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Abstract

Motivation: Personalized medicine aims at providing patient-tailored therapeutics based on multi-type data toward
improved treatment outcomes. Chronotherapy that consists in adapting drug administration to the patient’s circa-
dian rhythms may be improved by such approach. Recent clinical studies demonstrated large variability in patients’
circadian coordination and optimal drug timing. Consequently, new eHealth platforms allow the monitoring of circa-
dian biomarkers in individual patients through wearable technologies (rest-activity, body temperature), blood or sal-
ivary samples (melatonin, cortisol) and daily questionnaires (food intake, symptoms). A current clinical challenge
involves designing a methodology predicting from circadian biomarkers the patient peripheral circadian clocks and
associated optimal drug timing. The mammalian circadian timing system being largely conserved between mouse
and humans yet with phase opposition, the study was developed using available mouse datasets.

Results: We investigated at the molecular scale the influence of systemic regulators (e.g. temperature, hormones)
on peripheral clocks, through a model learning approach involving systems biology models based on ordinary dif-
ferential equations. Using as prior knowledge our existing circadian clock model, we derived an approximation for
the action of systemic regulators on the expression of three core-clock genes: Bmal1, Per2 and Rev-Erba. These time
profiles were then fitted with a population of models, based on linear regression. Best models involved a modulation
of either Bmal1 or Per2 transcription most likely by temperature or nutrient exposure cycles. This agreed with bio-
logical knowledge on temperature-dependent control of Per2 transcription. The strengths of systemic regulations
were found to be significantly different according to mouse sex and genetic background.

Availability and implementation: https://gitlab.inria.fr/julmarti/model-learning-mb21eccb.

Contact: julien.martinelli@inria.fr or annabelle.ballesta@inserm.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Clinical research communities currently advocate for more personal-
ized and precise medicine to improve patient outcomes. To that end,
innovative technologies have been designed to assess biological fea-
tures in cell cultures, laboratory animals or patients. Systems medi-
cine approaches aim to study these multi-type datasets through the
design of patient digital twins (The CASyM Consortium, 2014;
Wolkenhauer et al., 2014). This in silico version of the patient is
based on mathematical models that represent the detailed physi-
ology of key intracellular pathways driving disease evolution and
treatment response. Such models are most frequently based on or-
dinary differential equations (ODEs). Traditionally, the structure of
these models, e.g. chemical reaction networks, is inferred from an
extensive review and subsequent summary of the literature by the
modeler. More recently, efforts have been made to develop so-called
model learning algorithms to assist humans in that task in order to
automate model structure design. These methods have been applied

for the search of gene regulatory networks or phosphoproteomic
networks (Chan et al., 2017; Ostrowski et al., 2016). In the context
of ODE-based models, some machine learning techniques combine
the use of time series data with a facilitated integration of prior
knowledge (Aalto et al., 2020; Huynh-Thu and Geurts, 2018).
Known regulatory mechanisms or kinetic rates are directly
accounted for in the equations. This simplifies the problem when
dealing with large models, for which subparts are well known. This
being said, none of these approaches provide quantitative insights
about the inferred interactions. Indeed, the underlying kinetics be-
tween the target and the regulators are obtained in a non-mechanis-
tic manner using e.g. boosted decision trees or gaussian processes.
Consequently, dealing with datasets involving multiple related
groups or individuals as can be the case in clinical trials including
patients of different sex or genetic background, would not be pos-
sible. Thus, there is a need for the design of a network inference
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method able to handle prior knowledge in a context where quantita-
tive patient-specific information needs to be accounted for in the
inferred model.

This systems biology approach was developed in the context of
circadian rhythms and chronotherapy, that consists in administering
drug according to the patient’s 24 h-rhythms toward improved treat-
ment outcomes. Diseased and healthy tissues display time-dependent
variations over the 24 h span, which are called circadian rhythms
(Ballesta et al., 2017). The mammalian circadian timing system
(CTS) is composed of a central pacemaker, the suprachiasmatic nu-
clei (SCN), located in the hypothalamus, which display spontaneous
circadian rhythms and are themselves under the control of environ-
mental cues such as light or socio-professional interactions, that
force their period to exactly 24 h. Each cell is endowed with a mo-
lecular clock composed of approximately 15 genes, organized in
regulatory feedback loops. These cellular clocks are exposed to sys-
temic regulators aiming to synchronize cells within an organ and
among the organism in order to orchestrate the body function and
anticipate its needs over the day and night cycles for optimal energy
management. The SCN coordinates most physiological signals to-
ward peripheral organs which are in the form of biomechanical
stresses, temperature cycles, hormonal variations (e.g. cortisol,
melatonin) or nutrient exposure (Ballesta et al., 2017). Rhythmic
behaviors such as feeding patterns also impact the peripheral clocks
in an SCN-independent fashion. However, the precise molecular
interactions between clock genes and systemic regulators are not
fully understood. Here we propose a model learning investigation to
inform this biologically relevant issue.

Most processes of drug pharmacology display 24 h-rhythm with
differences of several folds between minimum and maximum activ-
ities. Antitumor chronotherapies achieved an up-to-5-fold decrease
in treatment side effects and nearly doubled antitumor efficacy com-
pared to conventional administration of the same drug doses in can-
cer patients (Ballesta et al., 2017). However, recent findings
concluded to a large impact of patients’ sex, genetic background and
lifestyle on drug optimal timing, thus highlighting the need for indi-
vidualized chrono-infusion schemes to further improve treatment
outcome. This need has initiated the development of eHealth plat-
forms dedicated to the follow up of key circadian biomarkers in
individuals (Kim et al., 2020). For instance, the PiCaDo platform,
that integrates data from wearable sensors recording rest-activity,
position and skin-surface temperature, was validated for safe home-
based assessment of patient’s rhythms (Innominato et al., 2018;
Komarzynski et al., 2018). Such information may be combined to
measurements of key markers in blood or salivary samples, such as
melatonin and cortisol, and to food diary keeping track of nutrient
intake. However, there does not exist a methodology for the predic-
tion of personalized drug timing from these patients’ circadian data-
sets, a challenge we aim to address.

Drug toxicities and efficacy are ultimately determined at the mo-
lecular scale by the response of gene and protein networks involved
in the drug pharmacokinetics (PK) and pharmacodynamics (PD) in
relevant organs (e.g. the liver for drug metabolism). Numerous of
these intracellular regulatory networks are under the tight control of
the cellular circadian clock (Ballesta et al., 2017). Hence, the infor-
mation needed to personalize chronotherapy consists in the circa-
dian variations of proteins involved in drug PK-PD. Such detailed
physiology and its temporal organization are unlikely to be com-
pletely assessed in individual patients due to the invasive nature and
high frequency of the clinical measurements that would be required.
As a consequence, there does not exist such clinical dataset compris-
ing both circadian biomarkers and circadian rhythms of clock and
pharmacological genes in peripheral organs in the same individuals,
so that purely statistical approaches cannot be applied here. Hence,
we aim to design a systems pharmacology mechanism-based ap-
proach to predict patient-specific circadian rhythms of clock genes
and key pharmacological enzymes from non-invasive monitoring of
circadian biomarkers.

We here rely on systems biology and systems pharmacology
approaches that offer to dynamically model, through ODEs, key
intracellular pathways. Model variables and parameters do have a

physical meaning that is conserved across species, so that sub-model
structures and parameter values can be validated in pre-clinical set-
tings and further integrated in patient models, as in a multi-scale
pipeline. Thus, we have developed our model learning approach
using extensive circadian datasets available in four classes of mice (2
strains, 2 sexes) as a first step toward clinical application. After
describing the available mouse datasets, we will expose our ap-
proach of model learning and then present the results obtained in
terms of biological predictions.

2 Available data: circadian biomarkers and liver
clock gene expression in four mouse classes

This study aiming to identify the control of systemic regulators on
the cellular circadian clock was based on extensive circadian data-
sets available in both male and female mice of B6D2F1 and
B6CBAF1 strains (Ahowesso et al., 2011; Li et al., 2013). Class 1
and 2 were defined as female and male B6D2F1 mice, Class 3 and 4
as female and male B6CBAF1 mice, respectively. For each mouse
class, five systemic biomarkers were measured around the clock,
which were body temperature, rest-activity, food intake, plasma cor-
ticosterone and melatonin (Fig. 1). The first two biomarkers were
captured by an implanted sensor providing data every 10 min for
72 h, with up to 8 biological replicates per point (Ahowesso et al.,
2011). For the plasma corticosterone and melatonin, the time reso-
lution was 3 h with 3 biological replicates (Ahowesso et al., 2011; Li
et al., 2000). Finally, the amount of food in a cage housing 3 mice
was weighted every 4 h using a precision scale. The value measured
for food intake consists of the amount of food at time T1 minus the
amount of food at the next circadian time T2 (Ali and Kravitz,
2018). 3 biological replicates were used per time point. Circadian
rhythms were validated using Cosinor for all classes for tempera-
ture, rest-activity and melatonin (P<0.05). Concerning cortico-
sterone, all classes but class 2 displayed circadian rhythms
(P¼0.08). Food intake was predicted to display circadian variations
for Class 1 and 2, only (P¼0.16 and P¼0.31 for class 3 and 4, re-
spectively). Significant sex differences could be observed for instance
in rest-activity profiles in terms of mesor as well as relative circadian
amplitudes, although the phases were similar. Conversely, tempera-
ture profiles were virtually identical across classes. Overall, phases
are well-preserved from one class to another for all biomarkers.
Furthermore, mRNA circadian concentrations of the core-clock
genes Bmal1, Per2 and Rev-Erba were measured in the mouse liver
for the four classes ( (Li et al., 2013) . Circadian rhythms were vali-
dated for all genes and classes (Cosinor P<0.05). Gene expressions
were quite alike classwise in terms of phases. All datasets were pre-
processed using Gaussian processes with a 24 h-periodic kernel (Fig.
1, (Rasmussen and Williams, 2006)).

3 Model learning approach

3.1 Accounting for direct and indirect action of systemic

regulators on the clock
The five measured circadian biomarkers (rest-activity, temperature,
food intake, corticosterone and melatonin) are considered as pos-
sible systemic regulators of the clock. We here focus on liver cells
which do not express receptors to melatonin so that we do not an-
ticipate any direct control of this feature on the clock. It is thus inte-
grated in the study as a negative control. Regulators may have either
immediate or time-shifted interactions with clock genes. Indeed,
intermediate species are likely to be involved in the influence of these
regulators on the clock. This would induce time delays as compared
to the biomarkers data. For instance, temperature increase may lead
to an enhanced expression of Heat-shock proteins (HSP) which then
interact with clock genes (Kornmann et al., 2007). Such cascade of
events would induce a phase shift between the action of the direct
regulator (e.g. HSP) and the data of the corresponding biomarker
(e.g. temperature). Let us assume that the regulator z1 produces the
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species Z1 through a linear kinetics with rate constant k1, an explicit

formula is obtained for Z1 as:

Z1

:

ðtÞ ¼ k1z1ðtÞ ) Z1ðtÞ ¼ k1

ðt

0

z1ðsÞds: (1)

Hence, direct action of the five regulators are represented by the
corresponding circadian biomarker data zj and indirect actions are

included through integral regulators Zj :

z ¼ ðzj ;Zj Þ16j65whereZjðtÞ ¼
ðt

0

zjðsÞds: (2)

k1 being incorporated into parameters of the statistical models, see

below.

3.2 Setting a regression problem, using an ODE-based

model of the liver circadian clock
In order to identify the action of systemic regulators on the cellular
circadian clock, we settled for a model-based approach, which ena-

bles us to derive a mathematical expression for the approximation
of this action. This approximation relies on several hypothesis

described in this section. We use an ODE-based model of the mouse
liver circadian clock which recapitulates the molecular interactions
between clock genes and their transcription, nuclear transport and
degradation [Supplementary Fig. S1-1 (Hesse et al., 2021)]. Briefly,
CLOCK/BMAL dimer is assumed to enhance the transcription of
clock genes Rev-Erba, Rorc, Per2 and Cry1 and PER/CRY complex
to inhibit this transcriptional activation. The model includes two
main negative feedback loops. The first one involves the self-inhib-
ition of Bmal1 through the activation of its repressor REV-ERB by
the dimmer CLOCK/BMAL. On the opposite, ROR whose expres-
sion is also increased by CLOCK/BMAL presence, acts positively on
Bmal1 modulation. The second feedback loop is induced by the self-
repression of Per2 and Cry1 gene expression through the inhibition
of CLOCK/BMAL transcriptional activity by the PER/CRY protein

Fig. 1. Circadian biomarkers in four mouse classes. Raw data are represented with dots (average) and error bars (standard deviations). For the sake of readability, error bars

were only displayed every 2.5 h for the first line. Solid lines stand for the mean function obtained by fitting a Gaussian Process

Fig. 2. Best-fit of the in vitro cellular clock model (red curves) to mRNA levels of six

clock genes measured in MMH-D3 cell culture (blue dots)

Fig. 3. Mean and standard deviation of the selected residual trajectories obtained

for each clock gene. Left (resp. right) panels under H1–H3 (resp. H2–H3)
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complex. In addition, REV-ERB inhibits Cry1 gene expression, thus
inhibiting its own inhibition through the modulation of PER/CRY
level. In this mathematical model, the expression of gene x is typical-
ly described by the following differential equation:

dx

dt
¼ VmaxTranscðM; cÞ � ax: (3)

The right term of Equation 3 accounts for gene mRNA degrad-
ation occurring at constant rate a. Vmax stands for the gene tran-
scription level in the absence of modulators. The function Transc
embodies the action of modulatory species M on x transcription
through Hill-like kinetics terms parametrized by c. For instance, the
positive action of the ROR protein on Bmal1 transcription and the
counter inhibitory part from REV-ERB action (Guillaumond et al.,
2005) are modeled as:

TranscBmal1 ¼
1þ c1

ROR
c2

� �c3

1þ REV�ERB
c4

� �c5 þ ROR
c2

� �c3
; (4)

where c1 is a fold transcription ratio parameter, c2; c4 are modula-
tion ratio parameters and c3; c5 are Hill coefficients.

The available model represents the liver circadian organiza-
tion as a dynamic purely driven by intracellular feedback loops
and does not explicitly include the influence of systemic cues such
as temperature or hormonal exposure which yet contribute to the
liver circadian clock robustness (Ballesta et al., 2017). A key
question lays in the molecular links between the cellular clock
and those systemic circadian regulators. Hence, they will be
included in a new form of the mouse liver clock model as follows.
We consider that the action of systemic regulators z on the circa-
dian cellular clock is done by a forcing function f, and any feed-
back from the clock to the systemic regulators is neglected. Two
regulations are considered as multiplicative action of the regula-
tors on either gene transcription or gene mRNA degradation so
that the dynamics of a gene x in an in vivo scenario can be written
as one of the following equations:

Hypothesis H1:

dxvivo

dt
¼ f ðzÞVmaxTranscðM; cÞ � axvivo

() f ðzÞ ¼
dxvivo

dt
þ axvivo

TranscðM; cÞ

(5)

Hypothesis H2:

dxvivo

dt
¼ VmaxTranscðM; cÞ � f ðzÞaxvivo

() f ðzÞ ¼
VmaxTranscðM; cÞ � dxvivo

dt
xvivo

(6)

where f ð:Þ  Vmaxf ð:Þ for Equation 5 and f ð:Þ  af ð:Þ for Equation
6. Incorporating Vmax and a into the residual trajectories bypasses
the need for any assumption on their values as they will be merged
with parameters of the considered statistical models, see below.

For Bmal1, Per2 and Rev-Erba, xvivo can be estimated from the
gene expression data xvivo available in the four mouse classes.
Similarly, the five potential systemic regulators z which are rest-ac-
tivity, temperature, food intake, corticosterone and melatonin can
be set equal to their measurements in the mouse classes z. Upon dis-
cretization over the time grid tif g16i6N, at which the Gaussian proc-
esses used for data preprocessing are evaluated, Equations (5) and
(6) can be transformed as:

f ðzðtiÞÞ �
DxvivoðtiÞ

Dti
þ axvivoðtiÞ

TranscðM; cÞ :¼ yðtiÞ H1 (7)

f ðzðtiÞÞ �
VmaxTranscðM; cÞ � DxvivoðtiÞ

Dti

xvivoðtiÞ
:¼ yðtiÞ H2 (8)

Each function y is called a residual trajectory. The goal of the
study is to identify all possible functions f that would properly fit all
residual trajectories y, given the systemic biomarkers measurements
in the four mouse classes.

We now define a model learning problem. For the sake of simpli-
city, we will study the case where systemic regulators only act on ei-
ther the transcription or the degradation of a single gene. This gene
is either Bmal1, Per2 or Rev-Erba for which we have mRNA level
data. For each of the six scenarios (3 genes, action on transcription
or degradation), let us consider the following learning samples, for a
given class of mice

�
zðtiÞ; yðtiÞ

�
; i 2 ½½1;N � 1��

� �
:

The problem of finding the optimal functions f can be addressed
in a regression setting, by solving

argmin
f̂ 2F

1

N � 1

XN�1

i¼1

�
yðtiÞ � f̂ ðzðtiÞÞ

�2

(9)

for a given family of estimator functions F , such as linear functions
or tree-based functions.

zðtiÞ are given by the datasets on the circadian rhythms of the
five regulators in the four mouse classes so that the principal issue is
now to compute the residual trajectories y. They are computed by
Equations (7) and (8) which includes: (i) xvivo gene expression which
are set equal to mouse liver mRNA levels of either Bmal1, Per2 and
Rev-Erba; (ii) parameters a, Vmax and c which are unknown at this
stage, (iii) time-resolved concentrations of the modulatory species M
for which no data is available. To estimate the needed parameters
and circadian profiles of modulators, we will investigate the circa-
dian clock of liver cells cultured in vitro, that is under constant influ-
ence or complete absence of the five whole-body regulators.

3.3 A model of the in vitro liver cellular circadian clock
We leveraged time-resolved mRNA expression of six clock genes
measured in immortalized MMH-D3 mouse hepatocytes using
microarray technology (Atwood et al., 2011). This cell line is often
used as a surrogate for healthy hepatocytes. Cells were cultured in
standard conditions in which they are exposed to constant tempera-
ture and access to nutrients, in the absence of mechanical stress,
melatonin or corticosterone addition. Under these in vitro condi-
tions, the influence of all regulators are constant over time so that
gene expression can be expressed by Equation 3. The existing model
of the in vivo mouse liver clock can thus be used to represent the
in vitro circadian clock, yet after parameter adaptation based on cell
culture data in which the clock is not under rhythmic controls. The
MMH-D3 gene expression datasets were used to adjust the parame-
ters of the in vitro clock model starting from estimates of the in vivo
model (Hesse et al., 2021). Parameter estimation is described in
Supplementary File S2. RT-qPCR data from primary mouse hepato-
cytes culture were used to scale microarray intensities to obtain ab-
solute values of mRNA intracellular concentrations, as required for
modeling purpose (Feillet et al., 2016). The fitted in vitro model suc-
ceeded in capturing the oscillatory behavior of the six clock genes
(Fig. 2). A total of 10 optimal parameter sets were obtained from
different runs of the optimization algorithm, both leading to the
same reasonable fit of the data. The result can then be thought of as
the cellular clock contribution isolated from the rhythmic influence
of the systemic regulators. It will be used to identify specific regula-
tors of the cellular clock in the in vivo setting.

3.4 Computing residual trajectories for the in vivo

scenario using the in vitro clock model
In Section 3.2, we derived an expression for the approximation of
the action of systemic regulators on the cellular circadian clock
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under H1 or H2. Equation 9 formulates the problem in a regression
setting, which requires the computation of the residuals trajectories
y. The latter necessitates parameter values for a;Vmax and c, as well
as the concentrations of the modulatory species M (Equations 7 and
8): REV-ERB and ROR for Bmal1, CLOCK/BMAL and PER/CRY
for both Per2 and Rev-Erba.

While the adjustment of our circadian clock model to in vitro
data provided estimates for these quantities, one can question their
reliability in the in vivo setting. Given that, we have decided to iden-
tify leading systemic regulators based on the prediction of multiple

residual trajectories obtained by varying parameter values of the
in vitro model. This reduces the dependence of future inference on
these estimates, thus ensuring the robustness of the method as func-
tions of systemic regulators f would have to be optimal for numer-
ous different liver clocks. Let h be the model parameter vector. For
selected coordinates j, we apply an additive Gaussian noise to
in vitro values as follows:

Hypothesis H3:

hvivo
j ¼ hvitro

j þ � where � � N 0;
hj

r

� �
(10)

with r a scaling factor, in practice set to 10. The relevant coordi-
nates j are composed of two sets. The first set corresponds to the
parameters a;Vmax and c involved in Equations (7) and (8). These
parameters are different for each gene Per2, Bmal1 and Rev-Erba.
The second is the set of model parameters that have the greatest im-
pact on the time-concentration profile of modulator species M.
These are best suited to make the modulators deviate from their
in vitro concentrations. They were determined for each species
through global sensitivity analysis in which outputs are defined as
the circadian mean, amplitude or phase of the temporal profile of M

[Supplementary Fig. S2-1 (Sobol, 2001)]. For each of these charac-
teristics l and each modulator m, we selected the parameter set Pm;l

comprised of the p most sensible parameters according to Sobol sen-
sitivity indices. Then, the intersection of P ¼ \l;m Pl;m was com-
puted. p was chosen such that P ¼ 5 where is the cardinal of a set.
Among these parameters were found 3 degradation parameters for
Bmal1, Clock and CLOCK/BMALN as well as 2 cytoplasmic protein
production parameters for CLOCKC and BMALC. All selected sens-
ible parameters were related to the CLOCK/BMAL loop.

Under H3, additive gaussian noise is applied to each of the 10
in vitro parameter sets and fed to the model to compute correspond-
ing clock variables time profiles. Considering multiple optimal par-
ameter sets allows us to reduce the parameter uncertainty related to
the lack of constraints. Selection criteria are applied in order to only
select realistic clocks: (i) variable concentrations outputted should
be periodic with period between 20 and 28 h, and display relative
amplitude above 5%, (ii) the phase difference between the nuclear
variables REV-ERB and ROR, and between PER/CRY and CLOCK/
BMAL complexes should be larger than 6 h, as this two couples are
made of variables that play antagonist roles (Ko and Takahashi,
2006). If all these criteria are met, the model simulation and its asso-
ciated parameter set are kept and the corresponding trajectory from
Equation 7 or Equation 8 is computed, using the perturbed param-
eter vector. This procedure is repeated until n trajectories are
obtained, for each mouse class and gene. In practice n was set to
2000. Inter-class differences of circadian amplitudes and phases
could be observed between the trajectories generated for each of the
four mouse classes as a result of variations present in the clock gene
expression data (Fig. 3).

3.5 Identifying action of systemic regulators as a linear

regression problem
The most straightforward way to solve the problem evoked in
Equation 9 is to compute an estimator of f thanks to linear regres-
sion. This is biologically meaningful as chemical reactions can often
be written using the law of mass action that assumes linear kinetics.

Besides, estimators provided in this case are easy to interpret as the
contribution of a regulator zj is represented with a weight bj:

f̂ ðzðtiÞÞ ¼
X

j

bjzjðtiÞ: (11)

We assume the same model structure, i.e. active regulators for all
mouse classes. Only weights b can vary across mouse strains and
sexes. From a biological point of view, this is equivalent as saying that
the involved regulators are the same whatever the mouse category, al-
though the strength of their influence may vary classwise. For the sake
of simplicity, any model containing both a regulator and its corre-
sponding integral regulator is ruled out. This constraint ensures that
in a model, a systemic regulator has only one way to act on the gene:
either directly or indirectly. Thus, a regression model can include at
most 5 terms. To select the first term, 10 choices are possible, then 8,
then 6, etc since once a regulator is chosen, its associated integral
regulator cannot be selected for the current model. We end up with
ð10� 8� 6� 4� 2Þ=5! ¼ 32 possible models involving exactly five
regulators. The general formula below shows that there is a total of
242 models when including one to five regulators.

X5

r¼1

1

r!

Y5

j¼5�rþ1

2j: (12)

Considering that there are n residual trajectories y
ðcÞ
k for each of

the four classes, the learning samples become:

�
zðcÞðtiÞ; yðcÞk ðtiÞ

�
; i 2 ½½1;N � 1��; c 2 ½½1;4��; k 2 ½½1;n��

� �
:

For each class c, let us define the loss of a given model f̂ parame-

trized by b
ðcÞ
k ¼

�
bðcÞk;j

�
j2½½1;10��

applied to the class regulator data zðcÞ

against trajectory y
ðcÞ
k as:

‘ðyðcÞk ; zðcÞ;b
ðcÞ
k Þ :¼ 1

N � 1

XN�1

i¼1

�
y
ðcÞ
k ðtiÞ �

X
j

bðcÞk;j z
ðcÞ
j ðtiÞ

�2

: (13)

The total error associated to this model is defined as the average
of the errors of each residual trajectories across the four classes. It is
computed as,

Eðy; b; zÞ :¼ 1

4n

X4

c¼1

Xn

k¼1

min
bðcÞ

k

‘
�

y
ðcÞ
k ; zðcÞ; b

ðcÞ
k

�
: (14)

Finally, to allow comparison of errors and coefficients for differ-
ent trajectories, both the inputs and outputs of the regression prob-
lem are standardized with zero mean and standard deviation one.
Therefore the loss between a trajectory yk and an empty model is 1.
One can see this value as an upper bound for the performance of a
model, providing an assessment of the goodness of fit.

3.6 Regulator importance through Shapley values
An important question in an inference setting is to determine the
precise set of relevant features in terms of prediction. Here, the fact
that we deal with only ten features coupled with the low complexity
cost of linear regression tolerates an exhaustive search over the
whole regulators model space. Consequently, our inference consid-
ers large linear regression models as a first step and focus on smaller
models thereafter. The first step of our method to identify relevant
regulators for each clock gene uses Shapley values. Shortly, Shapley
values stem from Game Theory and allocate to each feature zj a
value /j that represents the effect of including that feature on model
predictions. It is computed as the following weighted average:

/j ¼
X

S�F jf g
S!ðF � S� 1Þ!

F!

�
f̂ S[ jf gðzS[ jf gÞ � f̂ SðzSÞ

�
; (15)

where F is the set of all feature indices, S a subset of F and zS the vec-
tor of features with indices in S. Since the effect of zj depends on
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other features, the model differences are computed for all possible
subsets of features (Peters, 2015). This approach was recently
extended to handle any machine learning model such as tree-based
models or neural networks (Lundberg and Lee, 2017). For linear
models, one can derive a simpler formula: /jðtiÞ ¼ bjzjðtiÞ.

We computed Shapley values for all possible regulator models
involving 5 features, which is the maximum size of the model if
excluding concomitant direct and indirect action of the same regula-
tor. From Equation 12, there are 32 such admissible subsets of regu-
lators zS. We call I the set containing all possible indice subsets S of
cardinal 5, excluding those containing indices of direct and indirect
actions of the same regulator. Pipeline 1 (Supplementary File S2)
shows the procedure to compute the mean absolute Shapley values.

4 Results

4.1 Action of systemic regulators on clock gene

transcription
Our first aim is to investigate possible actions of systemic regulators
on the transcription of the three clock gene for which we have
mRNA data: Bmal1, Per2 and Rev-Erba. Thus, in this section, we
consider action of regulators in the form of H1 and residual trajecto-
ries are computed under H3 (Fig. 3, left column).

The importance of each regulator was assessed through the com-
putation of Shapley values for each possible linear estimator f̂ (Fig.
4). One should notice from Pipeline 1 (Supplementary File S2) that
these values are averaged across mouse classes, residual trajectories
and time points. Remarkably, the lowest score is achieved by
Melatonin and its indirect version

Ð
Melatonin, for all three clock

genes. This means that according to the Shapley values metric and
based on linear regression models, the melatonin is the least relevant
contributor to the prediction of the trajectories y. This is in agree-
ment with biological knowledge and thus provides a partial valid-
ation of the approach. Conversely, Shapley values yielded as leading
regulator

Ð
Temperature for all three genes, advocating for a strong

effect of temperature cycles on the cellular clock, yet through indir-
ect actions involving an intermediate species.

While Shapley values give a coarse-grained ranking of the regula-
tors, another level of granularity can be achieved. As mentioned ear-
lier, the small dimension of the problem allows for an exhaustive
search of all possible linear models. Under the constraint that no
regulator is found twice in the same model with both a direct and in-
direct action, there are 242 models (Equation 12). For each gene,
Figure 5 displays the total error E of the best model across residual
trajectories, involving from 1 to 5 regulators. Model overfitting was
investigated as follows. For each residual trajectory, time points
were shuffled and divided in 4 folds on which cross validation was
performed. A close agreement between training and testing total
errors was found indicating that overfitting was not an issue for any
considered number of systemic regulators (Supplementary Fig. S2-
2). For each gene, the total error of the best-fitting model depending
on its number of non-zero terms is reported under (H1–H3).
Timepoints were shuffled and divided in 4-folds on which 4-fold
cross validation was performed (Fig. 2). As expected, the total error

decreased as terms were added to the models. The slope was found
to be the steepest when moving from 1-term models to 2-term mod-
els for all genes, demonstrating the superiority of the latter in terms
of balance between degrees of freedom and goodness of fit.
Furthermore, for Bmal1, best 1-term, 2-term and 3-term models
were nested, thus Fisher test could be applied. These models wereÐ
Temperature,

Ð
Temperature þ

Ð
Food Intake and finallyÐ

Temperature þ
Ð
Food Intake þ

Ð
Activity. The 2-term model, was

found to be significantly better than the 1-term and the 3-term
model (P<0.05). Hence, we now focus on 2-term models which
were all fitted to residual trajectories (Fig. 6). For each gene, there

exists exactly 10�8
2! ¼ 40 such models. For each model, the dominant

term is defined as the regulator with indice j maximizing the follow-

ing quantity: 1
4n

Pn
k¼1

P4
c¼1

jbðcÞk;j j.

The best model including a control of Rev-Erba transcription
achieved a poor fit to data with a total error of 0.2 which led us to
discard all models for Rev-Erba (Fig. 6, Supplementary Fig. S2-3).
For both Bmal1 and Per2, one can observe a large preponderance of
the regulators food intake and temperature among the top ranked
models (Fig. 6). These regulators end up with the lowest mean ranks
across all systemic regulators, though only through an indirect ac-
tion for Bmal1. For Per2, temperature ends up being the most pre-
sent systemic regulator, involved, through direct or indirect action,
in 6 out of the 10 best-performing models. This is consistent withÐ
Temperature having the highest Shapley value for this gene (Fig. 4).

Moreover, this finding is in agreement with the observation of an ef-
fect of the temperature on Per2 transcription through Heat Shock
Proteins reported in (Kornmann et al., 2007) and provides a form of
validation of our approach.

Overall 2-term models fitted for each gene, melatonin first rank-
ings as a leading biomarker were found to be quite high: 28th, 22th
and 20th for Bmal1, Per2 and Rev-Erba, respectively. This comes as
further validation of this approach as melatonin is included here as a
negative control since liver cells do not express its receptors.

4.2 Action of systemic regulators on clock gene mRNA

degradation
In this section, we search for possible actions of the systemic regula-
tors on clock gene mRNA degradation, assuming H2–H3 hold.
Figure 3 (right column) shows the residual trajectories computed
with the method described in Section 3.4. These time profiles appear
strongly non-linear, with sharp peaks for Bmal1 and Rev-Erba as a
result of the division by the clock gene concentrations which are
close to zero for certain circadian time window. Such shapes suggest
that a systemic regulation of clock gene mRNA degradation would
lead to an unstable control that would explode during some interval

Fig. 4. Mean absolute Shapley values for all features and each gene under H1–H3.

Standard deviations computed across residual trajectories

Fig. 5. For each gene, the total error of the best-fitting model depending on its num-

ber of non-zero terms is reported for Transcription (A) and Degradation (B).

Standard deviations are taken across residual trajectories
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of the 24 h span. This type of behavior is unlikely to derive from the
realization of natural biological processes which mostly produce ro-
bust patterns over time. Consequently, the same analysis as in the
transcription case yielded to the exclusion of all models. First, for
Bmal1, a minimum of three to four terms is necessary to achieve a
proper fit of the residual trajectories, with respective total errors of
0.16 and 0.14 (Fig. 5B). In the case of Rev-Erba, even 5-term models
are far from producing reasonable fits, with a total error of 0.22 for
the best 5-term model. For Per2, as in the transcription case, the
slope of the total error was found to be the steepest when moving
from 1-term models to 2-term model, so that all models with num-
ber of terms greater than 2 are rejected. However, with a total error
of 0.31, 0.19 and 0.46 for Bmal1, Per2 and Rev-Erba respectively,
there is no 2-term model providing a good fit of the trajectories.
Total errors of all 2-term models are presented in Supplementary
Figure S2-4. Overall, we conclude under H2–H3, that there is no ad-
missible models involving a linear action of the regulators on clock
gene mRNA degradation.

4.3 Mouse class differences
As data for four mouse classes (2 strains, 2 sexes) are available, we
can investigate the effect of sex and genetic background on the regu-
lators action. Indeed, one perk of linear models is their simplicity
when it comes to providing explanations: the impact of a feature on
the prediction is determined by the weight associated to this feature.
This enables the study of mouse class differences in terms of regula-
tor weights. Weight distributions were estimated for each mouse
class from best-fit parameters obtained across all trajectories
through kernel density estimation (Fig. 7). Using all 2-term models
for both Bmal1 and Per2 under H1–H3, we performed two-way
ANOVA, asking whether or not genetic background or sex is statis-
tically significantly impacting regulator weights. In that event, the
values of regulator weights in a given model, obtained by fitting
each residual trajectory, are considered as realizations of a random
variable. For Bmal1 (resp. Per2), 38 (resp. 37) out of 40 models
agreed on the statistically significant influence of sex and genetic
background on the extent of regulators influence (P<0.05).
Interactions between both factors were also found to account for
differences in regulators weights in 38 (resp. 37) models for Bmal1
(resp. Per2). Models failing to uncover statistically significant differ-
ences were all associated with a total error above 0.2.

This finding matches the fact that circadian rhythms display sex
differences in mice and in humans (Ballesta et al., 2017). Moreover,
previous findings demonstrated different optimal timing of the anti-
cancer drug irinotecan in these four mouse classes (Li et al., 2013).

A closer look to the weight distributions is given for Bmal1 and
Per2’s best fitting model (Fig. 7). Interestingly, large inter-class dif-
ferences can be found for the regulator weights. The best 2-term
model integrating a control of Bmal1 transcription, involves the
joint action of Food intake and Temperature, probably through
intermediate species. Food intake appears to act mostly negatively
on Bmal1 transcription in female and male B6D2F1 mice (Classes 1
and 2) and positively in B6CBAF1 mice (Classes 3 and 4). For
Temperature, the exact reverse situation is observed. For each
mouse strain, sex-specific differences are also present in the distribu-
tion modes and standards deviations, Class 1 displaying the largest
variability across trajectory best-fit parameters. Next, the best
model targeting Per2 expression involves a direct positive regulation
of the gene mRNA transcription by Food Intake and an indirect
mostly negative influence of temperature for all mouse classes. The
distributions of Food Intake weight present different shapes for
Class 1 and 2, with a higher mode for Class 2, while being analo-
gous for Class 3 and 4. Regarding the indirect action of

Fig. 6. (A) Total error for each of the 40 2-term models representing a systemic control on either Bmal1, Per2 or Rev-erba transcription. Means and standard deviations were

computed across residual trajectories under H1–H3. Colors indicate regulators involved in each model, with the top square referring to the dominant regulator. Areas defined

by different shades of gray refer to thresholds of total error equal to 0.05, 0.1 and 0.15. (B–C) Mean rank of regulators among the 40 2-term models, from lowest to highest,

for models impacting Bmal1 or Per2 transcription

Fig. 7. Density plot of the coefficients of the best 2-term model for Bmal1 and Per2,

computed across residual trajectories for each mouse class. FI: Food Intake, T�C:

Temperature
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Temperature, the distribution for Class 2 is almost set apart from
the others with a lower mode, hence a stronger negative impact. The
fact that parameter distributions can have classwise opposite modes
raises a few questions as this would imply that systemic regulators
could act either positively or negatively on gene transcription across
mouse classes. As a start, model identifiability was assessed by
means of profile likelihood, a method determining practical and
structural identifiability (Raue et al., 2009). Supplementary Figures
S2-5 and S2-6 show that the parameters of the best 2-term models
for Bmal1 and Per2 are indeed identifiable for each class.
Subsequently, similar systemic regulator weight signs across classes
was enforced and models which did not initially meet this con-
straint, i.e. 23 for Bmal1 and 32 for Per2, were re-optimized. A 1.5-
fold average increase in total errors from unconstrained to con-
strained optimization was found (Supplementary Fig. S2-7).
Altogether, these findings demonstrate that models with opposite
signs were reasonable and better fit data than constrained models.

5 Discussion

We have presented a model learning methodology to identify sys-
temic regulators of the peripheral circadian clocks. The theoretical
approach comprises two key steps. The first step relied on the inte-
gration of extensive prior knowledge on the mammalian circadian
timing system into an ODE-based circadian clock model. The com-
parison of this calibrated model with available circadian datasets
allowed the derivation of an approximation for the action of the reg-
ulators on the clock in the form of residual trajectories. In a second
step, using a linear regression framework, the task of inferring sys-
temic regulators of the clock was interpreted as a model selection
problem. The latter involving a small number of features, an ex-
haustive exploration of the regulator model space could be per-
formed. Thus, we used Shapley values to draw inference on the
importance of each regulator from large regression models and
acquired a more fine-grained understanding with smaller models
afterwards.

Our approach produces explainable linear models that mechan-
istically represent the action of the measured regulators on clock
genes in two mouse strains. The focus was given to five regulators
for which measurements were accessible: biomechanical stresses
(derived from rest-activity), body temperature, nutrient exposure
(derived from food intake), plasma melatonin and corticosterone.
Given the available mRNA data, we were able to investigate system-
ic regulation of Bmal1, Per2 and Rev-Erba mRNA transcription or
degradation. Models involving a modulation of mRNA degradation
were all rejected, as well as those impacting Rev-Erba transcription.
Hence, all admissible models involved a regulation of either Bmal1
or Per2 transcription. Temperature was found to affect Per2 tran-
scription in an indirect manner, which was in line with temperature
dependency of the expression of HSPs that interact with clock genes
(Kornmann et al., 2007). Similarly, melatonin which was included
as a negative control was not involved in the best models. Lastly, the
large predominance of food intake in the best fitting models agreed
with recent experimental findings (Greenwell et al., 2019). Indeed,
modulating meal timing and composition impacts liver clock genes
time profiles as, for instance, dampened oscillations were shown in
mice subjected to high-fat-diet, whereas time restricted high-fat-diet
restored regular circadian rhythms (Hatori et al., 2012; Li et al.,
2010). Arrhythmic feeding does not cause liver clock genes to lose
oscillations in mice, a behavior which is well reproduced by our
models (Greenwell et al., 2019). A subsequent step would be to
study the precise molecular mechanisms linking energy metabolism
and the clock which requires the design of dedicated systems biology
frameworks (Woller et al., 2016). Next, our approach assumes inde-
pendence of the systemic regulators while this may not be the case
for all of them. However, independence of temperature and food in-
take seems to have been validated in experiments, where different
feeding patterns led to similar temperature profiles in mice
(Greenwell et al., 2019). Lastly, classwise opposite action of the sys-
temic regulators was found to be necessary to ensure reasonable fit
of the trajectories. Biologically speaking, differences in influences of

regulators are plausible. It may imply that a systemic regulator acti-
vates different regulatory pathways for each mouse class as a conse-
quence of different gene expression levels. For instance, it was
recently found that ubiquitin associated pathways regulated the cel-
lular clock only in female and not in male mice (Mekbib et al.,
2020).

The theoretical approach developed here could be extended to
handle more complex model learning scenario. We have focused on
the identification of systemic regulators on gene mRNA degradation
and transcription, the latter also being the starting point of gene
regulatory network learning algorithm such as Dyngenie3 (Huynh-
Thu and Geurts, 2018). In our case, conditionally to the availability
of additional data on other species present in the clock model (pro-
teins and protein complexes), this method could be applied to search
for systemic regulations on any process included in the ODEs (e.g.
nuclear translocation or protein production). For larger problems,
exhaustive model search could be replaced by machine learning
methods like sparse multi task regression, to leverage class informa-
tion while aiming at finding a parsimonious set of optimal predictors
(Lozano and �Swirszcz, 2012). Finally, non-linear models can be
searched for with sparse regression tools (Brunton et al., 2016).

As a perspective, the best models inferred from this study will be
integrated back in our ODE-based clock model and parameters will
updated based on available data. The validated models will then be
tested in dedicated preclinical experiments. Such an approach has
been successfully employed using a small number of ODE-based
models and allowed discovering new molecular interactions between
clock genes and the protein p53 (Gotoh et al., 2016). The next step
will be the scaling of the model for humans in order to predict mo-
lecular clocks from the measurements of circadian biomarkers using
wearable technologies. This will shortly be possible thanks to the
availability of clinical datasets including both clock gene expression
in the oral mucosa and longitudinal measurements of circadian bio-
markers in the same individuals. Such human model of the circadian
timing system could then be connected to drug chronoPK-PD mod-
els to derive patient-specific optimal timing (Ballesta et al., 2017).
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