
1 June 2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Technology RepoRT
published: 11 June 2018

doi: 10.3389/frobt.2018.00060

Inform: efficient Information-
Theoretic Analysis of
collective Behaviors
Douglas G. Moore 1, Gabriele Valentini 1, Sara I. Walker 1* and Michael Levin 2

1 BEYOND: Center for Fundamental Concepts in Science, Arizona Sate University, Tempe, AZ, United States, 2 Department
of Biology, Allen Discovery Center, Tufts University, Medford, MA, United States

The study of collective behavior has traditionally relied on a variety of different methodological
tools ranging from more theoretical methods such as population or game-theoretic models to
empirical ones like Monte Carlo or multi-agent simulations. An approach that is increasingly
being explored is the use of information theory as a methodological framework to study the
flow of information and the statistical properties of collectives of interacting agents. While
a few general purpose toolkits exist, most of the existing software for information theoretic
analysis of collective systems is limited in scope. We introduce Inform, an open-source
framework for efficient information theoretic analysis that exploits the computational power
of a C library while simplifying its use through a variety of wrappers for common higher-level
scripting languages. We focus on two such wrappers here: PyInform (Python) and rinform
(R). Inform and its wrappers are cross-platform and general-purpose. They include classical
information-theoretic measures, measures of information dynamics and information-based
methods to study the statistical behavior of collective systems, and expose a lower-level
API that allow users to construct measures of their own. We describe the architecture of
the Inform framework, study its computational efficiency and use it to analyze three different
case studies of collective behavior: biochemical information storage in regenerating planaria,
nest-site selection in the ant Temnothorax rugatulus, and collective decision making in multi-
agent simulations.

Keywords: information transfer, information storage, information dynamics, complex systems, collective behavior,
information theory

1. InTRoducTIon

Collective behaviors, such as the coordinated motion of a flock of starlings (Ballerini et al., 2008), the
collective decisions made by bees and ants (Franks et al., 2002), and the coordination of individual cells
towards the creation or repair of a complex anatomical structure during embryogenesis or regeneration
(Pezzulo and Levin, 2015), are complex collective phenomena that emerge from local interactions between
many individuals. The study of these complex phenomena has been approached from many different
angles, e.g., population models based on ordinary differential equations to predict the dynamics and study
the stability of collective behaviors (Couzin et al., 2005; Marshall et al., 2009); game-theoretic approaches
to study the emergence of cooperative strategies (Challet and Zhang, 1997); and multi-agents simulations
to explore systems in the detail (Goldstone and Janssen, 2005). Another interesting approach is to focus
on the distributed computation performed by the individuals in the collective (Langton, 1990; Mitchell,
1996; Lizier et al., 2014) and use information theory to analyze its architecture. Information theory has

Edited by:
Elio Tuci,

Middlesex University, United Kingdom

Reviewed by:
Daniel Polani,

University of Hertfordshire,
United Kingdom

Hector Zenil,
Karolinska Institutet (KI), Sweden

 Joseph T. Lizier,
University of Sydney, Australia

*Correspondence:
Sara I. Walker

 sara. i. walker@ asu. edu

Specialty section:
This article was submitted to

Computational Intelligence,
a section of the journal

Frontiers in Robotics and AI

Received: 30 November 2017
Accepted: 03 May 2018

Published: 11 June 2018

Citation:
Moore DG, Valentini G, Walker SI and

Levin M
 (2018) Inform: Efficient Information-

Theoretic Analysis of Collective
Behaviors.

Front. Robot. AI 5:60.
doi: 10.3389/frobt.2018.00060

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2018.00060&domain=pdf&date_stamp=2018-06-11
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2018.00060
http://www.frontiersin.org/articles/10.3389/frobt.2018.00060/full
http://www.frontiersin.org/articles/10.3389/frobt.2018.00060/full
http://www.frontiersin.org/articles/10.3389/frobt.2018.00060/full
http://loop.frontiersin.org/people/519822/overview
http://loop.frontiersin.org/people/347426/overview
http://loop.frontiersin.org/people/155346/overview
http://loop.frontiersin.org/people/156450/overview
https://creativecommons.org/licenses/by/4.0
mailto:sara.i.walker@asu.edu
https://doi.org/10.3389/frobt.2018.00060

2 June 2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Moore et al. Information Analysis of Collective Behaviors

been used, for example, to detect leadership relations between zebra
fishes (Butail et al., 2016; Mwaffo et al., 2017) or to study foraging
behavior of ant colonies (Reznikova and Ryabako, 1994; Zenil et al.,
2015; Meyer, 2017). Additionally, it is extensively employed in the
study of other complex systems with applications ranging from
computational neuroscience (Honey et al., 2007; Vakorin et al., 2009;
Lizier et al., 2011; Wibral et al., 2014), collectives of artificial agents
(Williams and Beer, 2010; Boedecker et al., 2012; Walker et al., 2013;
Biehl et al., 2016), neural and Boolean network models (Lizier et al.,
2009; Kim et al., 2015; Walker et al., 2016), and multi-robot systems
(Sperati et al., 2008; Sperati et al., 2011). Computing information
theoretic measures, however, is computationally demanding and
requires efficient software methodologies.

A common approach is to develop software solutions to compute
specific information-theoretic measures. For example, TRENTOOL
(Lindner et al., 2011) and MuTE (Montalto et al., 2014) are Matlab
toolkits to compute transfer entropy. MVGC (Barnett and Seth,
2014) has been developed to compute Granger causality while
ACSS (Gauvrit et al., 2016) and OACC (Soler-Toscano et al., 2014)
to compute approximations to Kolmogorov complexity. However,
while software options can always be developed to focus on
particular techniques or methods, this approach is time-consuming
for end-users. It can be tedious to explore and analyze the complex
behavior of systems if every measure one chooses to use requires
a separate library, not to mention the time spent in search of the
functionality. What’s more, it is not always easy to find a library
to suit one’s needs. One solution is to develop and make use of
general-purpose software frameworks which can be applied across
domains, and can provide researchers from different disciplines
with a common software toolkit. At the risk of overselling our
current endeavour, we can liken this approach to the development
of solid, powerful linear algebra libraries such as BLAS (Lawson
et al., 1979) and LAPACK (Anderson et al., 1999) which provide
vast array of features and greatly simplify scientific computation.
The most notable effort in this direction is the Java Information
Dynamics Toolkit (JIDT) developed by (Lizier, 2014). JIDT is a
Java library that provides access to classic information-theoretic
measures (e.g., entropy and mutual information) as well as more
recent measures of information dynamics (e.g., active information
and transfer entropy) for both discrete and continuous data. JIDT
is general-purpose and, thanks to the flexibility of the Java Virtual
Machine, it can be called from several different high-level languages
such as Matlab, Python or R.

In previous work (Moore et al., 2017), we introduced Inform: an
open-source, general-purpose and cross-platform framework to
perform information-theoretic analysis of collective of agents. Inform
is a framework to analyze discretely-valued1 time series data and is built
to achieve two grounding objectives: computational efficiency and user
flexibility. The first of these objectives is achieved by the core component
of Inform, a high efficiency C library that takes care of the computation
of information measures. The second objective is achieved through the
design of a simple API and the development of a suite of wrappers for
common higher-level programming languages, e.g., Python, R, Julia, and
the Wolfram Language. The use of C as the implementation language and

1 While the current release of Inform only supports analysis of discrete time series,
full support for continuous data is planned, see Section 6.

Inform’s carefully designed API make wrapping the core functionality
straightforward. Since Inform has no external dependencies, distributing
packages is greatly simplified. This is an advantage over libraries
implemented in languages such as Java or R which require a virtual
machine or an interpreter. Inform provides easy access to functions
for empirically estimating probability distributions and uses them to
compute common information-theoretic measures while also exposing
a flexible API that a user can leverage to implement their own specialized
measures. Additionally, Inform provides a collection of utilities that can
be combined with other components of the framework to yield a wider
range of analyses than those explicitly implemented. Inform provides
a wide range of standard information-theoretic measures defined over
time series and empirical probability distributions, as well as all of the
common information dynamics measures. In addition, Inform provides
a suite of functions for computing less common information-theoretic
measures such as partial information decomposition (Williams and
Beer, 2010), effective information (Hoel et al., 2013) and information
flow (Ay and Polani, 2008). Inform v1.0.0 is released under the MIT
license and is publicly available on GitHub2.

In this work, we introduce two of Inform’s language wrappers:
PyInform3 (Python) and rinform4 (R). While the Inform library is,
at least by C standards, straightforward to use, it is rather low-level.
The decision to use C puts some of the memory-management burden
on the user, and leads to rather rudimentary error handling. It is for
these reasons that we invest the time in developing and maintain
usable wrappers in a variety of higher-level languages. Without this
initiative, users would have to call the C functions directly, decreasing
the researcher’s productivity and cluttering their code. This is not to
mention the error-prone nature of interfacing languages. By targeting
some of the more common languages used in the field, we aim to
make the software and algorithms accessible to a wide user-base. The
language wrappers are designed to provide users with an experience
that is idiomatic to their chosen language under the assumption
that users will be more productive in a language with which they
are familiar. Inform’s language wrappers are developed using the
wrapping languages’ native technology, e.g., object-orientation in
Python. This allows users to work with a programming interface
written in their chosen language without requiring knowledge of
the core C library but still benefiting from its implementation of
optimized algorithms.

We begin with a review of the design and implementation of
the Inform framework in Section 2. In Section 2.1 we describe
the architecture of Inform and its wrappers with a focus
on each of the four major components of the framework—
distributions, information measures, time series measures and
utilities. In Section 2.2 we discuss the validation process and
stability of Inform, PyInform and rinform. In Section 3 we
showcase the capabilities of the framework by analyzing three
different collective systems: cellular-level biochemical processes
in regenerating planaria (see Section 3.1), house-hunting
behavior in Temnothorax ants (see Section 3.2), and consensus
achievement in multi-agent simulations (see Section 3.3). Section
4 is dedicated to the analysis of the computational performance

2 https://github.com/elife-asu/inform
3 https://github.com/elife-asu/pyinform
4 https://github.com/elife-asu/rinform

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Moore et al.

3 June 2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Information Analysis of Collective Behaviors

of Inform taking the JIDT library of (Lizier, 2014) as the reference
framework and using active information and transfer entropy as
benchmark metrics. Section 5 presents demonstrative examples
of how to use PyInform and rinform with simple use cases for
each of Inform v1.0.0’s major components. Finally, Section 6
concludes this paper with a discussion of the advantages and the
shortcomings of the Inform framework as well as a summary of
future directions of development.

2. desIgn And ImplemenTATIon

Inform (MIT license)5 is a general-purpose library and
framework for information-theoretic analysis of empirical
time series data. Much of the design of Inform has focused
on making the library (and its language wrappers) as intuitive
and easy to use as possible, all the while attempting to provide
powerful features that some other toolkits lack. Some of Inform’s
features include:

•  Optimized implementations of many common information-
theoretic time series measures, including block entropy, mutual
information, complete and apparent transfer entropy, active
information storage and predictive information.

•  Optimized implementations of less common concepts such as
effective information, information flow, evidence for integration
and partial information decomposition.

•  All time series measures include local and average variants where
applicable.

•  An empirical probability distribution structure over a discrete
event space6 and a suite of basic information-theoretic functions
built around it.

•  A collection of utility functions, such as black boxing and binning
algorithms, which may be used in conjunction with time series
measures to facilitate analysis of complex systems.

•  No external library dependencies.

The Inform library is implemented in cross-platform C, and
can be built on any system with a C11-compliant7compiler. The
choice of C was not a simple one. The decision came down to
two factors:

1. Essentially all modern programming languages provide a C
foreign-function interface.

2. Most of Inform’s functionality requires minimal memory
management — typically only one allocation and deallocation per
function.

3. C does not have exceptions. While useful in a given language,
exceptions make interfacing languages more difficult.

4. C requires no external dependencies for distribution — as such,
the wrapper libraries do not depend on an external virtual
machine, interpreter or JIT compiler.

5 https://github.com/elife-asu/inform
6 Support for continuous event spaces is planned for v2.0.0, Section 6.
7 ISO/IEC 9899:2011: https://www.iso.org/standard/57853.html

All subsequent references to Inform will refer to the entire
framework including its wrappers; any reference to the C library
will be disambiguated as such.

2.1. Architecture
Information theory largely focuses on quantifying information
within probability distributions. To model this, Inform is designed
around the concept of an empirical probability distribution.
These distributions are used to define functions which compute
information theoretic quantities. From these basic building blocks,
we implemented an entire host of time series measures. Intuitively,
the time series measures construct empirical distributions and
call the appropriate information-theoretic functions. These three
components—distributions, information measures and time
series measures—form Inform’s core functionality. Additionally,
Inform provides a suite of utilities that can be used to augment and
extend it’s core features. We now detail how these components are
implemented and interact with each other to provide a cohesive
toolkit.

Inform’s empirical probability distributions are implemented
by a distribution class, Dist. This class, which is a wrapper for
the C structure inform_dist, stores the relative frequencies
of observed events that can then be used to estimate each event’s
probability. The framework provides a suite of functions built
around Dist which makes it easy for users to create distributions,
accumulate observations and output probability estimates. It is
important to note that Inform’s empirical distributions are only
defined for discrete events. Subsequent releases will natively
support continuous data (see Section 6).

Inform uses the Dist class to provide well-defined
implementations of many Shannon information measures. In
Python, the canonical example of such a function is

pyinform.shannon.entropy(dist, b = 2)

which computes the (Shannon) entropy of the distribution
dist using a base-b logarithm . Equivalently, the R function to
compute Shannon entropy is given by

shannon_entropy(dist, b = 2)

Each measure in the framework takes some number of
distributions and the logarithmic base as arguments, ensures that
they are all valid8 , and returns the desired quantity. Inform v1.0.0
only provides information measures based on Shannon’s notion
of entropy, but other types are planned for future releases (see
Section 6).

Inform’s final core component is a suite of measures defined
over time series. The version 1.0.0 release includes 15 time
series measures with average and local (sometimes referred to
as pointwise) variants provided where applicable. Each measure
essentially performs some variation on the same basic procedure:
first, accumulate observations from the time series into empirical
distributions, and then, use them to compute some distribution-
based information measure. Table 1 provides a complete list of the
time series measures provided in Inform v1.0.0.

8 An empirical distribution is considered invalid if it has no recorded events.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

4 June 2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Moore et al. Information Analysis of Collective Behaviors

The final component of Inform is the utility suite. One of the
greatest challenges of building a general-purpose framework is
ensuring that it can be applied to problems that are outside of
the authors’ initial use cases. Inform attempts to do this by first
exposing the basic components of the library, distributions and
information measures, and then providing utility functions that
can be used to augment the core functionality. One particular
example of this is the black_box9 function which losslessly
produces a single time series from a collection of time series (see
Section 5.4 for a detailed description and an example of use of this
particularly versatile function). The black_box function allows
Inform to avoid implementing multivariate variants of time series
measures while still making it straightforward for users to compute
such quantities. Of course, there are a multitude of uses for such
a function. Our aim is that the utility suite can extend Inform’s
functionality well beyond what the authors had in mind when
implementing the core library.

2.2. Validation
The Inform framework was developed using a test-driven approach:
unit tests were written for each component before implementing the
component itself. Consequently, all features in Inform have been
thoroughly unit tested to ensure that they perform as expected.
In fact, the bulk of the development effort went into testing, and
test code accounts for roughly 60% of the entire C source code
distribution.

9 The naming of this function is intended to bring to mind the process of “black
boxing” nodes in a network. That is, this function models drawing an opaque box
around a collection of nodes, treating them as one unit with no known internal
structure.

To ensure cross-platform support, continuous integration
services are employed to build and run all unit tests on multiple
platforms. Travis CI10 builds currently ensure support for Linux
with the gcc 4.6.3 and clang 3.4 compilers, and Mac OS X with
AppleClang 7.3.0.7030031. AppVeyor11 builds ensure support for
Windows with Microsoft Visual Studio 14 2015. Code coverage
reports for PyInform and rinform are hosted by CodeCov12 and
currently show a coverage of 97% and 91% , respectively, while
coverage for the C implementation is in the works for future
releases.

3. AnAlysIs of collecTIVe BehAVIoRs

In this section, we illustrate the use of Inform by performing
information-theoretic analyses of three collective behaviors:
the dynamics membrane potentials and ion concentrations in
regenerating planaria, nest-site selection by colonies of the ant
Temnothorax rugatulus, and collective decision-making in a multi-
agent system. While the following results are interesting in their
own right, and will likely be considered more deeply in subsequent
work, our primary focus is on showcasing the utility and range of
the Inform framework.

3.1. Biochemical collectivity in
Regenerating planaria
In this first case study, we use partial information decomposition
(Williams and Beer, 2010) to analyze how various ions contribute to
the cell membrane potentials in a regenerating planarian. Planaria
are an order of flatworms which have prodigious regenerative
abilities (Sheĭman and Kreshchenko, 2015). When a planarian
is cut in half, each piece will regenerate the missing tissue and
develop into a fully functional individual. Recent work is stored
in a complex biophysical circuit which is not hardwired by the
genome (Oviedo et al., 2010; Beane et al., 2011; Emmons-Bell
et al., 2015; Durant et al., 2017). Many pharmacological reagents
that target the endogenous bioelectrical machinery (ion channels
and electrical synapses known as gap junctions) can alter the
behavior of this circuit and thus alter the large-scale bodyplan to
which fragments regenerate. An example of this is ivermectin, a
chloride channel opener, which results in the development of a
two-headed phenotype upon regeneration (Beane et al., 2011). The
resulting two-headed morphology is persistent under subsequent
regeneration events outside of the presence of ivermectin. The
hypothesis is that these gap-junction inhibitors disrupt proper
bio-electric communication between cells and lead the organism
to non-wildtype morphological attractors. As an initial step at
understanding how the morphological information is stored and
modified, we can look at how information about the bio-electric

10 https://travis-ci.org/ELIFE-ASU/Inform, https://travis-ci.org/ELIFE-ASU/
PyInform , https://travis-ci.org/ELIFE-ASU/rinform
11 https://ci.appveyor.com/project/dglmoore/inform-vx977 , https://ci.appveyor.
com/project/dglmoore/pyinform , https://ci.appveyor.com/project/gvalentini85/
rinform
12 https://codecov.io/gh/ELIFE-ASU/PyInform , https://codecov.io/gh/ELIFE-
ASU/rinform

TABle 1 | The time series measures available in inform v1.0.0.

Time series measure
local/pointwise

Variant

Block Entropy (Shannon, 1948) ✓
Cross Entropy (Cover and Thomas, 2005) × *

(Multivariate) Mutual Information (Tononi et al., 1994; Cover and
Thomas, 2005)

 ✓

Conditional Entropy (Cover and Thomas, 2005) ✓
Relative Entropy (Kullback and Leibler, 1951; Cover and
Thomas, 2005)

 ✓

Entropy Rate (Cover and Thomas, 2005) ✓
Active Information (Lizier et al., 2012) ✓
Transfer Entropy (Schreiber, 2000; Kaiser and Schreiber, 2002;
Lizier et al., 2008)

 ✓

Separable Information (Lizier et al., 2010) ✓
Predictive Information (Bialek et al., 2001a; Bialek et al., 2001b) ✓
Excess Information (Crutchfield and Feldman, 2003; Feldman
and Crutchfield, 2003)

 ✓

Effective Information (Hoel et al., 2013; Hoel, 2017) ×
Information Flow (Ay and Polani, 2008) ×
Partial Information Decomposition (Williams and Beer, 2010) ×
Evidence of Integration (Biehl et al., 2016) ×

Local/Pointwise variants are implemented for all measures that reasonably admit them,
signified by a ✓ . A × denotes measures for which a local variant is not implemented.
*(×) Cross entropy’s local variant is equivalent to local block entropy, and is thus not
implemented.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Moore et al.

5 June 2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Information Analysis of Collective Behaviors

patterning is stored in specific intracellular ion concentrations of
 Na+ , K+ , Ca2+ and Cl− .

We use the BioElectric Tissue Simulation Engine (BETSE)
(Pietak and Levin, 2016) to simulate the planarian regeneration
process under a simple two-cut intervention (Pietak and Levin,
2017). For this demonstrative case study, we simulate the planarian
for 1000 s after two surgical cuts are made, dividing the worm into
three pieces Figure 1A-C. From the simulation we extract the time
series, sampled at a frequency of 10Hz (10, 000 time steps), of the
average cell membrane potentials Vmem and the Na+ , K+ , Ca2+
and Cl− ion concentrations for each cell. We use a “threshold”
binning to bin the average cell membrane potentials using a
biologically realistic activation threshold of −40mV , the cell is
considered depolarized (state 1) when Vmem is above −40mV , and
hyperpolarized (state 0) otherwise. Each of the ion concentrations
are separately binned into two uniform bins whose sizes depend
on the range of the ion’s concentration.

From these binned data, we compute the partial information
decomposition (PID) of the information about Vmem provided
by the ion concentrations. From the 4 ion variables, Inform
constructs the full 166 -node redundancy lattice; however, only 13
of those nodes represent variable combinations that contribute
unique information, in the sense of (Williams and Beer, 2010).
We pruned all but those 13 variable combinations. The resulting
sub-lattice is depicted in Figure 1D. Altogether, the intracellular
ion concentrations yield approximately 0.425 bits of information
about the average cell membrane potential – computed as the sum
of the unique information provided by each node. This is less than
the theoretical maximum of 1 bits, but that’s hardly surprising given
that the cell membrane potential is determined by the difference
between the intra- and extracellular ion concentrations. We also see
that the only individual ion that provides any unique information
about Vmem is Na+ – Na+ is the only ion that appears alone in
Figure 1D. We know that both Na+ and K+ play a crucial role

fIguRe 1 | The Vmem distribution over the body of a BETSE simulated planarian (Pietak and Levin, 2016) over the course of regeneration: (A) pre-surgery, (B) 0
 s post-surgery, (c) 1000 s post surgery. (d) The non-zero redundancy sub-lattice computed via partial information decomposition. Each node presents the
redundant information provided by the given collection of random variables. Of the 166 nodes in the full redundancy lattice, these 13 are the only nodes which yield
non-zero unique information. All other nodes were pruned, and the edges were constructed using the Williams-Beer dependency relations. Nodes are colored
roughly by the order of magnitude of their unique information content.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

6 June 2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Moore et al. Information Analysis of Collective Behaviors

in determining Vmem , so it is surprising to see that Na+ is the
dominate information provider. Subsequent work will delve deeper
into the what this decomposition tells us about the biochemical
mechanisms of regeneration.

As we conclude this example, it is worthwhile to acknowledge
that Inform’s current implementation of PID is limited to Williams’s
and Beer’s Imin measure of redundant information (Williams and
Beer, 2010). A number of alternative measures of redundancy
and uniqueness could be applied to the redundancy lattice, e.g.
(Bertschinger et al., 2014), and there is continuing discussion as
to which is the “correct” measure. A subsequent version of PID
will allow the user to specify which measure they would prefer,
and even allow them to implement their own.

3.2. nest-site selection by the Ant
Temnothorax Rugatulus
In this case study, we use local active information to analyze
collective decisions made by the ant Temnothorax rugatulus
(Pratt et al., 2002; Sasaki et al., 2013). Specifically, we consider
nest-site selection, a popular and well-studied collective behavior
observed both in honeybee swarms and ant colonies (Franks
et al., 2002). When Temnothorax ants need to choose a new nest,
individuals in the colony explore the surrounding environment
looking for possible candidate sites (e.g., a rock crevice). Upon the
identification of a good candidate, an ant may perform a tandem
run—a type of recruitment process whereby the ant returns to the
old nest to lead another member of the colony in a tandem to the
newly found site for a possible assessment. Tandem runs, together
with independent discoveries of the same site, allow for a build
up of a population of ants at that site which in turn triggers the
achievement of a quorum, i.e., the identification by individual ants
of the popularity of a candidate site. After quorum is reached, ants
switch from performing tandem runs to performing transport—a
type of recruitment process distinct from tandem runs whereby
an ant returns to the old nest, loads another ant on her back and
carries that ant to a site. The combination of parallel exploration,
tandem runs, quorum sensing and transports allows Temnothorax
ants to concurrently evaluate different candidate sites and converge
on a collective decision for the best one.

For this study, we look at a live colony of 78 T. rugatulus ants
repeatedly choosing between a good and a mediocre site in a
laboratory environment for a total of 5 experiments. We consider
ants to be in one of three state: uncommitted (state 0), committed
to the good site (state 1) or committed to the mediocre site (state
2). All ants in the colony are individually paint-marked using a
four-color code which allows us to identify individual ants and
track their commitment state. From video-recordings of the
experiments, we extract the commitment state of each ant over
time as follows: initially, all ants are considered uncommitted, and
ants commit to a certain site after performing a tandem run or a
transport towards that site or when they are transported to that
site. We record the commitment state of each ant every second
and obtain 78 time series for each of the 5 experiments which
we use to compute the local active information (history length
 k = 2). As different experiments differ in duration due to the
stochasticity inherent to colony emigrations, time series extracted

from different experiments also differ in length (but all 78 time
series within the same experiment have the same length). In our
analysis, we considered shortened time series of 3× 104 time
steps (approximately the same duration of the fastest emigration
experiment) following a procedure described below.

Figure 2 shows the results of our analysis of the local active
information together with the change of commitment over time for
the entire colony. Data are aggregated as follows: we first compute
the mean local active information of individual ants in a colony
emigration; then, we find the point in time where local active
information peaks; finally, we center the local active information
and the colony-level commitment state for each emigration around
this point in time (i.e., time 0 in Figure 2) and compute mean,
maximum and minimum values over experiments. The peak in
the local active information is approximately in the middle of the
decision-making process (i.e., when half of the colony is committed
for the good site and half is still uncommitted). This maximum of
the local active information, approximately 1 bit, identifies a critical
point in the collective decision.

3.3. multi-Agent simulations
In this final case study, we use transfer entropy to analyze the flow
of information in a multi-agent system developed to study the
best-of- n problem (Valentini et al., 2017). Specifically, we consider
a system where a collective of agents needs to chose between two
options: 0 or1 . The behavior of each agent is defined as a probabilistic
finite-state machine with 2 states for each option: exploration and
dissemination. In the exploration state, an agent explores the
environment and evaluates the quality of its currently favored
option. In the dissemination state, an agent promotes its opinion
(i.e., broadcast its preference for a particular option to its neighbors)
for a time proportional to the quality of its favored option. At the

fIguRe 2 | Distribution of local active information and colony-level
commitment state for a live colony of 78 T. rugatulus ants computed over 5
colony emigrations. Lines represent mean values of local active information
(lAI), and proportions of ants in the colony that are uncommitted (u),
committed to the good site (g) and committed to the mediocre site (m).
Shaded areas correspond to minimum and maximum values of the same
quantities.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Moore et al.

7 June 2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Information Analysis of Collective Behaviors

end of the dissemination state, soon before transitioning to the
exploration state, the agent collects the preferences of its neighbors
and applies a decision rule to reconsider its current preference. In
this case study we consider two decision rules: the majority rule,
whereby an agent adopts the option favored by the majority of its
neighbors, and the voter model, whereby an agent adopts the option
favored by a randomly chosen neighbor (Valentini et al., 2016).

We consider a collective of 100 agents tasked with a binary
decision-making problem where the best option has quality 1.0 and
the other option has quality 0.9 . All the agents in the collective apply
the same decision rule (i.e., either the majority rule or the voter
model) over a neighborhood represented by the agent’s 5 nearest-
neighbors. For each decision rule, we performed 1000 multi-agent
simulations where the initial preferences of the agents are equally
distributed among the two options. We let simulations run for a total
duration each of 104 seconds. Our aim is to use transfer entropy to
analyze the flow of information to an agent from its neighborhood
as it applies its decision rule. We extract a binary-state series of
preferences for each agent, where each element of the series is the
agent’s preference immediately prior to apply it’s decision rule.
We then construct a 6 -state series of neighborhood states, each
element of which is the number of neighbors with a preference for
the best option (i.e., {0, . . . , 5}) at the time of the agent’s decision.
As opposed to the previous case study, each simulation lasts for
the same amount of time. However, the number of applications
of a decision rule by an agent within the same simulation and
across different simulations is stochastic. Consequently, time
series derived from different agents differ in length (on average,
 13.93± 3.27 for the majority rule and 13.82± 2.89 for the voter
model). To mitigate the effect of short time series, we used time
series from all agents within a simulation to compute the probability
distributions required for transfer entropy (i.e., an average of 1393
samples for the majority rule and 1382 for the voter model) and
consider this quantity an average over all agents of the collective.
In this system, agents are memoryless and parameters have been
tuned to approximate a well-mixed interaction pattern. However,
time correlation may still be present as a result of the interaction
of agents with their neighborhood. For simplicity, we use a history
length of k = 1 and let the investigation of longer history lengths
for future work.

Figure 3 shows the results of our analyses of the multi-agent
simulations. Specifically, it depicts the probability density functions
(PDF) of the average transfer entropy toward an agent applying a
decision rule over 1000 simulations. To compute the average transfer
entropy towards an agent, we estimate the required probability
distributions from the time series of all agents in the collective and
use these distributions to obtain one sample of transfer entropy
for each simulation. The PDFs of transfer entropy obtained for the
majority rule and for the voter model are remarkably different (two
sample t -test, p -value < 2.2 · 10−16). On average, the majority rule
has a higher value of transfer entropy (0.3106 bits) with respect
to the voter model (0.2019 bits). However, it is also characterized
by a larger spread with a SD of 0.1302 bits compared to that of
the voter model, 0.0301 bits. Previous analysis of these decision
mechanisms under similar conditions showed that the majority
rule is much faster than the voter model and its consensus time
has an higher variance as well (Valentini et al., 2016). These results

are likely correlated and a deeper analysis of this case study is
currently undergoing.

4. peRfoRmAnce AnAlysIs

In this section, we investigate the performance of PyInform
by calculating two computationally demanding measures of
information dynamics: active information (AI) and transfer entropy
(TE). While we focus on PyInform here, rinform shows comparable
performance characteristics. We compare the performance of
PyInform with that of JIDT (Lizier, 2014) which we take as the
gold-standard for the field. We chose AI and TE as they are the
primary overlap in the functionality of PyInform and JIDT. The
time series for the following tests were generated using the same
multi-agent simulation described in Section 3.3. The state of each
agent includes its opinion (i.e., 0 or 1) and its control state (i.e.,
dissemination or exploration). As such, the time series for each
agent is base-4 and runs for the entire duration of the simulation,
not just the decision points as in Section 3.3. We considered four
different data sets wherein we varied both the decision rule (i.e.,
majority rule or voter model) and the difficulty of the decision-
making problem (i.e., ρ0 = 1.0 and ρ1 ∈ {0.5, 0.9}). For each data
set, we executed 1000 simulations with a duration of 1001 time steps
using a collective of 50 agents initialized with an equal distribution
of preferences for both options.

Using the four data sets described above, we computed the AI for
each agent in the collective and the TE using PyInform and JIDT’s
built-in time series-based functionality. We computed AI and TE
for history lengths 1 ≤ k ≤ 11 or until computational resources
were exhausted. For each data set and history length k , we repeated
5 times the calculations and timed the computational process. In
computing the run times, we considered only the time necessary
to loop over the agent combinations and to compute the relevant
values while we disregarded the time spent reading data files and
comparing results. All performance tests were single-threaded and

fIguRe 3 | Probability density functions of the average transfer entropy for
agents in systems applying the majority rule (purple) and for agents in
systems using the voter model (green).

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

8 June 2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Moore et al. Information Analysis of Collective Behaviors

run with Amazon Web Services, using a c4. large EC2 instance
relying on a 2 vCPUs and 3.75 GB of RAM13

Figure 4 shows the results of the performance comparison as
the ratio of execution times between JIDT and PyInform for active
information (left panel) and transfer entropy (right panel). In
both experiments, the PyInform package outperforms JIDT with
a speedup ranging from a minimum of 1.2× up to a maximum
speedup of 7× . The computational gain of PyInform over JIDT
is more pronounced when computing average measures with a
history length k > 8 both in the case of AI and in that of TE. It
is obligatory to note that history lengths k > 8 are rarely useful
in practice as the amount of data necessary for the measures
to show statistical significance grows exponentially in k . We
include the longer history lengths, simply to acknowledge that
both frameworks experience exponential growths in runtime as
 k grows. As one would expect, the computational requirements
of transfer entropy are greater than those of active information
for both frameworks.

In addition to comparing the runtime performance, we also
compared the absolute results of the calculations for all values
of k . The values computed with the PyInform package never
differed from those of the JIDT library by more than 10−6 bits .
PyInform is marginally more computationally efficient than JIDT
while providing equally accurate calculations of information-
theoretic measures. However, it is important to remember that
computational performance is not the only aspect that one
should consider when choosing a software solution. Developer
time is often more valuable than computation time. For example,
JIDT offers many benefits over Inform including its support
for continuously-valued data and a wider range of parameters
(e.g., source embedding, embedding delays, source-target delay).
Subsequent versions of Inform will reduce the discrepancy in
features (see Section 6), and the library wrappers are designed

13 See https://aws.amazon.com/ec2/instance-types/ for the specifications of the
c4.large EC2 instance..

to increase programmer productivity. Whether or not speed is
a deciding factor in a user’s decision to use Inform will depend
on the requirements of the task at hand.

5. use cAse exAmples

In this section we provide a few examples of how to directly use
the Python and R wrappers, respectively, PyInform and rinform.
Live documentation of these wrappers can be found at https://
elife- asu. github. io/ PyInform and https:// elife- asu. github. io/
rinform.

5.1. empirical distributions
We start with a simple example of how to use the Dist class to
estimate a probability distribution from a binary sequence of events
(see Listing 1 for PyInform and Listing 2 for rinform). In Python,
the from_data static method creates a distribution and records
observations from an array of discrete events. The same objective
can be achieved in R using the infer function. In this case, two
observations are made of the event “ 0 ” and three of event “1 ”.
The probability method can be used to query the estimated
probability of a given event. Alternatively, the dump method can
then be used to return an array of all estimated probabilities.

listing 1 | estimate a probability distribution from a binary sequence of
events. (python)

In [1]: from pyinform import Dist
In [2]: dist = Dist.from_data([0,1,1,0,1]) # observe 2 0’s and 3 1’s
In [3]: dist
Out[3]: Dist.from_hist([2, 3])
In [4]: dist.probability(0) # What is the probability of seeing a 0?
Out[4]: 0.4
In [5]: dist.probability(1) # What is the probability of seeing a 1?
Out[5]: 0.6
In [6]: dist.dump() # output the probabilities to an array Out[6]: array([0.4, 0.6])

fIguRe 4 | Performance ratio versus history length for average and local active information (A) and average and local transfer entropy (B) The dashed lines mark
a performance ratio of 1.0 . Memory constraints limited computation of transfer entropy with JIDT up to k = 10 .

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
https://elife-asu.github.io/PyInform
https://elife-asu.github.io/PyInform
https://elife-asu.github.io/rinform.
https://elife-asu.github.io/rinform.

Moore et al.

9 June 2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Information Analysis of Collective Behaviors

This is only a sample of the functionality provided around
the Dist class. Further examples can be found in the live
documentation of PyInform14 and rinform 15

5.2. shannon Information measures
As described in Section 2.1, the Shannon information measures
are defined around the Dist class. In this subsection, we give an
example of how to compute the Shannon entropy of a distribution.
In Listing 3, we demonstrate how to construct a Dist instance
and compute its entropy using PyInform while Listing 4 shows
the equivalent implementation using rinform. The resulting
distribution can record observations of two events, “ 0 ” or “1
 ”. With the distribution in hand, the accumulate function
accumulates the observations from an array. This is functionally
equivalent to Dist.from_data which was used in Listing 1
(Python) and infer which was used in Listing 2 (R). Once the
distribution has been created, computing its entropy is as simple
as performing a single function call to shannon.entropy (in
Python) or shannon_entropy (in R).

A host of information measures are provided in the Inform
framework. These can be found in the pyinform.shannon
module16 for PyInform. While rinform is not organized into
modules, the user has access to all the same information measures
as described in the rinform’s documentation17

5.3. Time series measures
The time series measures are a primary focus for the Inform
framework. Listing 5 (Python) and Listing 6 (R) provide a

14 http://elife-asu.github.io/PyInform/dist.html
15 https://elife-asu.github.io/rinform/#2_empirical_distributions.
16 http://elife-asu.github.io/PyInform/shannon.html
17 https://elife-asu.github.io/rinform/#3_shannon_information_measures

complete example of how to estimate the average and local
(pointwise) transfer entropy between two base-4 time series — this
functionality was used in the performance analysis described in
Section 4. To demonstrate this, we construct18 a source time series,
src, and then shift and copy it to a target time series, target.
The expected result is that the average transfer entropy from src
to target will be near 2.0 bits. The transfer_entropy
function is employed to compute this value. The examples go on
to compute the local transfer entropy, which returns an array of
local (pointwise) values.

Time series measures can fail for a variety of reasons ranging
from invalid arguments to exhausted system memory. In these
situations, an error is raised which describes the reason for the

18 In Python, we use —numpy—, a package that provides a wealth of useful array-
based functionality: http://www.numpy.org/.

listing 2 | estimate a probability distribution from a binary sequence of
events. (R)

In [1]: library(rinform)
In [2]: dist <- infer(c(0,1,1,0,1)) # observe 2 0’s and 3 1’s
In [3]: dist
Out[3]: $histogram: [1] 2 3
Out[3]: $size: [1] 2
Out[3]: $counts: [1] 5
Out[3]: attr(,”class”): [1] ”Dist”
In [4]: probability(dist, 1) # What is the probability of seeing a 0?
Out[4]: 0.4
In [5]: probability(dist, 2) # What is the probability of seeing a 1?
Out[5]: 0.6
In [6]: dump(dist) # output the probabilities to an array
Out[6]: [1] 0.4 0.6

listing 3 | estimate the entropy of an empirical distribution of binary
events. (python)

In [1]: from pyinform import shannon
In [2]: from pyinform import Dist
In [3]: dist = Dist(2) # create a Dist over two events
In [4]: dist.accumulate([0,1,1,0,1]) # accumulate some observations
Out[4]: 5 # 5 observations were made
In [5]: shannon.entropy(dist, b = 2) # compute the base-2 Shannon entropy
Out[5]: 0.9709505944546686

listing 4 | estimate the entropy of an empirical distribution of binary
events. (R)

In [1]: library(rinform)
In [2]: dist <- Dist(2) # create a Dist over two events
In [3]: dist <- accumulate(dist, c(0,1,1,0,1)) # accumulate some observations
In [4]: shannon_entropy(dist, b = 2) # compute the base-2 Shannon entropy
Out[5]: [1] 0.9709506

listing 5 | estimate the average and local transfer entropy from discrete
data. (python)

In [1]: import numpy as np
In [2]: from pyinform import transfer_entropy
In [3]: np.random.seed(2018)
In [4]: src = np.random.randint(0, 4, 100)
In [5]: target = np.zeros(len(source), dtype = int)
In [6]: target[1:] =src[:−1]
In [7]: transfer_entropy(src, target, k = 1) # TE with history length 1
Out[7]: 1.8705725949309469
In [8]: lte = transfer_entropy(src, target, k = 1, local = True) # Local TE
In [9]: lte.shape
Out[9]: (1, 99)
In [10]: np.mean(lte) # the mean local TE is approximately the
Out[10]: 1.870572594930947 # same as Out[7]
In [11]: lte = transfer_entropy(src, target, k = 0)
 … # stack trace removed for brevity
InformError: an inform error occurred - ”history length is zero”

listing 6 | estimate the average and local transfer entropy from discrete
data. (R)

In [1]: library(rinform)
In [2]: set.seed(2018)
In [3]: src <- sample(0:3, 100, TRUE)
In [4]: target <- c(src[100], src[1:99])
In [5]: transfer_entropy(src, target, k = 1) # TE with history length 1
Out[5]: [1] 1.912181
In [6]: lte <- transfer_entropy(src, target, k = 1, local = TRUE) # Local TE
In [7]: dim(lte)
Out[7]: (99, 1)
In [8]: mean(lte) # the mean local TE is approximately the
Out[8]: [1] 1.912181 # same as Out[5]
In [9]: lte <- transfer_entropy(src, target, k = 0)
Out[9]: Error: <k > is less then 1!

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

10 June 2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Moore et al. Information Analysis of Collective Behaviors

function’s failure. At the end of both Listing 5 and Listing 6, we
provide an example of an erroneous function invocation. Pyinform
raises an InformError while rinform prints an error message.

All of the time series measures follow the same basic calling
conventions as transfer_entropy. Further examples of the
various time series measures can be found in the live documentation
of PyInform19 and rinform 20

5.4. utility functions
Our next example, Listing 7 and Listing 8, demonstrates how to
use Inform’s utility functions to estimate the multivariate active
information of two continuous time series, node1 and node2.
It begins by binning points in each time series into one of two
bins, x < 0.5 or x ≥ 0.5 , using the bin_series function. Once
binned, the series are black-boxed, that is, their states are aggregated
together over a larger state-space, using the black_box function
to produce a base-4 time series (i.e., the product of the bases of
node1 and node2). Each time step of this black-boxed time
series, series, represents the joint state of the two binned time
series. From series, the multivariate active information with
 k = 1 is estimated using the active_info function.

19 http://elife-asu.github.io/PyInform/timeseries.html
20 https://elife-asu.github.io/rinform/#4_time_series_measures.

The flexibility of the the black_box function makes it worthwhile
to elaborate further on precisely what it does. In making concurrent
observations of a collection of random variables, say X1,X2, . . . , which
may or may not be correlated with one another, we are in fact making
observations of an underlying variable W defined over a different
state space Ω . These observed variables can be thought of as views,
filters or projections of the the underlying system state drawn from
 Ω . Many information analyses require the reconstruction of Ω from
the observations of X1,X2, The black_box function covers this
role in Inform. Given a number of time series, each representing the
time series of a random variable, black_box losslessly encodes the
joint state of those time series as a single value in the system’s joint
state space Ω . As a concrete example, consider the following time
series of concurrent observations of two random variables

 X : 0, 1, 1, 0, 1, 0, 0, 1,
 Y : 1, 0, 0, 2, 1, 2, 1, 2.

Here, X is a binary variable while Y is a trinary one. Together,
observations of X and Y may be thought to represent observations
of an underlying state variable W = (X,Y) ∈ Ω 21:

 W : (0, 1), (1, 0), (1, 0), (0, 2), (1, 1), (0, 2), (0, 1), (1, 2).

As such, these observations can be encoded as a base- 6 time series
which is precisely what black_box does, yielding

 W : 1, 3, 3, 2, 4, 2, 1, 5.

The black_box function accepts a host of arguments which
augment how it constructs the resulting time series, all of which are
described and demonstrated in the documentation22.

Inform’s collection of utilities allows the user to easily construct
new information-measures over time series data. Combining utility
functions such as black_box with common time series measures
such as mutual_info is a powerful way for the user to extend
the functionality of the Inform framework to include measures of
particular interest to their research.

We will now conclude this section with two demonstrative
examples of how black_box can be combined with the time series
functions block_entropy23 and mutual_info to implement
conditional entropy and active information, respectively. First recall
that the conditional entropy of a random variable X conditioned on
a random variable Y is defined as

H(X |Y) = −

∑
x,y

p(x, y) log p(x | y) = H(X,Y)−H(Y).
 (1)

As such, one might compute the conditional entropy by first
constructing the joint distribution (X,Y) (using black_box) and

21 Note that if we had considered W′ = (Y,X) ′ Ω′ instead, the encoded time
series would have been different , e.g., 2,1,1,4,3,4,2,5. However, the mutual
information between them, I(W,W′), tends to the theoretical maximum H(W)
as the number of observations increases; this indicates that (X,Y) and (Y,X) are
informationally equivalent representations of the underlying space.
22 http://elife-asu.github.io/PyInform/utils.html , https://elife-asu.github.io/
rinform/#5_utilities.
23 The —block_entropy— function computes the Shannon block entropy of a time
series. This reduces to the standard Shannon entropy when a block size of k = 1 is
used, e.g., —block_entropy(series, k = 1)—.

listing 7 | estimate the average multivariate active information of two
continuous time series. (python)

In [1]: from pyinform import active_info
In [2]: from pyinform.utils import bin_series, black_box
In [4]: threshold = 0.5
In [5]: node1, _, _ =bin_series([0.5, 0.2, 0.6, 0.8, 0.7], bounds = [threshold])
In [6]: node1
Out[6]: array([1, 0, 1, 1, 1], dtype = int32)
In [7]: node2, _, _ =bin_series([0.1, 0.9, 0.4, 0.7, 0.4], bounds = [threshold])
In [8]: node2
Out[8]: array([0, 1, 0, 1, 0], dtype = int32)
In [9]: series = black_box((node1, node2))
In [10]: series
Out[10]: array([2, 1, 2, 3, 2], dtype = int32)
In [11]: active_info(series, k = 1)
Out[11]: 1.

listing 8 | estimate the average multivariate active information of two
continuous time series. (R)

In [1]: library(rinform)
In [3]: threshold <- 0.5
In [5]: node1 <- bin_series(c(0.5, 0.2, 0.6, 0.8, 0.7), bounds = threshold)$binned
In [6]: node1
Out[6]: [1] 1 0 1 1 1
In [7]: node2 <- bin_series(c(0.1, 0.9, 0.4, 0.7, 0.4), bounds = threshold)$binned
In [8]: node2
Out[8]: [1] 0 1 0 1 0
In [9]: series <- black_box(matrix(c(node1, node2), ncol = 2), l = 2)
In [10]: series
Out[10]: [1] 2 1 2 3 2
In [11]: active_info(series, k = 1)
Out[11]: [1] 1

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

Moore et al.

11 June 2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Information Analysis of Collective Behaviors

then computing the difference of entropies as in Equation (1) (using
block_entropy). This is demonstrated using PyInform in Listing
9 and rinform in Listing 10.

Finally, we will perform a similar process to estimate the active
information of random variable X as defined by

Ak(X) =

∑
x+,x(k)

p(x+, x(k))log
p(x+, x(k)i)
p(x+)p(x(k))

= I(X+,X(k))

(2)

where X+ is the random variable representing the state of X in
the next time step and X(k) is the present k -history of X . We can
use black_box to construct the time series of k -histories, and
mutual_info to compute the mutual information between X+
and X(k) as in Equation (2). We demonstrate this using PyInform
and rinform in Listing 11 and Listing 12, respectively.

6. conclusIon And dIscussIon

In this paper we introduced Inform v1.0.0, a flexible and
computationally efficient framework to perform information-
theoretic analysis of collective behaviors. Inform is a general-
purpose, open-source, and cross-platform framework designed
to be flexible and easy to use. It builds on a computationally
efficient C library and an ecosystem of foreign language wrappers
for Python, R, Julia, and the Wolfram Language. Inform gives the
user access to a large set of functions to estimate information-
theoretic measures from empirical discretely-valued time series.
These include classic information-theoretic measures such as
Shannon’s entropy and mutual information, information dynamics
measures such as active information storage and transfer entropy,
and information-based concepts conceived to investigate the
causal architecture of collective systems. Inform’s low-level API

is organized around the concepts of probability distributions,
information measures, time series measures and utilities and its
flexibility allows users to construct new measures and algorithms
of their own. We showcased the Inform framework by applying it
to the study of three collective behaviors: cellular-level biochemical
processes in regenerating planaria, colony emigration by the ant
Temnothorax rugatulus, and collective decision-making in multi-
agent simulations. We investigated the performance of the Inform
framework by comparing them with those of the JIDT library
showing that Inform have similar or superior performance with
respect to JIDT. In effect, Inform is a potentially invaluable tool
for any researcher performing information analysis of collective
behaviors and other complex systems.

The Inform framework is still a relatively young project
compared to more mature projects such as JIDT. While it has
many features that make it unique such as, its computational
efficiency, the large set of information-theoretic methods, and
the availability of foreign language wrappers, it does lack some
important functionality. We are planning three subsequent releases
to incrementally extend the Inform framework. In the version 1.1.0
release, we will modify Inform’s interface to provide the user with
access to the probability distributions used in the computation of
information dynamics measures and their accumulation functions.
In Python, for example, the extended API for computing the active
information may take the following form:

class ActiveInfoAccumulator(Accumulator):
 def __init__(self):
 pass
 def accumulate(self, data):
 pass
 def evaluate(self, local = False):
 pass

The advantage of exposing probability distributions and their
accumulation functions is that the user can modify the way

listing 9 | estimate conditional entropy between two time series using
black_box and block_entropy. (python)

In [1]: from pyinform import block_entropy, conditional_entropy
In [2]: from pyinform.utils import black_box
In [3]: X = [0,1,2,2,2,2,0,1,0] # the target variable
In [4]: Y = [0,0,1,1,1,1,0,0,0] # the condition variable
In [5]: XY = black_box((X,Y)) # the joint variable (X,Y)
In [6]: conditional_entropy(X, Y) # H(X | Y) =H(X,Y) - H(Y)
Out[6]: 0.5394169969192604
In [7]: block_entropy(XY, k = 1) - block_entropy(Y, k = 1)
Out[7]: 0.5394169969192604

listing 10 | estimate conditional entropy between two time series using
black_box and block_entropy. (R)

In [1]: library(rinform)
In [2]: X <- c(0, 1, 2, 2, 2, 2, 0, 1, 0) # the target variable
In [3]: Y <- c(0, 0, 1, 1, 1, 1, 0, 0, 0) # the condition variable
In [4]: XY <- black_box(matrix(c(X, Y), ncol = 2), l = 2) # the joint variable (X,Y)
In [5]: conditional_entropy(Y, X) # H(X | Y) =H(X,Y) - H(Y)
Out[5]: 0.539417
In [6]: block_entropy(XY, k = 1) - block_entropy(Y, k = 1)
Out[6]: 0.539417

listing 11 | estimate active information of a time series using black_
box and mutual_info. (python)

In [1]: from pyinform import active_info, mutual_info
In [2]: from pyinform.utils import black_box
In [3]: X = [0,0,1,1,1,1,0,0,0]
In [4]: X2 = black_box(X, k = 2) # the 2-histories of X
In [5]: active_info(X, k = 2)
Out[5]: 0.3059584928680418
In [6]: mutual_info(X[2:], X2[:−1]) # align indices of X and X2
Out[6]: 0.3059584928680421

listing 12 | estimate active information of a time series using black_
box and mutual_info. (R)

In [1]: library(rinform)
In [3]: X <- c(0, 0, 1, 1, 1, 1, 0, 0, 0)
In [4]: X2 <- black_box(X, l = 1, r = 2) # the 2-histories of X
In [5]: active_info(X, k = 2)
Out[5]: 0.3059585
In [6]: mutual_info(matrix(c(X[3:9], X2[1:7]), ncol = 2))
Out[6]: 0.3059585

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org

12 June 2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Moore et al. Information Analysis of Collective Behaviors

RefeRences

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J, J., and Du Croz,
J. (1999). LAPACK users’ guide, Third Edn. Philadelphia, PA: Society for
Industrial and Applied Mathematics.

Ay, N., and Polani, D. (2008). Information flows in causal networks. Advs.
Complex Syst. 11 (01), 17–41. doi: 10.1142/S0219525908001465

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina,
I., et al. (2008). Interaction ruling animal collective behavior depends on
topological rather than metric distance: Evidence from a field study. Proc.
Natl. Acad. Sci. U.S.A. 105 (4), 1232–7. doi: 10.1073/pnas.0711437105

Barnett, L., and Seth, A. K. (2014). The MVGC multivariate Granger causality
toolbox: A new approach to Granger-causal inference. J. Neurosci. Methods
223, 50–68. doi: 10.1016/j.jneumeth.2013.10.018

Beane, W. S., Morokuma, J., Adams, D. S., and Levin, M. (2011). A chemical
genetics approach reveals H,K-ATPase-Mediated Membrane membrane
voltage is required for planarian head regeneration. Chem. Biol. 18 (1), 77–
89. doi: 10.1016/j.chembiol.2010.11.012

Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., and Ay, N. (2014). Quantifying
unique information. Entropy 16 (4), 2161–83. doi: 10.3390/e16042161

Bialek, W., Nemenman, I., and Tishby, N. (2001a). Predictability,
complexity, and learning. Neural Comput. 13 (11), 2409–63. doi:
10.1162/089976601753195969

Bialek, W., Nemenman, I., and Tishby, N. (2001b). Complexity through
nonextensivity. Physica A 302 (1-4), 89–99. doi: 10.1016/S0378-4371(01)00444-
7

Biehl, M., Ikegami, T., and Polani, D. (2016). “Towards information based
spatiotemporal patterns as a foundation for agent representation in dynamical
systems” Proceedings of the Artificial Life Conference 2016 (Cambridge, MA),
pp. 722–729.

Boedecker, J., Obst, O., Lizier, J. T., Mayer, N. M., and Asada, M. (2012). Information
processing in echo state networks at the edge of chaos. Theory Biosci. 131 (3),
205–13. doi: 10.1007/s12064-011-0146-8

Butail, S., Mwaffo, V., and Porfiri, M. (2016). Model-free information-theoretic
approach to infer leadership in pairs of zebrafish. Phys. Rev. E 93 (4):042411.
doi: 10.1103/PhysRevE.93.042411

Challet, D., and Zhang, Y. -C. (1997). Emergence of cooperation and organization
in an evolutionary game. Physica A 246 (3-4), 407–18. doi: 10.1016/S0378-
4371(97)00419-6

Couzin, I. D., Krause, J., Franks, N. R., and Levin, S. A. (2005). Effective leadership
and decision-making in animal groups on the move. Nature 433 (7025), 513–6.
doi: 10.1038/nature03236

Cover, T. M., and Thomas, J. A. (2005). Elements of Information Theory. Hoboken,
NJ, USA: John Wiley & Sons, Inc.

Crutchfield, J. P., and Feldman, D. P. (2003). Regularities unseen, randomness
observed: Levels of entropy convergence. Chaos 13 (1), 25–54. doi:
10.1063/1.1530990

that probabilities are estimated. As opposed to the version 1.0.0
where Inform’s time series measures require that all time series
be stored in memory prior to the estimation of distributions, this
new release will allow the user to write their own accumulation
functions which could incrementally update distributions from
very large time series stored on the hard-drive or with data that is
generated in real-time. In the version 1.2.0 release, we will provide
support for non-Shannon entropy functions. Shannon’s entropy
of a discrete random variable is the unique functional form of
entropy that satisfies all Shannon’s four axioms (Shannon, 1948).
However, many functional forms of entropy become possible as
soon as these four axioms are relaxed or otherwise modified. Two
examples of such non-Shannon entropy forms are Rényi entropy
(Rényi, 1961) and Tsallis-Havrda-Charvát entropy (Havrda and
Charvát, 1967; Tsallis, 1988). Shannon’s entropy is currently
used in the calculations of most information dynamics measures
available in Inform. The version 1.2.0 release will allow the user
to make use of Non-Shannon entropy functions which may give
insight into the dynamics of information processing in non-ergodic
systems. Finally, the version 2.0.0 release will represent a major
improvement of the Inform framework by providing support for
continuously-valued time series. Although Inform provides utilities
to discretize continuous data through the process of binning,
its repertoire of information-theoretic measures only supports
discretely-valued time series. Discretely-valued time series allows
for computational efficiency (complexity is O(N) in the length of
the time series N), however, the discretization of continuous data
might introduce artifacts and reduce the accuracy of the overall
analysis. In the version 2.0.0 release we will implement estimation
techniques for continuous probability distributions, such as kernel
density estimation (Rosenblatt, 1956; Parzen, 1962; Schreiber,
2000; Kaiser and Schreiber, 2002), with the aim of extending
Inform’s reach towards continuously-valued data. More advanced
estimation techniques, such as Kraskov-Stögbauer-Grassberger

estimation (Kraskov et al., 2004), are planned for subsequent
releases once we have a standardized API support of continuous
data. Some additional details concerning future releases of the
Inform framework are described on the Issues page24 of the GitHub
repository where users are encouraged to suggest features or
report bugs.

AuThoR conTRIBuTIons

DGM designed and implemented the Inform library as well as
the Python, Julia, and Mathematica wrappers. GV designed
and implemented the R wrapper. All authors contributed to the
conceptualization of the framework and to the writing of the
manuscript.

fundIng

This research was supported by the Allen Discovery Center program
through The Paul G. Allen Frontiers Group (12171). ML, SIW, and
DGM are supported by the Templeton World Charity Foundation
(TWCF0089/AB55 and TWCF0140). GV and SIW acknowledge
support from the National Science Foundation (1505048).

AcKnowledgmenTs

The authors would like to thank Jake Hanson and Harrison Smith
for their contributions to PyInform and its documentation.

24 https://github.com/elife-asu/inform/issues

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://dx.doi.org/10.1142/S0219525908001465
http://dx.doi.org/10.1073/pnas.0711437105
http://dx.doi.org/10.1016/j.jneumeth.2013.10.018
http://dx.doi.org/10.1016/j.chembiol.2010.11.012
http://dx.doi.org/10.3390/e16042161
http://dx.doi.org/10.1162/089976601753195969
http://dx.doi.org/10.1016/S0378-4371(01)00444-7
http://dx.doi.org/10.1016/S0378-4371(01)00444-7
http://dx.doi.org/10.1007/s12064-011-0146-8
http://dx.doi.org/10.1103/PhysRevE.93.042411
http://dx.doi.org/10.1016/S0378-4371(97)00419-6
http://dx.doi.org/10.1016/S0378-4371(97)00419-6
http://dx.doi.org/10.1038/nature03236
http://dx.doi.org/10.1063/1.1530990

Moore et al.

13 June 2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Information Analysis of Collective Behaviors

Durant, F., Morokuma, J., Fields, C., Williams, K., Adams, D. S., and Levin, M.
(2017). Long-term, stochastic editing of regenerative anatomy via targeting
endogenous bioelectric gradients. Biophys. J. 112 (10), 2231–43. doi: 10.1016/j.
bpj.2017.04.011

Emmons-Bell, M., Durant, F., Hammelman, J., Bessonov, N., Volpert, V.,
Morokuma, J., et al. (2015). Gap junctional blockade stochastically induces
different species-specific head anatomies in genetically wild-type girardia
dorotocephala flatworms. Int. J. Mol. Sci. 16 (11), 27865–96. doi: 10.3390/
ijms161126065

Feldman, D. P., and Crutchfield, J. P. (2003). Structural information in two-
dimensional patterns: Entropy convergence and excess entropy. Phys. Rev. E 67
(5):051104. doi: 10.1103/PhysRevE.67.051104

Franks, N. R., Pratt, S. C., Mallon, E. B., Britton, N. F., and Sumpter, D. J. T. (2002).
Information flow, opinion polling and collective intelligence in house-hunting
social insects. Philosophical Transactions of the Royal Society B: Biological
Sciences 357 (1427), 1567–83. doi: 10.1098/rstb.2002.1066

Gauvrit, N., Singmann, H., Soler-Toscano, F., and Zenil, H. (2016). Algorithmic
complexity for psychology: a user-friendly implementation of the coding
theorem method. Behav. Res. Methods 48 (1), 314–29. doi: 10.3758/s13428-
015-0574-3

Goldstone, R. L., and Janssen, M. A. (2005). Computational models of collective
behavior. Trends Cogn. Sci. (Regul. Ed.). 9 (9), 424–30. doi: 10.1016/j.
tics.2005.07.009

Havrda, J., and Charvát, F. (1967). Quantification method of classification
processes. concept of structural -entropy. Kybernetika 3 (1), 30–5.

Hoel, E. (2017). When the map is better than the territory. Entropy 19 (5):188. doi:
10.3390/e19050188

Hoel, E. P., Albantakis, L., and Tononi, G. (2013). Quantifying causal emergence
shows that macro can beat micro. Proc. Natl. Acad. Sci. U.S.A. 110 (49), 19790–
5. doi: 10.1073/pnas.1314922110

Honey, C. J., Kötter, R., Breakspear, M., and Sporns, O. (2007). Network
structure of cerebral cortex shapes functional connectivity on multiple
time scales. Proc. Natl. Acad. Sci. U.S.A. 104 (24), 10240–5. doi: 10.1073/
pnas.0701519104

Kaiser, A., and Schreiber, T. (2002). Information transfer in continuous processes.
Physica D: Nonlinear Phenomena 166 (1-2), 43–62. doi: 10.1016/S0167-
2789(02)00432-3

Kim, H., Davies, P., and Walker, S. I. (2015). New scaling relation for information
transfer in biological networks. J. R. Soc. Interface 12 (113):20150944. doi:
10.1098/rsif.2015.0944

Kraskov, A., Stögbauer, H., and Grassberger, P. (2004). Estimating mutual
information. Phys. Rev. E 69 (6):066138. doi: 10.1103/PhysRevE.69.066138

Kullback, S., and Leibler, R. A. (1951). On information and sufficiency. Ann. Math.
Statist. 22 (1), 79–86. doi: 10.1214/aoms/1177729694

Langton, C. G. (1990). Computation at the edge of chaos: phase transitions and
emergent computation. Physica D: Nonlinear Phenomena 42 (1-3), 12–37. doi:
10.1016/0167-2789(90)90064-V

Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. (1979). Basic linear
algebra subprograms for fortran usage. ACM Trans. Math. Softw. 5 (3), 308–23.
doi: 10.1145/355841.355847

Lindner, M., Vicente, R., Priesemann, V., and Wibral, M. (2011). TRENTOOL: a
matlab open source toolbox to analyse information flow in time series data
with transfer entropy. BMC Neurosci. 12 (1):119. doi: 10.1186/1471-2202-12-
119

Lizier, J. T. (2014). JIDT: an information-theoretic toolkit for studying the
dynamics of complex systems. Front. Robot. AI 1 (December), 1–20. doi:
10.3389/frobt.2014.00011

Lizier, J. T., Heinzle, J., Horstmann, A., Haynes, J. -D., and Prokopenko, M. (2011).
Multivariate information-theoretic measures reveal directed information
structure and task relevant changes in fMRI connectivity. J. Comput. Neurosci.
30 (1), 85–107. doi: 10.1007/s10827-010-0271-2

Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2008). Local information transfer
as a spatiotemporal filter for complex systems. Phys. Rev. E 77 (2):026110. doi:
10.1103/PhysRevE.77.026110

Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2010). Information modification
and particle collisions in distributed computation. Chaos 20 (3), 037109. doi:
10.1063/1.3486801

Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2012). Local measures of
information storage in complex distributed computation. Inf. Sci. (Ny). 208,
39–54. doi: 10.1016/j.ins.2012.04.016

Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2014). A framework for the local
information dynamics of distributed computation in complex systems. In
Guided self-organization: inception. 115–158.

Lizier, JT., Piraveenan, M., Pradhana, D., Prokopenko., and Yaeger, LS. (2009).
“Functional and structural topologies in evolved neural networks” European
Conference on Artificial Life pp. 140–7.

Marshall, J. A., Bogacz, R., Dornhaus, A., Planqué, R., Kovacs, T., and Franks, N. R.
(2009). On optimal decision-making in brains and social insect colonies. J. R.
Soc. Interface 6 (40), 1065–74. doi: 10.1098/rsif.2008.0511

Meyer, B. (2017). Optimal information transfer and stochastic resonance in
collective decision making. Swarm Intell. 11 (2), 131–154. doi: 10.1007/s11721-
017-0136-7

Mitchell, M. (1996). Computation in cellular automata: a selected review.
Nonstandard Computation 95–140.

Montalto, A., Faes, L., and Marinazzo, D. (2014). MuTE: a matlab toolbox to
compare established and novel estimators of the multivariate transfer entropy.
PLoS ONE 9 (10):e109462. doi: 10.1371/ journal. pone. 0109462

Moore, DG., Valentini, G., Walker, SI., and Levin, M. (2017). “Inform: a toolkit
for information-theoretic analysis of complex systems” Proceedings of the 2017
IEEE Symposium Series on Computational Intelligence (Honolulu, HI, USA),
1–8.

Mwaffo, V., Butail, S., and Porfiri, M. (2017). Analysis of pairwise interactions in a
maximum likelihood sense to identify leaders in a group. Front. Robot. AI 4:35.
doi: 10.3389/frobt.2017.00035

Oviedo, N. J., Morokuma, J., Walentek, P., Kema, I. P., Gu, M. B., Ahn, J. -M., et al.
(2010). Long-range neural and gap junction protein-mediated cues control
polarity during planarian regeneration. Dev. Biol. 339 (1), 188–199. doi:
10.1016/j.ydbio.2009.12.012

Parzen, E. (1962). On estimation of a probability density function and mode. Ann.
Math. Statist. 33 (3), 1065–1076. doi: 10.1214/aoms/1177704472

Pezzulo, G., and Levin, M. (2015). Re-membering the body: applications of
computational neuroscience to the top-down control of regeneration of
limbs and other complex organs. Integr. Biol. 7 (12), 1487–1517. doi: 10.1039/
C5IB00221D

Pietak, A., and Levin, M. (2016). Exploring instructive physiological signaling with
the bioelectric tissue simulation engine. Front. Bioeng. Biotechnol. 4 (Pt 4), 55.
doi: 10.3389/fbioe.2016.00055

Pietak, A., and Levin, M. (2017). Bioelectric gene and reaction networks:
computational modelling of genetic, biochemical and bioelectrical dynamics
in pattern regulation. J. R. Soc. Interface 14 (134):20170425. doi: 10.1098/
rsif.2017.0425

Pratt, S., Mallon, E., Sumpter, D., and Franks, N. (2002). Quorum sensing,
recruitment, and collective decision-making during colony emigration by the
ant Leptothorax albipennis. Behav. Ecol. Sociobiol. (Print). 52 (2), 117–127. doi:
10.1007/s00265-002-0487-x

Rényi, A. (1961). “On measures of entropy and information” Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume
1: Contributions to the Theory of Statistics pp. 547–561.

Reznikova, Z., and Ryabako, B. (1994). Experimental study of the ants’
communication system with the application of the information theory
approach. Memorabilia Zoologica 48, 219–236.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density
function. Ann. Math. Statist. 27 (3), 832–837. doi: 10.1214/aoms/1177728190

Sasaki, T., Granovskiy, B., Mann, R. P., Sumpter, D. J. T., and Pratt, S. C. (2013). Ant
colonies outperform individuals when a sensory discrimination task is difficult
but not when it is easy. Proc. Natl. Acad. Sci. U.S.A. 110 (34), 13769–13773. doi:
10.1073/pnas.1304917110

Schreiber, T. (2000). Measuring Information Transfer. Phys. Rev. Lett. 85 (2), 461–
464. doi: 10.1103/PhysRevLett.85.461

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System
Technical Journal 1928, 379–423.

Sheĭman, I. M., and Kreshchenko, N. D. (2015). Regeneration of planarians:
experimental object. Russ. J. Dev. Biol. 46 (1), 1–9. doi: 10.1134/
S1062360415010075

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://dx.doi.org/10.1016/j.bpj.2017.04.011
http://dx.doi.org/10.1016/j.bpj.2017.04.011
http://dx.doi.org/10.3390/ijms161126065
http://dx.doi.org/10.3390/ijms161126065
http://dx.doi.org/10.1103/PhysRevE.67.051104
http://dx.doi.org/10.1098/rstb.2002.1066
http://dx.doi.org/10.3758/s13428-015-0574-3
http://dx.doi.org/10.3758/s13428-015-0574-3
http://dx.doi.org/10.1016/j.tics.2005.07.009
http://dx.doi.org/10.1016/j.tics.2005.07.009
http://dx.doi.org/10.3390/e19050188
http://dx.doi.org/10.1073/pnas.1314922110
http://dx.doi.org/10.1073/pnas.0701519104
http://dx.doi.org/10.1073/pnas.0701519104
http://dx.doi.org/10.1016/S0167-2789(02)00432-3
http://dx.doi.org/10.1016/S0167-2789(02)00432-3
http://dx.doi.org/10.1098/rsif.2015.0944
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1016/0167-2789(90)90064-V
http://dx.doi.org/10.1145/355841.355847
http://dx.doi.org/10.1186/1471-2202-12-119
http://dx.doi.org/10.1186/1471-2202-12-119
http://dx.doi.org/10.3389/frobt.2014.00011
http://dx.doi.org/10.1007/s10827-010-0271-2
http://dx.doi.org/10.1103/PhysRevE.77.026110
http://dx.doi.org/10.1063/1.3486801
http://dx.doi.org/10.1016/j.ins.2012.04.016
http://dx.doi.org/10.1098/rsif.2008.0511
http://dx.doi.org/10.1007/s11721-017-0136-7
http://dx.doi.org/10.1007/s11721-017-0136-7
http://dx.doi.org/10.1371/journal.pone.0109462
http://dx.doi.org/10.3389/frobt.2017.00035
http://dx.doi.org/10.1016/j.ydbio.2009.12.012
http://dx.doi.org/10.1214/aoms/1177704472
http://dx.doi.org/10.1039/C5IB00221D
http://dx.doi.org/10.1039/C5IB00221D
http://dx.doi.org/10.3389/fbioe.2016.00055
http://dx.doi.org/10.1098/rsif.2017.0425
http://dx.doi.org/10.1098/rsif.2017.0425
http://dx.doi.org/10.1007/s00265-002-0487-x
http://dx.doi.org/10.1214/aoms/1177728190
http://dx.doi.org/10.1073/pnas.1304917110
http://dx.doi.org/10.1103/PhysRevLett.85.461
http://dx.doi.org/10.1134/S1062360415010075
http://dx.doi.org/10.1134/S1062360415010075

14 June 2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Moore et al. Information Analysis of Collective Behaviors

Soler-Toscano, F., Zenil, H., Delahaye, J. -P., Gauvrit, N, Nicolas, G. (2014).
Calculating kolmogorov complexity from the output frequency distributions
of small turing machines. PLoS ONE 9 (5):e96223. doi: 10.1371/ journal. pone.
0096223

Sperati, V., Trianni, V., and Nolfi, S. (2008). Evolving coordinated group behaviours
through maximisation of mean mutual information. Swarm Intell. 2 (2-4),
73–95. doi: 10.1007/s11721-008-0017-1

Sperati, V., Trianni, V., and Nolfi, S. (2011). Self-organised path formation in a
swarm of robots. Swarm Intell. 5 (2), 97–119. doi: 10.1007/s11721-011-0055-y

Tononi, G., Sporns, O., and Edelman, G. M. (1994). A measure for brain complexity:
relating functional segregation and integration in the nervous system. Proc.
Natl. Acad. Sci. U.S.A. 91 (11), 5033–5037. doi: 10.1073/pnas.91.11.5033

Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. J. Stat.
Phys. 52 (1-2), 479–487. doi: 10.1007/BF01016429

Vakorin, V. A., Krakovska, O. A., and McIntosh, A. R. (2009). Confounding effects
of indirect connections on causality estimation. J. Neurosci. Methods 184 (1),
152–160. doi: 10.1016/j.jneumeth.2009.07.014

Valentini, G., Ferrante, E., and Dorigo, M. (2017). The best-of-n problem in robot
swarms: Formalization, state of the art, and novel perspectives. Front. Robot. AI
4:9. doi: 10.3389/frobt.2017.00009

Valentini, G., Ferrante, E., Hamann, H., and Dorigo, M. (2016). Collective decision
with 100 Kilobots: speed versus accuracy in binary discrimination problems.
Auton. Agent. Multi. Agent. Syst. 30 (3), 553–580. doi: 10.1007/s10458-015-
9323-3

Walker, SI., Cisneros, L., and Davies, P. (2013). “Evolutionary transitions and top-
down causation” Proceedings of Artificial Life XIII 283–290.

Walker, SI., Kim, H., and Davies, P. C. (2016). The informational architecture of the
cell. Philos. Trans. A Math. Phys. Eng. Sci. 374 (2063):20150057. doi: 10.1098/
rsta.2015.0057

Wibral, M., Vicente, R., and Lizier, J. T. (2014). Directed information measures in
neuroscience. Germany: Springer.

Williams, P., and Beer, R. (2010). Information dynamics of evolved agents. From
Animals to Animats 11, 38–49.

Williams, P. L., and Beer, R. D. (2010). Nonnegative Decomposition of Multivariate
Information. New York: Cornell University, 1–14.

Zenil, H., Marshall, JAR., and Tegnér, J. (2015). “Approximations of algorithmic
and structural complexity validate cognitive-behavioural experimental results”
Quantitative Methods (q-bio.QM) 1–33.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The reviewer, JL, declared a past collaboration with one of the authors, SW, to the
handling Editor.

Copyright © 2018 Moore, Valentini, Walker and Levin. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org
http://dx.doi.org/10.1371/journal.pone.0096223
http://dx.doi.org/10.1371/journal.pone.0096223
http://dx.doi.org/10.1007/s11721-008-0017-1
http://dx.doi.org/10.1007/s11721-011-0055-y
http://dx.doi.org/10.1073/pnas.91.11.5033
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1016/j.jneumeth.2009.07.014
http://dx.doi.org/10.3389/frobt.2017.00009
http://dx.doi.org/10.1007/s10458-015-9323-3
http://dx.doi.org/10.1007/s10458-015-9323-3
http://dx.doi.org/10.1098/rsta.2015.0057
http://dx.doi.org/10.1098/rsta.2015.0057
http://creativecommons.org/licenses/by/4.0/

	Inform: Efficient Information-Theoretic Analysis of Collective Behaviors
	1. Introduction
	2. Design and Implementation
	2.1. Architecture
	2.2. Validation

	3. Analysis of Collective Behaviors
	3.1. Biochemical Collectivity in Regenerating Planaria
	3.2. Nest-Site Selection by the Ant Temnothorax Rugatulus
	3.3. Multi-Agent Simulations

	4. Performance Analysis
	5. Use Case Examples
	5.1. Empirical Distributions
	5.2. Shannon Information Measures
	5.3. Time Series Measures
	5.4. Utility Functions

	6. Conclusion and Discussion
	Author Contributions
	Funding
	Acknowledgments
	References

