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Antibiotics select for resistant bacteria whose existence and emergence is more likely in populations with high
phenotypic and genetic diversity. Identifying the mechanisms that generate this diversity can thus have clinical
consequences for drug-resistant pathogens. We show here that intermediate levels of antibiotics are associated
with higher levels of phenotypic diversity in size of colony forming units (cfus), within a single bacterial popula-
tion. We examine experimentally thousands of populations of bacteria subjected to different disturbance levels
that are created by varying antibiotic concentrations. Based on colony sizes, we find that intermediate levels of
antibiotics always result in the highest phenotypic variation of this trait. This result is supported across bacterial
densities and in the presence of three different antibiotics with two different mechanisms of action. Our results
suggest intermediate levels of a stressor (as opposed to very low or very high levels) could affect the phenotypic
diversity of a population, at least with regards to the single trait measured here. While this study is limited to a
single phenotypic trait within a single species, the results suggest examining phenotypic and genetic variation
created by disturbances and stressors could be a promising way to understand and limit variation in pathogens.
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1. Introduction

There is growing interest in using ecological and evolutionary prin-
ciples to manage and treat a wide range of health problems [1], from
cancer [2–5] to obesity [6] to infectious diseases [7–10]. Work on the
evolution of drug resistant pathogens has primarily focused on drug
dosages as a source of novel selection pressure. However, selection is
only one factor in the rate of evolution of resistance. Fisher's fundamen-
tal theorem relates the rate of change in allele frequency to the product
of the selection pressure and the genetic variance [11]. Thus, increases
in the variance or selection coefficient can both have strong effects.
Although variation is critical to the rate of evolution, it has not been as
well studied in relation to drug resistance as selection pressure.

Here we ask how different levels of antibiotics affect phenotypic
variation in bacteria. Because the amount of variation could affect the
rate of evolution towards resistance, this knowledge could have pro-
found consequences for slowing the evolutionof drug resistance. Specif-
ically, we assess how varying concentrations of antibiotics and varying
population densities affects the variation in one phenotypic trait, the
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size of bacterial colonies. We chose to examine colony size and coeffi-
cient of variation (CV = standard deviation/mean) in colony size
because we can take single “snapshots” in time of a large number of
colonies within a petri dish, making these phenotypes easy to measure
(Fig. 1 and Supplementary Fig. 1a-b). Colony size is also a useful pheno-
type to study because increases in its variation have been shown to be
associated with increases in genetic diversity [12–15]. This correlation
between phenotypic and genetic diversity is not surprising because
experimental evidence points to colony size being a heritable trait
with a genetic basis [14,15]. Due to its ease of measurement and its
association with genetic changes, the distribution of colony sizes and
its central moments could be excellent proxies for mutant diversity
that are inexpensive and quick to obtain. These proxies could be one
step towards enabling predictions for the likelihood of resistance in
the clinic and the field based on specific drug dosages.

To obtain highly accuratemeasurements of the size of each colony in
our digital images, we developed customized software, MeasureIt
(Fig. 1) that extracts areas—measured by total number of pixels, not
approximated from diameters of circles—of the colonies. Digital tech-
nology in the microbial lab is increasingly being used to track colonies
with time-lapsed imaging for determining growth strategies and
detecting rare phenotypes. Our automated quantitative measurement
of colony sizes is able to detect small variation and irregular-sized
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Fig. 1. Shape shifts in colony size distribution with increasing drug concentration and bacterial density. Images for Staphylococcus spp. grown in petri dishes across a range of bacterial
densities (increasing from left to right) and in the presence of the drugs ciprofloxacin, amikacin, and streptomycin. Separate histograms are constructed at low, moderate, and high
densities with each histogram using red bars to indicate data at low drug concentrations and blue bars at high drug concentrations. These images reveal how number of colonies and
average size of a colony change, and the extracted data and the histograms quantify these changes. Drug concentrations were as follows: Low Density lower drug concentration: no
drugs, Low Density higher drug concentration: 0.144 μg/ml; Moderate Density lower drug concentration: 0.072 μg/ml, Moderate Density higher drug concentration: 0.216 μg/ml; High
Density lower drug concentration: 0.63 μg/ml, High Density higher drug concentration: 1.98 μg/ml.
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colonies, which enables high-throughput processing to quickly obtain
large datasets of colony size.
2. Methods

2.1.1. Laboratory

2.1.1.1. Bacterial strain.Weused an environmental strain of Staphylococ-
cus spp. cultured from the public transportation system in Portland,
Table 1
List of drugs used and the corresponding ranges of concentrations that yielded surviving
colonies. Column 3 lists the drug concentration that resulted in the highest amount of var-
iation in colony size. All concentrations are measured in MIC units.

Drug Range of concentrations Peak coefficient of variation

Ciprofloxacin 0-20MIC 8 MIC
Amikacin 0-64 MIC 23 MIC
Streptomycin 0-200 MIC 80 MIC
Oregon and identified via 16S rRNA subunit sequencing [16]. The bacte-
ria falls within the “Epidermidis cluster group.” Due to the uncertainty
in exact strain identification,we call this strain Staphylococcus spp. here.

We streaked out colonies on a plate and used one single colony. We
created a master tube of S. epidermidis from this colony, with several
hundred aliquots made from this original master tube; both master
tube and aliquots were kept frozen at −80 °C with 17% glycerol. We
used one aliquot for each experiment. Strains were grown in Luria
broth (LB) media to exponential growth phase at 37 °C with shaking
via an incubated shaker (VWR model 1585), and these broths were
then spun down and S. epidermidis was sampled and grown on agar
plates to examine numbers and size variation of colonies. Thus, all
experiments were conducted by starting with the same species, strain,
andmaster tube from a single colony, enabling us to beginwithminimal
genetic variation.

2.1.1.2. Antibiotics. We used three antibiotics: ciprofloxacin, amikacin,
and streptomycin (Sigma-Aldrich) (see Table 1). Ciprofloxacin, a
synthetic second-generation fluoroquinolone, disrupts DNA synthesis
by inhibiting bacterial enzymes DNA gyrase and topoisomerase, both
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of which are involved in the unwinding and supercoiling of DNA during
DNA replication. Amikacin is a semi-synthetic aminoglycoside and af-
fects protein synthesis by binding to the30S ribosomal subunit, interfer-
ing with mRNA translation and thus the elongation of polypeptides.
Streptomycin, like amikacin, is an aminoglycoside that inhibits protein
synthesis. Drugs were stored as frozen stocks in a -20 °C freezer, and
were thawed at 4 °C before use.

2.1.1.3. Experimental set-up. For each drug, we first determined the min-
imum inhibitory concentration (MIC) (minimum concentration of drug
that inhibits wild type growth) and the mutant prevention concentra-
tion (MPC) of each drug [17,18](minimum concentration of drug that
prevents any resistant mutants from surviving). MIC was measured by
first conducting two-fold serial dilutions and then equidistant dilutions
of the antibiotic in a 96 well plate. Two-fold serial dilutions typically
start with a drug at 10× estimated MIC (obtained from literature),
then diluted to 5× MIC, then 2.5× MIC and so on until the 11th well
has approximately 0.0098× MIC. The 12th (last) well is used as a
no-drug control. We then narrow down the MIC by doing equidistant
dilutions by taking the narrowed range where the MIC should be
based on the serial dilutions, and using equidistant drug concentrations
between wells 1 and 11, again leaving well 12 as a no-drug control.

Approximately 103–104 cells were inoculated in each well and
allowed to grow for 22 h while being shaken and incubated at 37 °C.
Plates were read at OD600 using Victor X (Perkin Elmer), and the MIC
was the lowest drug concentration that yielded no growth. Using LB
plates containing dilutions of antibiotic,MPCwas determined as the an-
tibiotic concentration (inMIC units) that prevents the growth of any re-
sistant mutants following an inoculum at very high densities of N1010

cells. Bacteria were plated on petri dishes and dishes were incubated
at 37 °C for 72–96 h. Viable cells, seen as colonies, were quantifiedman-
ually and through the scanning and automated extraction methods
(below).

Each experiment consisted of approximately 80 plates with a range
of drug concentrations and bacterial densities. We poured plates with
drugs mixed directly into the agar solution, ranging from 0.25 liquid
MIC to approximately 5–10 MIC beyond the identified MPC drug con-
centration. For the lower concentrations, we examined 0.2 to 2.0 x liq-
uid MIC at every 0.2 MIC interval, and thus were able to determine if
liquid MIC matched with agar MIC. We plated a range of bacterial cells
(potentially from ~100 cells to 1010 cells per plate) at each drug concen-
tration. For lower drug concentrations, we typically plated 3 different
bacterial densities. For higher drug concentrations, we typically plated
only 1 bacterial density (the highest at 1010 cells). This is because at
higher drug concentrations, very few cells survive, and thus only a
very high density of initial cells would yield any countable results. We
defined intermediate levels of antibiotic as any concentration that was
not the highest nor the lowest antibiotic concentration used. After
allowing bacteria to grow on the petri dishes for 72–96 h, we scanned
each petri dish using a standard office scanner (Epson 1800; more de-
tails below). For each drug, we conducted 10–15 replicate experiments.

2.1.1.4. Digital image processing. Each petri dish was placed on a scanner
with a fixed black felt background and then scanned at an 1100 × 1100
pixel resolution. The resulting imagewas stored as a standard jpg image
file. We developed software that could identify individual colonies. Our
method for digital recognition of individual colonies consists of serial
application of (1) a circular Hough transform and Otsu's thresholding
methods and (2) watershed segmentation. First, our software identifies
the edge of the dish and also contiguous objects within that are above a
chosen threshold for intensity. Next, the software categorizes the topol-
ogy of these contiguous objects and imposes an approximate boundary
to separate adjoining objects.

2.1.1.5. Optimization of measurement of colony sizes. Several steps were
taken to review and optimize the quality of the image-extracted data.
Our ERO (Extract-Review-Optimize) process facilitates quality review
and verification of all processed images. First, plates that did not meet
experimental quality due to observed contamination or plate defects
(often identifiable by statistical anomalies) were documented and
excluded from image processing. For the high-quality images that
remained, we extracted data, and then reviewed the results by using
the following criteria to assure correct identification of colonies: (i) the
centroid location of the individual “extracted” colonies should be consis-
tent with visual inspection, (ii) the counts of the colonies should match
visual inspection for subsections of the dish that are countable, and (iii)
Dust, bubbles in the medium, features of the dish, and scanning artifacts
(e.g., light reflections) should not be counted or identified as colonies.
We excluded these cases or anything indistinguishable from these. The
selection of light intensity threshold in Otsu's method to convert colour
to grayscale is crucial for filtering out these non-colony objects, and the
correct threshold depends on the scanning parameters. Following these
extract and review steps, we further optimized by removing edge reflec-
tions and “partial” colonies along the dish perimeter.

2.1.1.6. Extracted data of colony sizes. For each colony, we measure total
area in terms of pixels, estimate the perimeter, and place a centroid in
the middle of the colony. This allows us to identify each colony by a
single point using the MATLAB image processing platform. Counting
all of these centroids gives the total number of colonies in each dish.
Extraction of colony data from petri dishes can be run in batch or indi-
vidually using the software. A vector corresponding to each data ele-
ment (e.g., colony size) is stored in a MATLAB cell array along with
corresponding experimental information (e.g., bacterial density, drug
concentration) for each plate. Standardized measures and statistics
discussed below were also computed and stored in a matrix and
exported in ASCII format for analysis in R. In this way, we automated
the extraction of a size distribution of colonies from each dish.

2.2. Statistical analysis

To characterize how colony size distribution varies with bacterial
density and antibiotic drug concentration, two analyseswere conducted
using statistics computed for the colony sizes from subsets of plates and
experimental series. All statistical analyses were performed using the
R statistical platform.

First, colony size variation was assessed and compared across bacte-
rial densities in the absence of any antibiotic drug. Mean, standard devi-
ation (SD), coefficient of variation (CV), skewness, kurtosis, and
interquartile range were examined as a function of bacterial density.
Tests for departure from normality were performed using both the
Kolmogorov-Smirnov and the D'Agostino K2 tests at 0.05 significance
level to identify any shifts to non-normality as a function of bacterial
density. Collective analysis of no-drug plates also provides an additional
control for comparability and outliers in laboratory conditions.

Second, colony size variation was analyzed in escalating doses of
single antibiotic drugs. Trends in measures of centrality and dispersion
were similarly characterized both for a fixed bacterial density across a
range of drug concentrations and for a fixed drug concentration across
a range of bacterial densities. Non-linearity and rates of change in size
variation, minimum and maximum colony size, and similarities
between metrics for the distributions were found for each single-drug
and compared with the no-drug results observed in (I). Statistical
comparisons were also made for differences in dispersion parameters
(e.g., coefficient of variation (CV)—standard deviation divided by the
mean) between the single- and no-drug size distributions at the same
bacterial densities.

3. Results

Bacterial populations that were exposed to intermediate levels of
disturbance—created by intermediate amounts of antibiotics—exhibited
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Fig. 2. Size variation and increasing concentration of three drugs with fixed bacterial density. Plots of the median Coefficient of Variation (CV= standard deviation/mean) (a), median
skewness (b), and median kurtosis (c) in colony size versus drug concentration for three different drugs across a range of bacterial densities. Expectations for normal distribution are
represented by dashed lines in Fig. 2b-c. The drug concentration is measured in units of the Minimum Inhibitory Concentration (MIC)—minimal drug concentration that inhibits wild-
type growth—and has a different absolute level of concentration for each drug. The blue dashed horizontal line at CV= 1 indicates the mean and standard deviation are equal. High
bacterial densities allow a larger range of drug concentrations because there is an increased chance that some cells (possibly mutants) will survive at high concentrations. An increase
in CV is often observed as the drug concentration increases above 1 MIC. The largest values of CV, indicating the most variation, tend to occur at intermediate levels of both bacterial
density and drug concentration.
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Fig. 2 (continued).
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the highest CV (Fig. 2a). The CV stays approximately constant andwith a
value less than but close to 1 for antibiotic concentrations belowMIC for
each drug (Fig. 2a). However, the CV begins to change significantly as
the concentration is increased above the MIC. Specifically, the median
CV is always N1 at intermediate levels of antibiotics, while it is always
b1 at low levels of antibiotics and almost always b1 at high levels of an-
tibiotics. Plots of the mean CV lead to the same conclusions (Supple-
mentary Fig. 2). This pattern held true for all three antibiotics tested.

Beyond the mean, variance, and CV, we can measure higher-order
moments such as the skewness and kurtosis of the distribution of col-
ony sizes (Fig. 2 and Supplementary Fig. 3). These moments can be
used to measure how strongly a distribution deviates from normality
(additive random process) or how well it matches other distributions
such as log-normal (multiplicative random process), power law (self-
similar process), binomial (randombinary process), or Poisson (random
number of hits model). For a normal distribution, the skewness and all
odd-order moments are zero, indicating there is no asymmetry. All
even-order moments, such as the kurtosis that measures rate of de-
crease from the peak, are well known for the normal distribution.

We also examined another stressor besides drugs: bacterial density.
First, we examined bacterial density in the absence of drugs. While the
CV increases with density in no-drug cases (Fig. 3), we find that inter-
mediate densities lead to the highest CV in the presence of drugs (Fig.
2), although streptomycin shows the highest levels of CV in a high den-
sity, low-drug combination. Second, we combined our two stressors ex-
perimentally and analyzed three-dimensional plots of median CV
versus both antibiotic concentration and bacterial density (Fig. 4 and
Supplementary Fig. 4a-e). This three-dimensional plot enables the
study of the combined effects of drug concentration and bacterial den-
sity, and also allows measures of CV at higher initial bacterial densities.
The peak CV occurs in themiddle of the three-dimensional plot, indicat-
ing that CV is highest when both drug concentration and bacterial den-
sity are at intermediate levels. We have now shown that intermediate
levels of stressors yield the highest variation for: 1) three different
drugs, 2) two distinct stressors—drugs and densities, and 3) two
stressors combined.

For low densities and low drug concentrations (corresponding to
wild-type distributions) we find skewness is zero and kurtosis is small,
so the distribution of colony sizes is well approximated as normal. In-
triguingly, these results change dramatically at intermediate to high
levels of both density and drug concentrations. As observed in Fig. 2b,
skewness is much larger than expected for a normal distribution for all
three drugs we used. This result implies that the distribution of colony
sizes is far from symmetric about the mean and deviates strongly from
a normal distribution. Our computation of the kurtosis further confirms
this finding because it is typically much larger than the expectation for
a normal distribution,meaning that our distributions decaymore quickly
away from themean thanwould be expected. A highly skewed distribu-
tion that frequently arises in biological distributions is the lognormal
[19–24]—a distribution that is normal in logarithmic space.

Finally, a moremechanistic mathematical description of transitions in
the shape of distribution would greatly aid predictions and analysis for
future studies. Therefore, we tested a range of statistical models—combi-
nations of linear, quadratic, and cubic terms of the drug concentration and
bacterial density—fitted to empirical data for CV of colony size. The fit that
is the best across all three drugs (r2 N 0.77 in all cases) is also one of the
most simple—linear term in drug concentration (MIC), linear term in bac-
terial density (BAC), and an interaction term that is the product of these
two linear terms (BAC*MIC). The simple form of this equation suggests
that simple mechanisms and principles (e.g., circle packing/space filling)
may underlie the very general results reported here.

4. Discussion

Our findings of intermediate doses causing greater variance hold for
three drugs with two different mechanisms of action. Here we defined



Fig. 3.Effect of bacterial density on colony size variationwith nodrug. Plots of themean, standarddeviation, andCoefficient of Variation for bacterial colony size versus bacterial density. No
drugwasused in these experiments. The best-fit equation basedon linear regression is given at the bottomof eachplot. Themean colony size and its standard deviation both decreasewith
density. The coefficient of variation (CV), ratio of the mean and standard deviation, exhibits a slight decrease initially but then increases with colony size, demonstrating that variation in
colony size increases with the stress or disturbance caused by higher bacterial densities. For bacterial densities on the x-axis, “n” corresponds to approximately 10n cells.

312 L. Lee et al. / Computational and Structural Biotechnology Journal 16 (2018) 307–315
intermediate as anything that is not the lowest or highest concentra-
tions of a drug. Intermediate levels of each drug are defined relative
to their MIC to allow comparisons irrespective of absolute con-
centration and lethality of each drug. Indeed, the antibiotics have very
different values for critical resistance phenotypes—MIC, MPC, and fre-
quencies of resistance along the drug gradient. Despite functional and
quantitative differences among the three antibiotics, the intermediate
levels of antibiotics always yielded the most variation within single
populations.

The most parsimonious explanation for this finding is that there
exists a strong correlation between the variance in colony size and the
genetic diversity of mutants. Indeed, our interpretation is consistent
with findings from previous studies [12–15]. Drugs likely slow growth
rate and interfere with cell-cell signaling, but these effects do not pre-
dict strong changes in the CV beginning atMIC= 1 or any other consis-
tent MIC value. Changes in CV (relative variation or error) rarely occur
in nature [25–27], so when changes do occur, they can help yield
insights into underlying processes and mechanisms. The CV is constant
when errors are proportional to the mean. For physical processes (e.g.,
catapulted objects), psychological judgments (Weber's law) [25,26],
and biological traits (e.g., variation in body size) [27], constant CV has
been observed even when comparing across systems with means and
standard deviations that vary by orders of magnitude.

Beyond just the CV, we documented changes in the overall shape of
the distribution. These changes in distribution shapemay be due to ran-
dom evolutionary processes through time, balancing mutations and
selection by the antibiotic, or due to random spatial processes that influ-
ence the dispersal of bacteria and drugs across the plate. Much research
has been done to understand which factors and mechanisms shape a
distribution to be lognormal or normal [20,22,24]. A normal distribution
corresponds to additive random processes and indicates no interaction
between the growth of the colonies, whereas a lognormal distribution
corresponds to multiplicative random processes and more likely indi-
cates interactions among colonies [19–24]. Our findings show that
disturbances or stressors may push the distribution for colony size
from normal to a distribution similar to a lognormal. This highly con-
trolled system and our automated measurements thus could enable
the experimental and high-throughput exploration of transitions
between distributions.
More generally, it is well understood that both selection and muta-
tion are necessary for evolution, but themutation component and asso-
ciated variation has been far less studied for questions such as the
evolution of antibiotic resistance. Instead, the main focus has been on
antibiotics as a source of new selection pressures for bacteria. Notably,
lower, sub-lethal levels of drugs have been shown to affect a wide
range of bacterial physiology, genetics, and behavior (reviewed in
[28]), including that sub-MIC levels of an antibiotic can exert selection
pressure in bacterial populations [29,30].

Ourfindings can be considered an extension of the Intermediate Dis-
turbance Hypothesis (IDH) in ecology, although there are some impor-
tant caveats. The IDH states that species diversity is at its lowest when
disturbances are very rare or very frequent. When disturbances are
very rare, the environment is stable, so the selection pressures are effec-
tively constant and the system is likely dominated by a few species with
high fitness. When disturbances are very frequent, the environment is
highly unstable, and it is likely that only a few species can survive
these fluctuations. Consequently, the IDH states that diversity is highest
at intermediate levels of disturbances that are infrequent enough that
many species can survive the fluctuations but frequent enough that
the selection pressures and species with highest fitness change with
the disturbances. The IDH is supported by theory founded on ecological
and evolutionary principles [31,32]. Tests of the IDH have focused on
comparative analyses [33–36]with only a few smaller-scale experimen-
tal tests [37]. These studies have provided evidence both for
[32,33,35,36] and against [34,36–39] the IDH.

There is intriguing evidence of the effects of intermediate intensities
and rates of disturbance on bacterial populations. In one study which
did not support the IDH, bacterial diversity was found to change with
both increasing frequency of disturbance and with increasing intensity
of disturbance [40]. Gibbons and colleagues showed that different
rates of disturbance affect the diversity levels within a microbial com-
munity, and that a community can switch from a unimodal to a non-
unimodal relationship between disturbance rates and diversity [41].
Another study showed that evolution of cooperation in biofilm bacteria
peaks at intermediate levels of disturbances [42]. In addition, Kassen
and colleagues [43] found that intermediate levels of productivity pro-
duced maximal species diversity in a community of bacteria where
the environment was heterogeneous, but not in homogenous
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Fig. 4. Size of median CV as a joint function of bacterial density and drug concentration. Three-dimensional bar plots of the median Coefficient of Variation (CV) in colony size versus
bacterial density (from high to low) and drug concentration (MIC; from high to low) for three drugs—amikacin, streptomycin, and ciprofloxacin. The peak value is indicated by the red
bar, and its coordinate is given as (density, concentration, CV). The values of density and concentration at which the peak value occurs are also denoted by purple arrows, except for
streptomycin where there are multiple equivalent peaks. For all drugs the CV is largest at intermediate values of the bacterial density and drug concentration, both of which can be
considered disturbances or environmental stresses.
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environments. Thus, several studies show intermediate levels of distur-
bances or productivity can achievemaximumdiversity and cooperation.

Our results here focus on diversity asmeasured by variationwithin a
single species, as opposed to diversity as measured by the number of
species within a community. Similar mechanisms may be driving both
within- and among-species diversity because we can think of diver-
gence in bacterial populations as incipient differentiation. The underly-
ing intermediate disturbances that allow different species to coexist
may also allow greater variation within a single species to be main-
tained via coexistence of mutants. We expected this generalization
might hold because variation within a single bacterial species can over-
lap and form a continuumwith variation across species [44–47]. Indeed,
mechanisms that drive variation within species can be similar to those
that drive speciation [48]. Importantly, there is an important distinction
between the IDH and the work we report here: the IDH is about
response to rates of disturbances, rather than levels or intensity of a dis-
turbance. Yetwe can connect and extend the general idea of rates of dis-
turbances to levels of disturbances. Our results suggest that more
variation can be found in environmental conditions that allow for coex-
istence of a range of ecological strategies. For example, conditions with
an intermediate level of antibiotics could allow the coexistence of both
very resistant strains that grow poorly in the absence of antibiotics and
less susceptible strains that grow well in the absence of antibiotics.
There are several key caveats to these results. First, high antibiotic
concentrations were only able to be tested in high densities of cells; in
lower or intermediate levels of bacteria, all cells would have died off.
In addition, this study examined only a single species and used antibi-
otics representing only two different mechanisms of action. Future
studies involving more bacterial traits, more species, and more antibi-
otics would allow us to determine whether the patterns found are per-
vasive in bacteria. Furthermore, it is possible that variation seen is a
result of phenotypic plasticity, not genetics. Wemake a key assumption
that diversity in colony sizes corresponds to diversity in genes. The
variation could also be due to heterogeneity of antibiotic resistance.
Finally, from a clinical perspective, our results are for a bacterial popula-
tion within a petri dish and highly-controlled environment. Undoubt-
edly, life in the wild (or hospital) is more complicated, but using
simple microbial model systems as part of the toolbox employed by
researchers can expand our understanding of both medical and ecolog-
ical questions.

We conclude that intermediate levels of disturbance—whether
through antibiotic stress or density stress—correspond to an increased
diversity of colony size phenotype. This is a pervasive pattern for how
colony size in one species responds to three different antibiotics. Further
exploration of stressor effects on phenotypic traits in bacteria could pro-
vide information onwhether the intensity of a disturbance (such as that
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wrought by antibiotics) could affect the genetic diversity of a bacterial
population, which in turn could affect rates of evolution of resistance.
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