
patterns of projected biomass change and the human develop-
ment index (HDI) within each EEZ (Fig. 3¢, map), as well as the
emergent relationship between them (Fig. 3¢, right panel). The
significant positive relationship between the HDI (Fig. 3c) and the
mean rate of projected biomass change under RCP8.5 (p < 0.0001;
2 =0.16) indicates that higher climate-driven biomass losses are
projected to disproportionally occur within the EEZs of the least
developed states. In addition to development status, states
experiencing the greatest pressures such as high levels of
undernourishment, food debt and insecurity, fishery dependency,
and economic vulnerability to climate change are projected to
experience the greatest losses of marine animal biomass over the
coming century. These states also have the lowest ocean health
scores, lowest wealth and adaptive capacity, and contribute the
least to global CO, emissions on a per capita (r*=0.13; p<
0.0001) and national basis (r* = 0.1; p < 0.0001). The relationships
between projected biomass and almost all SES indicators became
weaker and often non-significant under a strong greenhouse gas
mitigation scenario (RCP2.6; Fig. 3d).

Under RCP8.5, states that currently have a higher proportion
of undernourishment are projected to experience the largest
climate-driven reductions in animal biomass. This relationship is
troubling, given that seafood accounts for 14-17% of the global
animal protein consumed by humans, but with much higher
reliance in small island states, where it is vital to maintaining
good nutrition and health®3. Declining animal biomass within the
EEZs of states that are already experiencing poor nutrition may
further exacerbate these deficiencies, particularly as these states
also tend to be more dependent on fisheries, have low food
security and high food debts (Fig. 3d). Changes in nutrition
related to declining fisheries productivity could potentially be
offset by increased agricultural production, aquaculture, or
modifying food distribution systems!2. Yet, recent studies have
also highlighted the importance of seafood as a critical source of
essential micronutrients that are currently lacking in the diets of
up to 2 billion people?t. These micronutrient deficiencies and
their consequences are particularly severe in Asian and African
countries*>#%, many of which are projected to experience severe
reductions in marine animal biomass under RCP8.5 (Fig. 2b).

Effects of emission mitigation on animal biomass projections.
To explicitly evaluate the effect of strong emission mitigation on
future animal biomass, we calculated the difference in projected
biomass with the strongest mitigation scenario (RCP2.6) relative
to those under a worst-case scenario (RCP8.5) within each EEZ
and by continent (Fig. 4). The relationship between projected
biomass under RCPs 8.5 and 2.6 was positive (r = 0.53) but also

suggested that the effects of strong mitigation on biomass were
not purely additive: some states experienced disproportionate
biomass gains (Fig. 4a, above diagonal line) or losses (Fig. 4a,
below diagonal line) from strong, relative to weak mitigation.
Although mitigation led to increased biomass relative to worst-
case emissions within the EEZs of almost all states, it resulted in
declines within the EEZs of Morocco (—1%), Chile (—10%), Spain
(—12%), and Russia (—12%; Fig. 4a). Relative to a worst-case
scenario, the largest biomass gains from mitigation were observed
for African, Asian, and South American states, including Yemen
(50%), Oman (49%), Cambodia (48%), Guinea Bissau (46%),
Suriname (45%), and Pakistan (44%).

On a regional basis, the largest average biomass increases due
to strong, relative to weak, greenhouse gas mitigation were
projected for states in Africa, Asia, Oceania, and South America,
with European and North American states experiencing lower
relative biomass gains (Fig. 4b). Although the average effects of
mitigation were spatially variable, significant effects were
apparent within Africa and Oceania. These continental-scale
effects suggested that the benefits of strong relative to weak
mitigation, here denoted as biomass increases, will be most
experienced by states within lesser developed regions. This
hypothesis was supported by examining the effect of strong
relative to weak mitigation on animal biomass along gradients in
the human development index (HDI Fig. 4c). A negative
correlation was found between mitigation benefits and HDI (r
= —0.46; p<0.0001), indicating substantial benefits of strong,
relative to weak mitigation for the least developed states and
vice versa.

Discussion

Longitudinal models indicated that statistically significant
ensemble biomass changes would occur in 40-57% of the ocean
under RCPs 2.6 or 8.5, respectively (Fig. 2b, c). Our results
emphasize the importance of considering statistical uncertainty
for ensemble projections and propagating that uncertainty for-
ward into subsequent analyses. The flexible and powerful long-
itudinal approach we use could be adopted as a general
framework for estimation from ensemble projections of climate
change impacts, leading to an enhanced understanding of future
change and its uncertainty (see Supplementary Discussion for
details).

Our analyses quantify how emissions mitigation may alter
ecological changes and their consequences for states at differing
levels of socio-economic development. With ongoing warming,
our study suggests that the most productive fishery grounds in the
ocean will experience the largest reductions in animal biomass.
Should these projected trends unfold, fishery-dependent econo-
mies could be severely disrupted, and transboundary conflicts
over marine resources may ensuel.

Our results suggest that the socioeconomic consequences of
projected biomass declines under RCP8.5 will likely be dis-
proportionately severe for coastal developing nations. Developing
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Fig. 4 Effects of emission mitigation on projected animal biomass change. a Relationship between average projected animal biomass change across EEZs
under a worst-case (RCP8.5) vs. strong mitigation scenario (RCP2.6). Horizontal and vertical dashed lines denote no change in projected biomass. The
solid line represents a 1:1 relationship; points above this line depict EEZs in which strong (RCP2.6), relative to weak (RCP8.5), mitigation leads to greater
biomass and vice versa. b Change in projected animal biomass resulting from strong, relative to weak mitigation within maritime EEZs (semitransparent
circles) summarized within major continents (colors). The mean effect of emission mitigation on animal biomass for each continent is shown as opaque
symbols with lines denoting the 95% Cls where n>3. The number of EEZs is in parentheses. Points to the right of the vertical line denote biomass

increases with strong emission mitigation relative to the worst-case scenario. ¢ Effect of strong, relative to weak, mitigation on projected animal biomass
within EEZs in relation to development status. Points above the horizontal line depict increased animal biomass with strong, relative to weak, mitigation and
vice versa. For a-¢, symbol size depicts the size of the EEZs and colors the continent; orange = North America, yellow = South America, purple = Europe,

red = Africa, blue = Asia, and green = Oceania.

nations had higher cumulative human impacts, poorer ocean
health, and are facing socioeconomic challenges such as lower
wealth and nutrition. Developing states also tended to have a
higher dependence on fisheries, rendering them more vulnerable
to projected marine biomass declines due to climate change.
Although developing nations have contributed the least to climate
emissions, the many additional socioeconomic pressures they are
facing have likely imbued them with lower adaptive capacity in
the face of climate change. In addition, the majority of developing

countries (e.g., India and China) have adopted more ambitious
nationally determined contributions to climate mitigation
(NDCs) than the average, and more than most developed states
(e.g., those in Europe and North America)¥’. In a nutshell, while
developing countries have contributed the least to climate change
and are more aggressively curbing their emissions, they are
projected to suffer the most from emission-driven impacts on
their marine ecosystems and benefit the most from mitigation. To
narrow these equity gaps, developed states could adopt more
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ambitious NDCs and prioritize the transfer of capital, technology,
and adaptive capacity building to developing states.

Based on these findings, unabated climate change could ser-
iously impede the ability of the international community to meet
and maintain several of the UN SDGs, particularly those aimed at
reducing hunger (SDG2), improving health, well-being (SDG3),
and economic inequalities (SDG10), and avoiding adverse eco-
system effects due to climate change (SDGI14). Despite these
adverse outcomes, our analysis also suggests that the dispropor-
tionate climate impacts we report on developing states could be
minimized through emissions mitigation. Strong mitigation
would lead to increased animal biomass, relative to the worst-case
emission scenario, for 96% of states, and would dis-
proportionately benefit those in Asia, Africa, and South America
(Fig. 4). Therefore, reducing emissions provides the most
straightforward means of countering climate-driven biomass
changes and avoiding disproportionate impacts on states that are
the least well-positioned to deal with them.

Methods

Projected marine animal biomass data. Global projected time-series of marine
animal biomass between 2006 and 2100 were obtained from the Fisheries and
MEM Inter-comparison Project (Fish-MIP v1.0>39), which is part of the Inter-
Sectoral Impact Model Intercomparison Project (ISI-MIP). Projections were
obtained from six published and validated global MEMs: APECOSM*3, BOATS*,
DBEM®?, DPBM?!, EcoOcean®2, and Macroecological®3. All MEMs were forced
with standardized outputs from two ESMs from the Coupled Model Inter-
comparison Project Phase 5 (https://esgf-node.llnl.gov/projects/cmip5): NOAA’s
Geophysical Fluid Dynamics Laboratory Climate Model (GFDL-ESM2M)>45> and
the Institute Pierre Simon Laplace Climate Model (IPSL-CM5A-LR)%. These
models span a broad range of the ESM projections of SST and NPP within the
CMIP5 model set, GFDL-ESM2M representing the lower end of the spectrum of
changes and IPSL-CM5A-LR the higher end®’. Marine animal biomass projections
(g Cm~2) were made under RCP2.6 representing a high mitigation, low emission
scenario, and RCP8.5, representing a worst-case pathway assuming a continuous
increase in emissions until 2100°8, We standardized projections to relative change
to account for differences in the subsets of marine animals included in the models>.
Although the projections used here were made without incorporating fisheries
exploitation (as only a subset of models provided fished model runs), previous
Fish-MIP analyses suggest that incorporating fishing does not substantially alter
the projected climate-driven biomass trends®. Projections located within internal
seas comprised 0.7% of all observations but were removed from the analyses
because they are likely to be less reliable. However, retaining projections from the
internal seas did not affect the results (Supplementary Table 2). A detailed overview
of these models is available?, and the data are publicly archived".

Oceanographic data. Surface temperature (SST; °C) values over the upper 200 m
were extracted from the National Oceanographic Data Center World Ocean Atlas
(NODC WOA?) between 2005 and 2017 (Table 1). Primary production (g C m—2
yr~1) was estimated from a vertically generalized production model between 2003
and 2010. Diatom abundance estimates, expressed as the frequency of occurrence
(%), were extracted from the PHYSAT project and were generated using a spectral-
based method®.

Projection uncertainty. The MEMs vary substantially in their underlying archi-
tecture: the processes considered, statistical assumptions, taxonomic, size class, or
functional group resolutions, ecological dynamics, and species represented differ.
The MEMs can be broadly categorized into those that are size-structured (BOATS,
Macroecological, DBPM), species distributional (DBEM), trophodynamic (EcoO-
cean), or composite (APECOSM). Previous studies averaged equally (unweighted)
across multiple models, yielding a single multi-model ensemble-averaged (MMEA)
time-series of projected biomass from which a rate of change can be calculated; this
approach is also generally used for climate-model ensemble projections®=8. The
MMEA approach focusses on the rate of change in the averaged time-series but
neglects to fully account for the variability that exists within and between the
individual projections. The practical consequences of not incorporating this
variability are that the MMEA approaches exclude an additional source of
uncertainty, and rates of change are sensitive to outlying projections from single
models, particularly when few models are available.

Estimating global spatial patterns of standardized biomass. Spatial patterns in
marine animal biomass were evaluated by first calculating mean biomass (g C m~2)
within each grid cell and for each MEM projection over a contemporary reference
period between 2006 and 2016. For each grid cell and MEM projection, we then
calculated relative biomass as a proportion relative to the maximum global value.

Lastly, also within each grid cell, we calculated the ensemble mean of all available
standardized biomass values from each MEM projection, yielding the standardized
ensemble mean biomass (%) relative to the global maximum in each cell.

Estimating projected animal biomass change. Under each RCP scenario, each 1°
grid cell could contain up to 10 biomass time series from 2006 to 2100 (not all
MEMs ran with both ESM forcings). Each individual projected annual time-series
was standardized to units of annual projected biomass divided by the time-series
mean over the baseline reference period (2006-2016) and expressed as a percentage
(i.e., 100% = no change). This data structure, in which the research units (biomass
projections; n = 10) are tracked over time, and exhibit correlation both within and
across the units is also known as longitudinal data and is exceedingly common in
the health sciences, economics, and psychology studies?>~2’. Defining statistical
features of longitudinal data, include (i) a hierarchical structure, whereby statistical
properties must be considered both within the individual units as well as across the
entire ensemble of units, and (ii) autocorrelation within the individual units. Here,
we used a class of longitudinal models known as linear mixed-effects models
(LMEMs)34. In LMEMs, the mean response is estimated as a mixture of effects:
fixed effects that are assumed to be shared by all units, and random effects that vary
among the individual units. The estimation of random effects enables the variation
between time trends and levels of autocorrelation within them to be accounted for
statistically. For each grid cell and RCP, LMEMs were used to estimate random
effects that accounted for systematic differences between biomass projections from
different ESM and MEM combination, and fixed effects that captured the over-
arching change in animal biomass and its uncertainty as

Y =XB+ Zu + ¢, (1)

where Y are the response observations (projected biomass), X and Z are the
fixed and random effects design matrices, and  and u are vectors of fixed and
random effects parameters. Y is assumed to be Gaussian distributed. The
distribution of the random effect parameters is specified as

u~ N(0,G), (2)

where G is the variance matrix for the random effects. The distribution for the
errors is specified as

£~ N(0,6), 3)

where 0 is the mean and  is the error-covariance matrix that to account for
temporal autocorrelation was assumed to follow a time-dependent continuous
autoregressive process. In this manner, we allowed the mean biomass (intercept)
and rate of biomass change over time (slope) to vary across different biomass
projections while capturing the average projected change in biomass over time and
its uncertainty. This leads to highly stringent criteria for statistical significance,
whereby the variation of time-dependent biomass trends is considered both within
and across the biomass projection time-series. The major advantage of this
approach is the ability to statistically distinguish situations where the projected
changes are statistically significant from those where they are not, using a rigorous
and widely accepted approach34, All LMEMs were estimated using the nlme
package®! in the R statistical computing platform©2.

Relating projected biomass change to SES. We tested for global co-occurrence
patterns between these climate-driven projections in marine animal biomass and
indicators related to the current productivity of fisheries and human stressors of
marine ecosystems globally. The relationship between projected biomass changes
and the stressor indices may help to understand if the projected estimates of
biomass change are likely to be over or under-estimations, while productivity may
provide insight into how the projected changes may affect the yield and distribu-
tion of global fisheries. Indicators of fisheries productivity that we used are
described in Table 1 and Supplementary Table 1 and included total fishery landings
per km? extracted from the Fisheries and Agricultural Organization landings
database within 18 statistical areas®3, and commercial and illegal and unreported
fishery landings estimated from a range of public sources and published in from a
peer-reviewed and publicly available database®3. Indicators of human stressors
included a multivariate index of human impacts on the oceans3°, average ocean
acidity3®, ocean-based pollution from commercial and recreational ship activity®,
and hypoxia®. Except for FAO fishery landings, which were available within 18
large fishery areas (Fig. 3a), all productivity and perturbation indicators were
calculated within 209 marine ecoregions®’. For each spatial unit (ecoregion or FAO
area), the mean and variance of each indicator were calculated.

We also tested for co-occurrence patterns between average climate-driven
projections in marine animal biomass within the EEZs of up to 106 states with
coastlines >100 km and socioeconomic indicators that contain information related
to the current social, economic, and ecological conditions in those states. Indicators
were divided into those that contained information related to SES, where increasing
values are generally interpreted to represent increasing well-being, and pressures,
where increasing values represent increasing pressures acting on states. SES
indicators included the per capita CO, emissions, the adaptive capacity of
economies to climate effects on fisheries, the HDI, per capita gross domestic
product (GDP; US$), and the Ocean Health Index (OHI). SES pressures included
fishery dependency, per capita food debt, the vulnerability of the economy to
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climate effects on fisheries between 2006 and 2100 under RCP2.6, food security,
and the proportion of the population that is undernourished. Several of the indices
are multivariate indicators that synthesize information related to multiple factors.
For instance, the OHI assesses the health of coupled human-ocean systems by
synthesizing diverse information organized into ten public goals. The HDI
integrates information related to life expectancy, education, and per capita income.

To better understand the context within which the projected biomass trends occur,
we analyzed linear relationships between global spatial patterns of projected biomass
trends and fisheries productivity, human stressors, and socioeconomic indicators. To
quantify the strength and significance of the relationships while accounting for any
spatial dependence in the residuals, we fitted inverse variance-weighted generalized
least squares (GLS) models®!. The residuals from all regression models were tested
using semi-variograms and Moran tests to verify that they were spatially independent.
In situations where the residuals were spatially non-independent (e.g., the
relationships between ecoregions), a spatial variant of the above-described GLS model
was fitted to avoid any potential bias on the model inference®*. To ensure that all
regression assumptions were met, predictor variables were, if necessary, transformed
to normality using Tukey’s ladder of powers®?, which finds the power transformation
which maximizes normality as assessed by Shapiro-Wilkinson tests. To enable the
interactions to be compared in like units, the indices were standardized to units of
variance from the mean. To avoid potentially biasing the results due to the effects of
statistically uncertain biomass projections, we used only grid cells where statistically
significant changes in projected biomass could be resolved (p < 0.05). Prior to fitting
the regressions, we also removed all longitudinal trends located within the EEZs of
states with short coastlines (<100 km), and in EEZs where <2 trends were available. As
sensitivity checks, we also fitted the regressions using alternative model strategies or
using all available trends (significant and non-significant), but the results were largely
insensitive to these procedures (Supplementary Table 3). GLS models were estimated
using the nlme package®!, and Tukey transformations were estimated using the
rcompanion package®® in the R statistical computing platform®2.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All marine ecosystem projection data reported in this paper are described, archived and
publicly available3(. The remaining data used in this paper are available from the publicly
available sources listed in Supplementary Table 1.

Code availability
Statistical analyses were conducted using the R statistical computing platform®2, and the
code is available upon request to the corresponding author.
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