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ABSTRACT: Here we report the oxidative umpolung of 2,3-disubstituted indoles toward enantioselective dearomative aza-
spirocyclization to give the corresponding spiroindolenines using chiral quaternary ammonium hypoiodite catalysis. Mechanistic
studies revealed the umpolung reactivity of C3 of indoles by iodination of the indole nitrogen atom. Moreover, the introduction of
pyrazole as an electron-withdrawing auxiliary group at C2 suppressed a competitive dissociative racemic pathway, and
enantioselective spirocyclization proceeded to give not only spiropyrrolidines but also four-membered spiroazetidines that are
otherwise difficult to access.

Indole-derived alkaloids are the largest group of nitrogen-
containing secondary metabolites.1 Because of their wide

range of biological and pharmacological activities, a tremen-
dous amount of research has been devoted to the development
of efficient methods for the synthesis of indole alkaloids in
synthetic organic chemistry, especially for drug discovery.1c,2

From this perspective, dearomatization of structurally planar
indoles into enantioenriched three-dimensional indoline or
indolenine structures has emerged as a powerful tool for the
asymmetric synthesis of indole-derived alkaloids.3 Because of
the inherent nucleophilicity of indoles, especially at C3 due to
enamine-like reactivity, dearomatization reactions often
proceed by addition of electrophiles at C3 (Scheme 1a,
left).3c,d,4

Conventionally, the incorporation of strong electron-with-
drawing substituents5b,6 or leaving groups7 on the indole
nucleus is often required for inversion of the polarity
(umpolung)8 of nucleophilic indoles to give electrophilic

indoles. Recently, several asymmetric transformations of indole
derivatives based on the C3 umpolung reactivity of 2-
indolylmethanols have been achieved using chiral Brønsted
acid catalysis.7b−e On the other hand, methods for direct
umpolung without preactivation would open a new avenue for
the dearomative functionalization of indoles (Scheme 1a,
right).5a However, only a few examples of oxidative umpolung
of indoles have been reported.9−11 Recently, new methods,
namely electro-10 and photochemical11 oxidation of indoles,
have been developed. Enantioselective dearomative coupling of
indoles has also been achieved in combination with chiral
phosphate or phosphoric acid catalysts under photooxidation
conditions. However, these methods have relied on the use of
transition metal chromophores as photocatalyst as well as
preoxidized nucleophiles such as nitroxyl radicals or hydroxyl-
amine derivatives.11a,b

We recently reported the quaternary ammonium hypoiodite-
catalyzed12 oxidative C2-cyclization/peroxidation of homo-
tryptamine derivatives (Scheme 1b).13 We envisioned that the
introduction of a substituent at C2 of homotryptamines might
sterically suppress cyclization or 1,2-migration14 at C2,
allowing spirocyclization to proceed at C3 to form five-
membered rings. Dearomative spirocyclization of homotrypt-
amine derivatives to form aza-spiroindolenines has been
reported.15 However, preinstallation of an O-based leaving
group on an electrophilic nitrogen tether15a−c or stoichiometric
amounts of an organoiodine(III) as an oxidant15d were
required. In addition, enantioselective dearomative aza-
spirocyclization remains elusive. Here we report the oxidative
umpolung of 2,3-disubstituted indoles toward enantioselective
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Scheme 1. Oxidative Umpolung of Indoles for Dearomative
Coupling Reactions
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dearomatizative spirocyclization of not only homotryptamines
but also tryptamines to afford the corresponding spiroindole-
nines using quaternary ammonium hypoiodite catalysis12a,16

(Scheme 1c). Mechanistic studies revealed the umpolung
reactivity of indole by iodination at N1.
We began our investigation by examining the oxidative

spirocyclization of C2-methyl substituted homotryptamine
derivative 1a using tert-butyl hydroperoxide (TBHP) as an
oxidant in the presence of 10 mol % n-tetrabutylammonium
iodide (Bu4NI) (Scheme 2a). Although the desired spiroindo-

lenine 2a was obtained in 31% yield, intermolecular coupling
with TBHP also proceeded to give peroxyindolenine 3 as a
byproduct. To suppress this side reaction, we used cumene
hydroperoxide (CHP) as a more sterically hindered oxidant
instead of TBHP, and to our delight, a cleaner reaction was
observed to give 2a in 67% yield.17

Next, we investigated enantioselective spirocyclization using
bis(binaphthyl)-based chiral quaternary ammonium iodide 4a,
(Scheme 2b).12a,16,18 After optimization of the reaction
conditions (Table S1),19 2a was obtained in 70% yield with
46% ee in a methyl tert-butyl ether (MTBE)/toluene mixed
solvent. Toluene and MTBE were found to be effective as
solvents to enhance the reactivity and enantioselectivity,
respectively.
Since investigation of the substituents at the 3- and 3′-

positions of bis(binaphthyl)ammonium cation 4 failed to
improve the enantioselectivity, we explored the use of
mono(binaphthyl)-based catalysts 418 (Table S3). The use of
morpholine-derived mono(binaphthyl)ammonium iodides im-
proved the enantioselectivity, and the best result (81% ee) was
obtained with cis-2,6-dimethylmorpholine-derived 4b (Scheme
2b). To further improve the chemoselectivity, we used Na2SO4
as a desiccant to give 2a in 87% yield with 81% ee (Table S4).
The absolute stereochemistry of 2a was assigned to be R by X-
ray analysis of an enantiomerically pure sample that was
obtained after a single recrystallization.
We examined the enantioselective dearomative aza-spirocyc-

lization of several N-(4-nosyl)homotryptamines 1 under the
optimized conditions (Scheme 3). 2-Methylindole derivatives
1a−f bearing electron-donating or -withdrawing substituents at
C5 gave the corresponding spiroindolenines 2a−f in high
yields with good to moderate enantioselectivities (59−81%
ee). The optical purity of 2a−f could be improved to 88−99%

ee after a single recrystallization. Good to excellent
enantioselectivities (75−98% ee) were achieved for the
reaction of 2-alkyl (larger than methyl)- or 2-phenyl-
substituted indoles bearing electron-withdrawing substituents
(1g−o, 1q−t) or no substituent (1p) on the indole nucleus.
Interestingly, while the reaction of rac-1u using Bu4NI gave
high diastereoselectivity (12:1), the use of chiral catalyst 4b
afforded a 2:1 mixture of 2u and 2u′ with higher
enantioselectivity for the minor diastereomer 2u′.
Control experiments revealed that the ammonium hypo-

iodite species might be the catalytically active species for the
oxidative dearomative spirocyclization of 1 and that a free
radical pathway might be unlikely (Table S7).
To gain further insight into the reaction mechanism, we

performed kinetic studies using the oxidative dearomatization
of 1v, a p-(trifluoromethyl)benzenesulfonyl-protected analogue
of 1a, as a model reaction (Figures S1−S4).20 The reaction
rate was found to have a zeroth-order dependence on the
concentration of substrate 1v and a first-order dependence on
the concentrations of both CHP and 4b. However, a difference
in the initial reaction rates was observed depending on the
substituent of 1, suggesting that oxidation of a catalyst−
substrate complex might be the rate-determining step.21 To
further evaluate the mechanism, we performed a Hammett
analysis with a series of N-4-(trifluoromethyl)benzenesulfonyl
homotryptamines 1v−y and N-sulfonyl 5-bromohomotrypt-
amines 1z−ab to probe the electronic effects of the para
substituents on the indole and sulfonamide nitrogens,
respectively, on the reaction rate (Scheme 4a and Figures
S5−S8). As a result, a linear correlation with a negative slope
(ρ = −0.98) was observed from the corresponding plot of the
σpara constants versus log(kR/kH) for indole substituents (R5).
On the other hand, a poor correlation was observed from the

Scheme 2. Investigation of Reaction Conditions and Chiral
Catalysts

Scheme 3. Enantioselective Oxidative Aza-spirocyclization
to Give Spiropyrrolidines 2 Under the Optimized
Conditionsa

aReaction conditions: 4b (10 mol %), CHP (2 equiv), Na2SO4,
MTBE/toluene, 25 °C, 10−24 h. bAfter a single recrystallization.
cReaction conditions: Bu4NI (10 mol %), CHP (2 equiv), toluene, 25
°C, 10 h.
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corresponding plot of the σmeta constants, suggesting the
accumulation of positive charge on the indole nitrogen rather
than C3 in the rate-determining transition state.22,23 Although
a linear correlation was also obtained for sulfonamide
substituents (R), the reaction constant was much smaller (ρ
= −0.15), suggesting that accumulation of positive charge on
the sulfonamide nitrogen might be unlikely.
Next, to evaluate the roles of the N−H groups of the indole

and sulfonamide units for the oxidation reactions, N-
methylindole 5 and N-methylsulfonamide 6 were prepared
and examined under the standard conditions (Scheme 4b).
While most of the starting material was recovered from the
reaction of 5, the dearomatization of 6 proceeded smoothly to
give peroxide adduct 7 in good yield. Consistent with the
results of the Hammett analysis, these results indicated that
umpolung of the indole moiety through the generation of an
N−I indole intermediate might be crucial for the oxidative
dearomatization reaction. On the other hand, the smooth
reaction of 1d using N-iodosuccinimide as a stoichiometric I+

reagent under neutral conditions gave C3-iodine adduct 8
(Scheme 4c). C3 iodination was not observed under our

catalytic conditions (Figure S9), and exposure of 8 to our
conditions gave a complex mixture of several unidentified
products; 2d was not observed, suggesting that spirocyclization
via iodination of indole C3 might be unlikely.
On the basis of these experimental results and previous

works,13a,16 a proposed catalytic reaction mechanism is
depicted in Scheme 4d. Ammonium hypoiodite could be
generated in situ as an active species from the oxidation of
ammonium iodide with an oxidant. N-Iodo intermediate 9
might be produced by a reversible reaction of hypoiodite with
the indole N−H directly or by iodination of the sulfonamide
N−H followed by intramolecular iodo transfer.24 To enhance
the electrophilicity21 of indole, N-iodine(III) intermediate 10
might be generated by rate-determining oxidation of 9. The
accumulation of positive charge on the indole nitrogen in the
rate-determining transition state with the generation of a
highly electron-deficient iodine(III) species is also in agree-
ment with the results of the Hammett analysis. Finally,
reductive elimination of ammonium hypoiodite might proceed
via intramolecular capture of highly electrophilic intermediate
10 by the chiral ammonium sulfonamide as the enantiode-
termining step to give aza-spiroindolenine 2.
Given the high nucleofugality of hypervalent iodines,25 we

considered that zwitterionic intermediate 11 might be
generated by the competitive dissociation of ammonium
hypoiodite prior to spirocyclization,26 which would render
asymmetric induction difficult (Scheme 4d). A dissociative
racemic pathway might preferentially proceed for the oxidation
of electron-rich indoles (e. g., 1e and 1f) as a result of
stabilization of cationic intermediate 11 by electron-donating
substituents to give moderate enantioselectivity (Scheme 3). In
addition, plotting log(e.r.)27 of products 2a−f against the
corresponding σpara constants gave a linear correlation with a
positive slope (Scheme 4d, inset), which might also support
the existence of a dissociative pathway during umpolung of
indole.
We envisioned that the introduction of an electron-deficient

substituent at C2 might suppress the dissociative pathway by
destabilization of cationic intermediate 11. In addition, an
electron-deficient group at C2 would further reduce the
LUMO energy at C3, which might enhance the rate of the
spirocyclization step and further improve the chemoselectivity.
Moreover, if an electron-deficient auxiliary could be used as a
leaving group, the synthetic utility of the products would be
enhanced. With these assumptions in mind, we focused on
pyrazole as an electron-deficient auxiliary because it can be
easily introduced28 and removed via nucleophilic acyl
substitution.29 To our delight, spiroindolenines 2ac−ae were
obtained after smooth reaction of the corresponding 2-pyrazol-
1-ylhomotryptamine derivatives 1ac−ae (Scheme 5a). Most
importantly, in sharp contrast to those for 2-methylindole
analogues 2a, 2d, and 2f, good enantioselectivities (81−86%
ee) were achieved regardless of the electron-donating or
-withdrawing substituents at C5. A gram-scale oxidation of 1ac
was also achieved with the use of 5 mol % 4b to give 2ac in
enantiomerically pure form after recrystallization. In addition,
an additive robustness screen analysis30 revealed that a wide
range of functional groups were tolerated under our mild
conditions, including carbonyls, amines, alkyne, and hetero-
arenes (Table S5).
In sharp contrast to previous methods,31 with the

introduction of a pyrazole auxiliary at C2, site-selective
spirocyclization of 2-pyrazol-1-yltryptamine 12 at C3 pro-

Scheme 4. Mechanistic Studies
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ceeded to give the difficult-to-access four-membered spiroaze-
tidine 13 with good enantioselectivity (Scheme 5b).32

Finally, we demonstrated the synthetic utility of enantioen-
riched spiroindolenines 2 (Scheme 6). First, the 4-nosyl group

of 2a could be easily removed under standard deprotection
conditions to give free amine 14 (Scheme 6a).19 Deprotona-
tion of 2a triggered by N-tosylation gave 2-methyleneindoline
15 in good yield (Scheme 6b, left). Similarly, N-methylation of
2a followed by condensation with salicylaldehyde afforded
spiropyran 16, a structure that is commonly found in
photochromic compounds33 (Scheme 6b, right). On the
other hand, the pyrazole auxiliary of 2ac could be easily
removed by Lewis acid-catalyzed hydrolysis to give oxindole
17 quantitatively (Scheme 6c).34 Formal nucleophilic sub-
stitution of pyrazole 2ac with a carbon nucleophile was
accomplished by triflation of 17 followed by a Sonogashira
coupling reaction to give 2-alkynylspiroindoline 18. In
addition, ethanolysis13a of pyrazole 2ac proceeded smoothly
to give imino ester 19 in good yield (Scheme 6d, left).
Moreover, we found that scandium-catalyzed nucleophilic
substitution of pyrazole 2ac by trimethylsilyl azide followed by
intramolecular click cyclization gave tetrazoloindole 20 as a

unique structure, which was confirmed by X-ray analysis
(Scheme 6d, right). No loss of enantioselectivity was observed
in any of these transformations.
In summary, we have developed an oxidative umpolung

strategy for the chiral ammonium hypoiodite-catalyzed
enantioselective dearomative aza-spirocyclization of homo-
tryptamine derivatives to give the corresponding aza-
spiroindolenines with good to excellent enantioselectivity.
Mechanistic studies revealed the unusual umpolung reactivity
at C3 of indoles by N1 iodination. Moreover, by the
introduction of pyrazole as an electron-deficient auxiliary at
C2, site-selective spirocyclization of a tryptamine derivative
was also achieved to give the difficult-to-access spiroazetidine
in an enantioselective manner. Furthermore, to demonstrate
the synthetic utility of our dearomative spirocyclization, 2-
alkyl- and 2-pyrazole-substituted spiroindolenines were readily
converted to various useful and unique structures. These
results demonstrate the high potential of hypoiodite catalysis
for oxidative umpolung of indoles toward the synthesis of
polycyclic indole-derived alkaloids.
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