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Abstract: Feline calicivirus (FCV) is a common feline infectious pathogen that mainly causes upper
respiratory tract disease. To investigate the prevalence of FCV in Guangdong Province in China, a
total of 152 nasal and throat swabs from cats suspected of FCV infection were collected in veterinary
clinics or shelters from 2018 to 2022. The positive detection rate of FCV was 28.9% (44/152) by RT-
PCR. In addition, twenty FCV isolates were successfully isolated and purified. Eleven out of twenty
isolates were selected for further phylogenetic analyses based on the capsid protein VP1; our results
revealed that seven isolates were in genogroup I, and four were in genogroup II. Notably, according
to the whole genome phylogenetic tree, FCV-SCAU-11 was in the same branch as Korean isolates,
and recombination analysis revealed that the FCV-SCAU-11 isolate showed potential recombinant
events between the FCV-SH isolate and FCV-GXNN03-20 isolate. Furthermore, the virus replication
kinetics indicated that FCV-SCAU-10, with clinically severe symptoms in patient cats, performed a
more efficient replication in vitro. In conclusion, this study revealed the genetic diversity of FCVs in
Guangdong Province, providing a reference for novel vaccine candidate strains and the development
of effective strategies for preventing FCV infection in cats.

Keywords: feline calicivirus; phylogenetic analysis; mutation; recombination; virulent systemic disease

1. Introduction

Feline calicivirus (FCV) is now considered one of the major pathogens of cats world-
wide. According to clinical symptoms, FCV can be divided into an upper respiratory
tract disease (FCV-URTD) and virulent systemic disease (FCV-VSD). FCV-URTD has been
associated with classical clinical signs and lesions, including respiratory disease, diarrhea,
mucosal vesicular lesions, and ulcerations [1]. Besides the typical clinical symptoms of
FCV-URTD, FCV-VSD include severe oral ulcers, limb edema, skin ulceration, bronchitis
and pneumonia, and damage to the liver, pancreas, or spleen in some cases [2,3]. Reports of
FCV-VSD have been gradually increasing worldwide [4–6]. Additionally, co-infection has
been reported with feline herpesvirus 1 (FeHV-1), another major cause of upper respiratory
tract disease in cats, and feline parvovirus (FPV), which induces panleucopenia and enteric
symptoms [7]. Besides co-infection with other pathogens, many immunological failures
and clinically recovered cats remain persistent infected carriers that contribute to the high
prevalence of FCV in the cat population [8].

FCV is a non-enveloped single-stranded positive-sense RNA virus belonging to the
Vesivirus in the family Caliciviridae [9]. The genome of FCV is about 7.7 kb and encodes
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three open reading frames (ORFs). ORF1 (about 20~5311 nucleotides) encodes polymeric
non-structural proteins, which are hydrolyzed and cleaved into six non-structural proteins.
In addition, Pro-Pol inhibits host gene expression and P39 can cleave host nucleotides [10].
ORF2 (about 5314~7320 nucleotides) encodes capsid protein VP1, which can be divided
into six regions, A, B, C, D, E, and F, according to their amino acid sequence variability [11].
ORF3 (7217~7634 nucleotides) mainly encodes another capsid protein, VP2, which plays a
vital role in FCV replication and viral particle assembly. It can also assist in the delivery of
the FCV genome into its host cells [12].

The VP1 protein is the main structural protein of FCV and contains relatively con-
served, as well as variable, regions. Therefore, phylogenetic analysis has traditionally been
performed with gene VP1. According to the genetic diversity of the VP1 gene, FCV can be
divided into two branches worldwide: genogroup I and genogroup II [13]. According to
previous studies, most Chinese FCV isolates are clustered in genogroup II [14]. For decades,
the principal preventive measure against FCV infection has been vaccination. However,
the conventional vaccine fails to provide complete protection against the newer variant,
FCV-URTD [15,16].

More FCV-VSD strains have been constantly emerging, and vaccination failure has
frequently occurred in cases from recent years [17,18]. In order to provide a theoretical basis
to grasp the epidemic situation and develop further measures for the prevention and control
of FCV, this study investigates the epidemiological status and molecular characteristics of
FCV in Guangdong Province, China.

2. Materials and Methods
2.1. Sample Information and Treatment

To monitor the FCV epidemic and its evolution, a total of 152 nasal and throat swabs
were collected from cats suspected to be infected with FCV in veterinary clinics or shelters
in Guangzhou, Yunfu, and Shenzhen in Guangdong Province from 2018 to 2022. Breed,
age, sex, clinical symptoms, and vaccination status of the sampled cats were recorded in
detail, as shown in Table 1. The samples were kept in sterile centrifuge tubes filled with
Dulbecco’s modified Eagle medium (DMEM; Biological Industries, Kibbutz Beit-Haemek,
Israel) and stored at −80 ◦C.

Table 1. Information of the FCV isolates in this study.

Location Age
(Months) Sex Clinical Symptoms Vaccination

Status Isolation

Guangzhou 7 Female Oral ulceration, salivation, conjunctivitis No FCV-SCAU-1
Guangzhou 8 Unknown Unknown No FCV-SCAU-2
Guangzhou 4 Male Eyes pus, salivation No FCV-SCAU-3
Guangzhou 5 Female Oral ulceration, anorexia No FCV-SCAU-4
Guangzhou Unknown Female Runny nose, conjunctivitis No FCV-SCAU-5
Shenzhen 8 Female Coughing, conjunctivitis No FCV-SCAU-7
Shenzhen 24 Unknow Coughing, conjunctivitis, salivation Yes FCV-SCAU-8

Guangzhou Unknown Female Diarrhea, oral ulceration No FCV-SCAU-9
Guangzhou 12 Female Oral and skin ulceration, limb edema, high fever, pneumonia Yes FCV-SCAU-10
Guangzhou 9 Female Oral ulceration, salivation Yes FCV-SCAU-11

Yunfu 12 Female Coughing, nasal eyelid edema Yes FCV-SCAU-12
Yunfu 13 Female Coughing, conjunctivitis, salivation Yes FCV-SCAU-13
Yunfu 9 Female Oral ulceration, conjunctivitis Yes FCV-SCAU-14
Yunfu 10 Female Coughing, conjunctivitis, FPV positive Yes FCV-SCAU-15

Guangzhou 4 Male Eyes pus, oral ulceration No FCV-SCAU-16
Guangzhou 5 Female Coughing, oral ulceration, anorexia No FCV-SCAU-17
Guangzhou 4 Male Oral ulceration, coughing, FPV positive Yes FCV-SCAU-18
Guangzhou 3 Male Nasal eyelid edema, conjunctivitis No FCV-SCAU-19
Guangzhou 4 Male Oral ulceration, FeHV-1 positive No FCV-SCAU-20
Guangzhou 5 Male Runny nose, coughing, conjunctivitis No FCV-SCAU-21



Viruses 2022, 14, 2421 3 of 14

2.2. RT-PCR Screening for FCV

According to the manufacturer’s instructions, viral RNA was extracted from the
collected samples by the OMEGA Mag-Bind Viral DNA/RNA Kit (Omega Bio-Tek, Nor-
cross, GA, USA). Reverse transcription of cDNA was conducted using a HiScript III 1st
Strand cDNA Synthesis Kit (Vazyme, Nanjing, China). A pair of specific primers were
designed according to the conserved region of the FCV reference sequence obtained from
the NCBI database. The forward primer was 5′-CTGCCTCCTACATGGGAAT-3′, and the
reverse primer was 5′-GTGTATGAGTAAGGGTCRACCC-3′. The positive samples were
then screened by a polymerase chain reaction using 2 × Rapid Taq Master Mix (Vazyme,
Nanjing, China). The PCR reaction procedure was conducted as follows: pre-degeneration
at 95 ◦C for 3 min; degeneration at 95 ◦C for 15 s; annealing at 55 ◦C for 15 s; extension at
72 ◦C for 30 s, with 35 cycles; and extension at 72 ◦C for 5 min. It was stored at 4 ◦C at the
end of the reaction process.

2.3. Virus Isolation

The FCV-positive samples in PCR underwent filtration through a 0.45 µM filter mem-
brane and were incubated with a Crandell Reese feline kidney (CRFK) cell monolayer
and cultured in DMEM and 10% fetal bovine serum (Gibco, Grand Island, NY, USA) at
37 ◦C with 5% CO2 incubation. Inoculated cells were observed daily and harvested upon
the appearance of cytopathic effect (CPE). All isolates were purified with three rounds of
plaque purification. The plaque-purified virus was stored at −80 ◦C for further testing.

2.4. Whole Genome Sequencing

The whole genome of FCV-SCAU-1 to FCV-SCAU-11 were sequenced by next-generation
sequencing (NGS). The NGS libraries of these ten isolates and assembling of whole genome
were conducted as previously reported [6].

2.5. VP1 Gene Sequencing

A pair of primers was designed to amplify the full length of ORF2, according to the con-
served region of a FCV reference sequence in the NCBI database. The forward primer was
5′-TTGAGCATGTGCTCAACCTG-3′ and the reverse primer was 5′-ATTTTGRTTTGTGTAT
GAGTAAGGG-3′. The VP1 gene of FCV-SVAU-12 to FCV-SVAU-21 was amplified with the
following protocol: 95 ◦C for 3 min; 35 cycles of 95 ◦C for 30 s; 57 ◦C for 30 s; 72 ◦C for 2 min;
and 72 ◦C for 10 min. PCR was performed with Phanta Super-Fidelity DNA Polymerase
(Vazyme). Amplified DNA fragments were cut from the agarose gel and purified using
a FastPure Gel DNA Extraction Mini Kit (Vazyme). The purified products were ligated
into 5 min TA/Blunt-Zero Cloning vector (Vazyme). The positive recombinant plasmids
were sequenced by Sangon (Sangon Biotech, Shanghai, China).

2.6. Sequence Analysis

A multiple-sequence alignment was constructed with the MAFFT software (ver-
sion 7.313, Osaka, Japan), using the default settings [19]. Then, forty-two ORF2 and
thirty-four full-length FCV genomes were downloaded from NCBI for phylogenetic analy-
sis. Phylogenetic analyses were performed using MEGA software’s (version 11.0.11, Tempe,
AZ, USA) maximum likelihood method [20]. To exclude the interference to phylogenetic
clustering by close transmission events between individuals from the same premises, simi-
lar sequences of the capsid variable regions sharing greater than 76% sequence similarity
were removed in our phylogenetic analysis [21]. Recombination is a common phenomenon
in many RNA viruses [22]. In order to determine whether there were recombination events
in the FCV isolates in Guangdong Province, all whole genomes of FCV sequences were
downloaded from the NCBI database and aligned using MAFFT software. Then, they
were initially screened for possible recombination events using RDP5 software (version 5.5,
Martin DP, Cape Town 7549, South Africa) [23]. The recombination events were only
considered when supported by at least three recombination detection algorithms, followed
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by an examination of the recombination signal, and estimating the location of the break-
point using SimPlot software (version 3.5.1) (JHK University, Baltimore, MD, USA). The
occurrence of recombination breakpoints was also confirmed by evolutionary trees drawn
by the maximum likelihood method.

2.7. Indirect Fluorescence Assay

The monolayer of CRFK cells grown in a 6-well plate were inoculated with FCV. After
24 h, the cells were washed and then fixed in cold 4% paraformaldehyde at room temper-
ature for 10 min. Then, cells were blocked for 10 min at room temperature (QuickBlock
Blocking Buffer for Immunol Staining, Beyotime, Shanghai, China). After blocking, cells
were incubated with the calicivirus monoclonal primary antibody (FCV1-43; Invitrogen,
Waltham, MA, USA) overnight at 4 ◦C. After washing three times, cells were incubated
with the Goat Anti-Mouse IgG H&L (Alexa Fluor® 488; Abcam, Cambridge, UK) secondary
antibody for 1 h at room temperature. After washing three times, nuclei were stained
with 4′,6-diamidino-2-phenylindole (Beyotime, Shanghai, China) for 5 min, and then were
washed three times. The fluorescence signal was captured by a fluorescence microscope
(Leica, Wetzlar, Germany).

2.8. Transmission Electron Microscopy

CRFK cells were seeded into a 6-well cell plate. The monolayer cells were infected with
FCV. At 24 h post-infection, cells were collected by centrifugation. The cell masses were
fixed by a fixer for electron microscopy (Servicebio, Wuhan, China). After the fixation, the
samples were processed according to the following procedure: dehydration, embedding,
curing, block repair, sectioning, and staining. The dried sections were observed under the
Talos L120C TEM (Thermo Fisher Scientific, Waltham, MA, USA).

2.9. Virus Replication Kinetics

Eleven isolates were selected for the evaluation of viral growth kinetics in CRFK cells.
Analysis of the viral growth curve was performed according to the following procedure: the
monolayer of CRFK cells grown in a 24-well plate were infected with FCV at a multiplicity
of infection (MOI) of 0.01. The viruses were incubated for 1 h at 37 ◦C in 5% CO2. Next,
the viruses were removed, and the cells were washed and replenished with fresh DMEM
containing 2% FBS. At 4, 8, 12, 16, 20, and 24 h post-infection, the supernatant was harvested
and stored at −80 ◦C until virus titer determination. Then, CRFK cells were grown to
confluence in 96-well plates and inoculated with gradient dilutions of previous supernatant
samples. Cells were incubated for 48 h at 37 ◦C. CPE was visually evaluated and compared
with mock-inoculated cell monolayers under the bright field. Virus titer was calculated
using the Reed and Muench method. All experiments were repeated three times.

2.10. Statistical Analysis

All data were analyzed with an unpaired Student’s t-test using Prism v9.3 (GraphPad
Software, San Diego, CA, USA). (mean ± SD, * p < 0.05, ** p < 0.01, *** p < 0.001).

3. Results
3.1. Clinical Investigation and Virus Isolation

According to the RT-PCR results, there were forty-four FCV-positive samples in sus-
pected cat cases. The overall FCV-positive rate was 28.9% (44/152). One of them potentially
corresponded to a FCV-VSD strain (derived from a cat with severe clinical symptoms
including high fever, limb edema, oral and skin ulceration, and pneumonia), whereas the
others were isolated from cats with classical milder symptoms (FCV-URTD). Co-infection
was found in our cases, with two positive tests for FPV and one positive test for FeHV-1.
All the information on FCV isolates in this study is shown in Table 1. The subsequent virus
isolation and identification were successful for 20 isolates; complete experiment details are
described in the Supplemental Material.
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3.2. Genetic and Phylogenetic Analysis of FCV Isolates

To compare the sequence identity of all the ten whole genome isolates (FCV-SCAU-1
to FCV-SCAU-11, except FCV-SCAU-6.), we blasted these sequences against each other and
known sequences in the NCBI GenBank database. These sequences were aligned using
MAFFT software, and a pairwise comparative analysis on nucleotides showed sequence
identities ranging from 75.9 to 87.8%. We analyzed the nucleotide and amino acid sequence
identities of FCV Guangdong isolates with FCV-255 (a widely used vaccine strain in China),
based on three ORFs (Table 2). The ORF1 gene encodes six non-structural proteins with a
length of 5292 nucleotides and a predicted protein precursor of 1763 amino acids. They
showed a high identity match with strain FCV-225 in both nucleotides and amino acids.
The length of VP1 genes in this study ranged from 2007 to 2010 nucleotides. They shared a
low identity of 74.49–78.82% in nucleotides and 84.88–89.07% in amino acids with strain
FCV-225. The ORF3 in this study shared the highest nucleotides and amino acids sequence
identity with strain FCV-225 among the three ORFs. The twenty isolates differed in the
length of the VP1 gene. The results showed that the VP1 capsid protein gene exhibited the
highest variability within the FCV genome.

Table 2. Homology analysis of three open reading frames (ORFs) of feline calicivirus (FCV) isolates
compared with the 255 FCV strain.

ORF1(%) ORF2(%) ORF3(%)

Isolate Pathotype Genogroups Length
(nt/aa) nt aa Length

(nt/aa) nt aa Length
(nt/aa) nt aa

FCV-SCAU-1 URTD I 5292/1763 79.77 92.23 2010/669 77.08 86.53 321/106 82.87 94.34
FCV-SCAU-2 URTD I 5292/1763 80.00 92.57 2010/669 75.64 86.98 321/106 83.49 94.34
FCV-SCAU-3 URTD I 5292/1763 78.80 91.77 2010/669 75.39 86.53 321/106 85.05 93.40
FCV-SCAU-4 URTD I 5292/1763 78.78 91.77 2010/669 75.39 86.53 321/106 85.05 93.40
FCV-SCAU-5 URTD I 5292/1763 80.40 91.71 2010/669 76.78 88.17 321/106 83.80 94.34
FCV-SCAU-7 URTD I 5292/1763 79.47 92.51 2010/669 77.73 87.28 321/106 85.67 95.28
FCV-SCAU-8 URTD I 5292/1763 79.41 92.29 2010/669 77.83 87.28 321/106 85.67 95.28
FCV-SCAU-9 URTD I 5292/1763 79.24 92.06 2010/669 77.73 87.43 321/106 86.29 95.28
FCV-SCAU-10 Potential VSD I 5292/1763 80.00 92.17 2010/669 77.08 87.72 321/106 84.42 93.40
FCV-SCAU-11 URTD I 5292/1763 77.60 89.60 2007/668 76.73 85.93 321/106 84.11 95.28
FCV-SCAU-12 URTD I - - - 2007/668 75.64 87.28 - - -
FCV-SCAU-13 URTD I - - - 2010/669 76.23 86.83 - - -
FCV-SCAU-14 URTD I - - - 2007/668 78.82 88.77 - - -
FCV-SCAU-15 URTD II - - - 2007/668 76.68 86.08 - - -
FCV-SCAU-16 URTD II - - - 2007/668 74.49 85.03 - - -
FCV-SCAU-17 URTD II - - - 2007/668 75.34 85.48 - - -
FCV-SCAU-18 URTD I - - - 2010/669 76.38 87.57 - - -
FCV-SCAU-19 URTD II - - - 2007/668 75.09 84.88 - - -
FCV-SCAU-20 URTD I - - - 2007/668 77.43 86.08 - - -
FCV-SCAU-21 URTD I - - - 2007/668 78.23 89.07 - - -

According to the whole genome phylogenetic tree, the FCV isolates could be sep-
arated into four groups (group-A, group-B, group-C, and group-D), and three FCV iso-
lates were in the same group (group-D). The results showed that FCV-SCAU-1, FCV-
SCAU-3, and FCV-SCAU-10 were in the same group with domestically prevalent iso-
lates, CH-JL-4 (KT206207) from north China and GX2019 (MK867378) from south China.
This suggested that FCV isolates in Guangdong Province have been circulating and
evolving among feline populations between southern and northern China for a long
time. Notably, FCV-SCAU-11 was in the same branch as Korean isolates, 12Q087-1
(2012-Korea) and 12Q087-5 (2012-Korea), and shared high homology. This suggested
that FCV-SCAU-11 was widely spread in Korea and China (Figure 1).
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Figure 1. Phylogenetic trees were constructed based on the whole genome of FCV in the study. 
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The sequences identified in the study were indicated with red circles and vaccine strains were 
marked with red triangles. The reference virus isolates are indicated by GenBank accession number, 
isolate name, and date and location of submission. 

Figure 1. Phylogenetic trees were constructed based on the whole genome of FCV in the study.
Evolutionary distances were computed using the Tamura-Nei model for 1000 bootstrap replicates.
The sequences identified in the study were indicated with red circles and vaccine strains were marked
with red triangles. The reference virus isolates are indicated by GenBank accession number, isolate
name, and date and location of submission.

The ML phylogenetic tree was constructed based on full-length ORF2 sequences of
sixty-one FCV isolates, including eleven new isolates from Guangdong Province. FCV
isolates from Guangdong Province were also clustered into two branches: genogroup I
and genogroup II. Among the eleven FCV isolates in this study, seven were clustered
in genogroup I, whereas the remaining four were clustered in genogroup II. The results
suggested that the prevalent isolates in Guangdong Province were isolates of genogroup I.
In addition, all isolates identified in the study were in a different cluster from the vaccine
strain FCV-255 (Figure 2).

Taken together, the predominant isolates of FCV in Guangdong Province were mainly
isolates of genogroup I. At the same time, the isolate (FCV-SCAU-11) shared high similarity
to foreign isolates out of China.

3.3. Recombination Analysis of FCV Isolates

SimPlot and RDP5 software were used to identify possible recombinant events. The
FCV-SCAU-11 isolate showed potential recombinant events between the FCV-SH and FCV-
GXNN03-20 isolates with a p-value of <1.0× 10−6 from the results of four detection methods
(Table 3); more information about the viral strains used for comparison is described in
Table S1. The positions of the recombination breakpoint in the FCV-SH and FCV-GXNN03-
20 isolates were located in the VP1 gene at 5756 nucleotides in alignment. The breakpoints
in FCV-SCAU-11 separated its genome into two regions, with regions A (nucleotides
1–5756) being closely related to the FCV-SH isolate, and region B (nucleotides 5756–7686)
being closely related to the FCV-GXNN03-20 isolate. The recombination event was further
confirmed by SimPlot and evolutionary trees were drawn using the maximum likelihood
method (Figure 3).
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Table 3. Information on recombination events of FCV-SCAU-11 detected by RPD5 software.

Recombinant
Major

(Similarity)
Minor

(Similarity)
p-Value of the Detection Methods

RDP GENECONV BootScan MaxChi Chimaera SiScan 3Seq

FCV-
SCAU-11

FCV-SH
(94.3%)

FCV-
GXNN03-20

(98.4%)
9.829 × 10−11 NS NS 2.405 × 10−8 5.319 × 10−11 3.247 × 10−14 NS

Note. NS indicates no significance.
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Figure 3. Recombination analysis of FCV-SCAU-11 identified in this study. (A) Genome scale simi-
larity comparisons of FCV-SCAU-11 with FCV-SH isolate (blue) and FCV-GXNN03-20 isolate (red) 
using a sliding window (window size: 200 bp, step size: 20 bp). Potential recombination breakpoints 
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Figure 3. Recombination analysis of FCV-SCAU-11 identified in this study. (A) Genome scale
similarity comparisons of FCV-SCAU-11 with FCV-SH isolate (blue) and FCV-GXNN03-20 isolate
(red) using a sliding window (window size: 200 bp, step size: 20 bp). Potential recombination
breakpoints were marked by a black vertical line with nucleotide sites at the bottom. (B) ML
phylogenetic trees based on every recombinant fragment within FCV-SCAU-11and 15 reference FCV
isolates are shown below the similarity plot. The isolate FCV-SCAU-11 is labeled with a black triangle,
and the putative recombinant major parent isolate FCV-SH is marked with a blue circle. The putative
recombinant minor parent isolate FCV-GXNN03-20 is marked with a red circle.

3.4. Comparative Analysis of Amino Acids of the VP1 Proteins

The capsid proteins of FCV include VP1 encoded by ORF2 and VP2 encoded by ORF3.
The capsid protein VP1 is the major capsid protein of FCV, encoded by 668 to 671 amino
acid residues and can be divided into six regions, from A to F, according to their degree
of amino acid variability. The region E (426–523 amino acid positions) in the capsid
protein VP1 is hyper-variable, and can be separated by the conserved region (ConE) into
two further regions (5′ HVR and 3′ HVR), which are responsible for antigenic variability,
viral pathogenicity, and also involved with the cell receptor for initial attachment [24,25].
Most of the amino acid mutations in the capsid protein of FCV isolates from Guangdong
Province occurred in the E region of 5′ HVR, which was consistent with previous studies.
In this study, we found that FCV-SCAU-12, FCV-SCAU-16, and FCV-SCAU-19 each had
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three amino acids that were consistent with VSD strains (Table 4). However, these three
FCV isolates showed no clinically severe symptoms in patient cats.

Table 4. Comparative amino acids of region E of FCV capsid proteins with VSD strains.

Genogroup Isolate Amino-Acid Residues and Physico-Chemical Properties Associated with VSD Pathotype

438 440 448 452 455 465 492

VSD-FCV V Q K/R E T S V

ORO-FCV T G A D D G V

GI FCV-SCAU-1 T G A D D S I

GI FCV-SCAU-2 T G S D D S V

GI FCV-SCAU-3 T G A D D S I

GI FCV-SCAU-4 T G A D D S I

GI FCV-SCAU-5 T G A D D S V

GI FCV-SCAU-7 T G A D A G V

GI FCV-SCAU-8 T G A D A G V

GI FCV-SCAU-9 T S K E D G I

GI FCV-SCAU-10 T G A D D S V

GI FCV-SCAU-11 T L R E D G I

GI FCV-SCAU-12 T S R E G G V

GI FCV-SCAU-13 T S L D D G I

GI FCV-SCAU-14 T S A D D G V

GI FCV-SCAU-18 T E A D S S V

GI FCV-SCAU-20 T G A D D S V

GI FCV-SCAU-21 T G A D D G V

GII FCV-SCAU-15 T A P D D G I

GII FCV-SCAU-16 V E R D T G L

GII FCV-SCAU-17 T Q S D T G L

GII FCV-SCAU-19 T E R E V S A

Note. Grey-shaded bold font indicates amino acid residues highly associated with VSD strains, referred to in
previous reports.

Certain amino acids in VP1 can classify FCV isolates into genogroups I and II [26].
In this study, sixteen isolates of genogroup I possessed Asn/Lys/Asp, Ala, and Gly/Ala
residues at positions 377, 539, and 557, respectively, whereas the remaining four isolates
belonging to genogroup II had Lys, Val and Ser residues at positions 377, 539, and 557, re-
spectively (Table S2). In addition, eleven isolates had an amino acid insertion at position 127
in the B region and the remaining nine isolates had a glycine at position 127 compared with
the widely used vaccine strain FCV-255 in China (Figure 4). These mutations may also be
responsible for changes in cell tropism of FCV [27].

The genetic markers distinguishing between VSD and URTD within the capsid protein
remain inconclusive [28–30]. A recent study indicated that FCV-VSD and FCV-URTD strains
differed in the physicochemical properties of the amino acids in region E (426–523), which
contains the two hypervariable domains responsible for most of the antigenic variability
and is involved in the binding to the FeJAM-1 receptor [31]. However, FCV-URTD strains
in this study contained three consistent mutations associated with FCV-VSD, whereas the
only FCV-VSD strain only shared two consistent mutations.

Overall, the potential relationship associated with the failure or deficiency of vaccina-
tion protection was unveiled. Moreover, there was no significantly recognizable evidence
to differentiate between the FCV-URTD and FCV-VSD, at least in this study.



Viruses 2022, 14, 2421 10 of 14

Figure 4. The alignment of the capsid sequences of ten FCV isolates and FCV-255 strain. The regions
A, B, C, D, E, and F are indicated by vertical lines. A dashed line is used to divide the region E
into 5′ HVR and 3′ HVR. The amino acid residues highly associated with VSD strains are marked
with black triangles. The amino acid residues interacting between VP1 protein and fJAM-A receptor
protein are marked with black diamonds. The deleted sites are indicated by hollow rectangle boxes.

3.5. Virus Replication Kinetics of FCV Isolates

The virus replication kinetics of eleven isolates at each time point was evaluated
according to the Reed and Muench method. In the CRFK cells, the replication titer of
the FCV-SCAU-10 isolate (on behalf of the VSD strain) was significantly higher than the
FCV-SCAU-1 isolate (on behalf of the URTD strain) at all time points after infection. It
reached a peak at 20 h post-infection. At this point in the virus titer, the average value
of log10 (TCID50/0.1 mL) was 9.48 (Figure 5). The results suggested that FCV-SCAU-10
(a potential FCV-VSD strain) had more efficient replication in vitro.
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isolates of FCV from Guangdong Province at 0.01 MOI. The FCV-SCAU-10 isolate is labeled with
a red line and the FCV-SCAU-1 isolate is labeled with a blue line. Samples were analyzed in three
independent experiments (ns indicated no significance, ** p < 0.01, *** p < 0.001).

4. Discussion

In this study, forty-two samples were positive for FCV, the overall FCV-positive rate
was 28.9%, and twenty isolates were successfully isolated and purified from the positive
samples. In addition, the results of whole genome analysis compared with other FCV
isolates showed that FCV-SCAU-11 was in the same branch and shared high similarity with
foreign strains out of China (strains in Korea). This suggested that a group of FCVs may be
widely circulating in China and Korea due to geographic proximity. Further, FCV isolates
from Guangdong Province were clustered into two branches, genogroup I and genogroup
II, and most of the FCV Guangdong isolates were clustered in genogroup I (7/11), which is
consistent with the latest studies (2021–2022) [14,27,32].

Among these FCV isolates, nineteen isolates were FCV-URTD, and one isolate was
potentially FCV-VSD. A study reported that FCV-VSD strains had more efficient replication
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in cell culture and a broader spread in tissue culture than FCV-URTD strains [33]. In this
study, the virus growth kinetics assay was carried out to compare the replication between
FCV-URTD strains and FCV-SCAU-10 (potential VSD strain). The results showed that
FCV-SCAU-10 had a significantly higher titer at all time points in CRFK cells than other
FCV-URTD strains. This was consistent with a previous report that showed that the FCV-
VSD strain efficiently replicated in vitro. However, an analysis of the genomic sequences of
FCV-URTD and FCV-VSD is still not available to distinguish the different phenotypes. A
recent hypothetical theory for differentiating between FCV-URTD and FCV-VSD indicated
that seven amino acid mutations may lead to the different pathogenicity [31]. Unfortu-
nately, subsequent studies have failed to fully support this theory, including the current
study [6]. We found that a potential FCV-VSD strain in this study, FCV-SCAU-10, shared
two consistent mutations in amino acid 465 and 492 of the VP1 capsid protein, whereas
three FCV-URTD strains, FCV-SCAU-12, FCV-SCAU-16, and FCV-SCAU-19, each had three
of the same amino acids mutations. This variance indicates an elusive mechanism differen-
tiating between the FCV-UTRD and FCV-VSD. Two reports have successfully reproduced
the experimental infection model with several independent FCV-VSD strains [30,34]. Due
to the unclear and unique characterization of FCV-VSD strains, in vitro virus growth kinetic
assays and in vivo experimental infection animal models may temporarily serve as the best
method to distinguish between the FCV-URTD and FCV-VSD strains. However, the growth
kinetics of FCV-SCAU-10 could not represent the remarkable characterization of all FCV-
VSD strains. Further assays of FCV-SCAU-10 should be conducted, such as investigation of
potential virus receptors, molecular pathogenicity, and animal infection experiments.

We noticed that some cats in this study with normal vaccination were still infected
by FCV, which was consistent with previous studies [35,36]. This suggests that the vac-
cination failed to induce enough adaptive protection, which may be responsible for the
limited effectiveness of vaccines. Therefore, we focused on analyzing variations in the
major immunogenic antigen of FCV VP1 protein. The results of alignment of the VP1
sequences among the FCV isolates and FCV-255 vaccine strain showed the insertion of
three consecutive G bases, encoding glycine at position 127 in region B. One study indicated
that the spanning amino acids 445–451 (ITTANQY) of VP1 protein in the 3’ highly variable
region was essential for neutralizing MAbs [37], and different amino acid residue mutations
of the isolates were founded in this region. Linking to the vaccination status of patient cats,
these changes may be responsible for differences in virulence and vaccination protection.

In conclusion, the overall prevalence of FCV infection was 28.9%, and we successfully
isolated and purified twenty new FCV isolates from positive samples, including nineteen
FCV-URTD strains and one potential FCV-VSD strain. In addition, the FCV isolates of
Guangdong Province were from both genogroup I and genogroup II, mainly belonging
to genogroup I. This study provided more valuable information on the genetic variation
of the VP1 gene, which would be helpful in developing potential FCV vaccine candidate
strains in the future.
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Genogroups I and II.
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