
1 June  2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Technology RepoRT
published: 11 June 2018

doi: 10.3389/frobt.2018.00060

Inform: efficient Information-
Theoretic Analysis of 
collective Behaviors
Douglas G. Moore 1, Gabriele Valentini 1, Sara I. Walker 1* and Michael Levin 2

1 BEYOND: Center for Fundamental Concepts in Science, Arizona Sate University, Tempe, AZ, United States, 2 Department 
of Biology, Allen Discovery Center, Tufts University, Medford, MA, United States

The study of collective behavior has traditionally relied on a variety of different methodological 
tools ranging from more theoretical methods such as population or game-theoretic models to 
empirical ones like Monte Carlo or multi-agent simulations. An approach that is increasingly 
being explored is the use of information theory as a methodological framework to study the 
flow of information and the statistical properties of collectives of interacting agents. While 
a few general purpose toolkits exist, most of the existing software for information theoretic 
analysis of collective systems is limited in scope. We introduce Inform, an open-source 
framework for efficient information theoretic analysis that exploits the computational power 
of a C library while simplifying its use through a variety of wrappers for common higher-level 
scripting languages. We focus on two such wrappers here: PyInform (Python) and rinform 
(R). Inform and its wrappers are cross-platform and general-purpose. They include classical 
information-theoretic measures, measures of information dynamics and information-based 
methods to study the statistical behavior of collective systems, and expose a lower-level 
API that allow users to construct measures of their own. We describe the architecture of 
the Inform framework, study its computational efficiency and use it to analyze three different 
case studies of collective behavior: biochemical information storage in regenerating planaria, 
nest-site selection in the ant Temnothorax rugatulus, and collective decision making in multi-
agent simulations.

Keywords: information transfer, information storage, information dynamics, complex systems, collective behavior, 
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1. InTRoducTIon

Collective behaviors, such as the coordinated motion of a flock of starlings (Ballerini et al., 2008), the 
collective decisions made by bees and ants (Franks et al., 2002), and the coordination of individual cells 
towards the creation or repair of a complex anatomical structure during embryogenesis or regeneration 
(Pezzulo and Levin, 2015), are complex collective phenomena that emerge from local interactions between 
many individuals. The study of these complex phenomena has been approached from many different 
angles, e.g., population models based on ordinary differential equations to predict the dynamics and study 
the stability of collective behaviors (Couzin et al., 2005; Marshall et al., 2009); game-theoretic approaches 
to study the emergence of cooperative strategies (Challet and Zhang, 1997); and multi-agents simulations 
to explore systems in the detail (Goldstone and Janssen, 2005). Another interesting approach is to focus 
on the distributed computation performed by the individuals in the collective (Langton, 1990; Mitchell, 
1996; Lizier et al., 2014) and use information theory to analyze its architecture. Information theory has 
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been used, for example, to detect leadership relations between zebra 
fishes (Butail et al., 2016; Mwaffo et al., 2017) or to study foraging 
behavior of ant colonies (Reznikova and Ryabako, 1994; Zenil et al., 
2015; Meyer, 2017). Additionally, it is extensively employed in the 
study of other complex systems with applications ranging from 
computational neuroscience (Honey et al., 2007; Vakorin et al., 2009; 
Lizier et al., 2011; Wibral et al., 2014), collectives of artificial agents 
(Williams and Beer, 2010; Boedecker et al., 2012; Walker et al., 2013; 
Biehl et al., 2016), neural and Boolean network models (Lizier et al., 
2009; Kim et al., 2015; Walker et al., 2016), and multi-robot systems 
(Sperati et al., 2008; Sperati et al., 2011). Computing information 
theoretic measures, however, is computationally demanding and 
requires efficient software methodologies.

A common approach is to develop software solutions to compute 
specific information-theoretic measures. For example, TRENTOOL 
(Lindner et al., 2011) and MuTE (Montalto et al., 2014) are Matlab 
toolkits to compute transfer entropy. MVGC (Barnett and Seth, 
2014) has been developed to compute Granger causality while 
ACSS (Gauvrit et al., 2016) and OACC (Soler-Toscano et al., 2014) 
to compute approximations to Kolmogorov complexity. However, 
while software options can always be developed to focus on 
particular techniques or methods, this approach is time-consuming 
for end-users. It can be tedious to explore and analyze the complex 
behavior of systems if every measure one chooses to use requires 
a separate library, not to mention the time spent in search of the 
functionality. What’s more, it is not always easy to find a library 
to suit one’s needs. One solution is to develop and make use of 
general-purpose software frameworks which can be applied across 
domains, and can provide researchers from different disciplines 
with a common software toolkit. At the risk of overselling our 
current endeavour, we can liken this approach to the development 
of solid, powerful linear algebra libraries such as BLAS (Lawson 
et al., 1979) and LAPACK (Anderson et al., 1999) which provide 
vast array of features and greatly simplify scientific computation. 
The most notable effort in this direction is the Java Information 
Dynamics Toolkit (JIDT) developed by (Lizier, 2014). JIDT is a 
Java library that provides access to classic information-theoretic 
measures (e.g., entropy and mutual information) as well as more 
recent measures of information dynamics (e.g., active information 
and transfer entropy) for both discrete and continuous data. JIDT 
is general-purpose and, thanks to the flexibility of the Java Virtual 
Machine, it can be called from several different high-level languages 
such as Matlab, Python or R.

In previous work (Moore et al., 2017), we introduced Inform: an 
open-source, general-purpose and cross-platform framework to 
perform information-theoretic analysis of collective of agents. Inform 
is a framework to analyze discretely-valued1 time series data and is built 
to achieve two grounding objectives: computational efficiency and user 
flexibility. The first of these objectives is achieved by the core component 
of Inform, a high efficiency C library that takes care of the computation 
of information measures. The second objective is achieved through the 
design of a simple API and the development of a suite of wrappers for 
common higher-level programming languages, e.g., Python, R, Julia, and 
the Wolfram Language. The use of C as the implementation language and 

1 While the current release of Inform only supports analysis of discrete time series, 
full support for continuous data is planned, see Section 6. 

Inform’s carefully designed API make wrapping the core functionality 
straightforward. Since Inform has no external dependencies, distributing 
packages is greatly simplified. This is an advantage over libraries 
implemented in languages such as Java or R which require a virtual 
machine or an interpreter. Inform provides easy access to functions 
for empirically estimating probability distributions and uses them to 
compute common information-theoretic measures while also exposing 
a flexible API that a user can leverage to implement their own specialized 
measures. Additionally, Inform provides a collection of utilities that can 
be combined with other components of the framework to yield a wider 
range of analyses than those explicitly implemented. Inform provides 
a wide range of standard information-theoretic measures defined over 
time series and empirical probability distributions, as well as all of the 
common information dynamics measures. In addition, Inform provides 
a suite of functions for computing less common information-theoretic 
measures such as partial information decomposition (Williams and 
Beer, 2010), effective information (Hoel et al., 2013) and information 
flow (Ay and Polani, 2008). Inform v1.0.0 is released under the MIT 
license and is publicly available on GitHub2.

In this work, we introduce two of Inform’s language wrappers: 
PyInform3 (Python) and rinform4 (R). While the Inform library is, 
at least by C standards, straightforward to use, it is rather low-level. 
The decision to use C puts some of the memory-management burden 
on the user, and leads to rather rudimentary error handling. It is for 
these reasons that we invest the time in developing and maintain 
usable wrappers in a variety of higher-level languages. Without this 
initiative, users would have to call the C functions directly, decreasing 
the researcher’s productivity and cluttering their code. This is not to 
mention the error-prone nature of interfacing languages. By targeting 
some of the more common languages used in the field, we aim to 
make the software and algorithms accessible to a wide user-base. The 
language wrappers are designed to provide users with an experience 
that is idiomatic to their chosen language under the assumption 
that users will be more productive in a language with which they 
are familiar. Inform’s language wrappers are developed using the 
wrapping languages’ native technology, e.g., object-orientation in 
Python. This allows users to work with a programming interface 
written in their chosen language without requiring knowledge of 
the core C library but still benefiting from its implementation of 
optimized algorithms.

We begin with a review of the design and implementation of 
the Inform framework in Section 2. In Section 2.1 we describe 
the architecture of Inform and its wrappers with a focus 
on each of the four major components of the framework—
distributions, information measures, time series measures and 
utilities. In Section 2.2 we discuss the validation process and 
stability of Inform, PyInform and rinform. In Section 3 we 
showcase the capabilities of the framework by analyzing three 
different collective systems: cellular-level biochemical processes 
in regenerating planaria (see Section 3.1), house-hunting 
behavior in Temnothorax ants (see Section 3.2), and consensus 
achievement in multi-agent simulations (see Section 3.3). Section 
4 is dedicated to the analysis of the computational performance 

2 https://github.com/elife-asu/inform
3 https://github.com/elife-asu/pyinform
4 https://github.com/elife-asu/rinform
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of Inform taking the JIDT library of (Lizier, 2014) as the reference 
framework and using active information and transfer entropy as 
benchmark metrics. Section 5 presents demonstrative examples 
of how to use PyInform and rinform with simple use cases for 
each of Inform v1.0.0’s major components. Finally, Section 6 
concludes this paper with a discussion of the advantages and the 
shortcomings of the Inform framework as well as a summary of 
future directions of development.

2. desIgn And ImplemenTATIon

Inform (MIT license)5 is a general-purpose library and 
framework for information-theoretic analysis of empirical 
time series data. Much of the design of Inform has focused 
on making the library (and its language wrappers) as intuitive 
and easy to use as possible, all the while attempting to provide 
powerful features that some other toolkits lack. Some of Inform’s 
features include:

•  Optimized implementations of many common information-
theoretic time series measures, including block entropy, mutual 
information, complete and apparent transfer entropy, active 
information storage and predictive information.

•  Optimized implementations of less common concepts such as 
effective information, information flow, evidence for integration 
and partial information decomposition.

•  All time series measures include local and average variants where 
applicable.

•  An empirical probability distribution structure over a discrete 
event space6 and a suite of basic information-theoretic functions 
built around it.

•  A collection of utility functions, such as black boxing and binning 
algorithms, which may be used in conjunction with time series 
measures to facilitate analysis of complex systems.

•  No external library dependencies.

The Inform library is implemented in cross-platform C, and 
can be built on any system with a C11-compliant7compiler. The 
choice of C was not a simple one. The decision came down to 
two factors:

1. Essentially all modern programming languages provide a C 
foreign-function interface.

2. Most of Inform’s functionality requires minimal memory 
management — typically only one allocation and deallocation per 
function.

3. C does not have exceptions. While useful in a given language, 
exceptions make interfacing languages more difficult.

4. C requires no external dependencies for distribution — as such, 
the wrapper libraries do not depend on an external virtual 
machine, interpreter or JIT compiler.

5 https://github.com/elife-asu/inform
6 Support for continuous event spaces is planned for v2.0.0, Section 6. 
7 ISO/IEC 9899:2011: https://www.iso.org/standard/57853.html

All subsequent references to Inform will refer to the entire 
framework including its wrappers; any reference to the C library 
will be disambiguated as such.

2.1. Architecture
Information theory largely focuses on quantifying information 
within probability distributions. To model this, Inform is designed 
around the concept of an empirical probability distribution. 
These distributions are used to define functions which compute 
information theoretic quantities. From these basic building blocks, 
we implemented an entire host of time series measures. Intuitively, 
the time series measures construct empirical distributions and 
call the appropriate information-theoretic functions. These three 
components—distributions, information measures and time 
series measures—form Inform’s core functionality. Additionally, 
Inform provides a suite of utilities that can be used to augment and 
extend it’s core features. We now detail how these components are 
implemented and interact with each other to provide a cohesive 
toolkit.

Inform’s empirical probability distributions are implemented 
by a distribution class, Dist. This class, which is a wrapper for 
the C structure inform_dist, stores the relative frequencies 
of observed events that can then be used to estimate each event’s 
probability. The framework provides a suite of functions built 
around Dist which makes it easy for users to create distributions, 
accumulate observations and output probability estimates. It is 
important to note that Inform’s empirical distributions are only 
defined for discrete events. Subsequent releases will natively 
support continuous data (see Section 6).

Inform uses the Dist class to provide well-defined 
implementations of many Shannon information measures. In 
Python, the canonical example of such a function is

pyinform.shannon.entropy(dist, b = 2) 

which computes the (Shannon) entropy of the distribution 
dist using a base-b logarithm . Equivalently, the R function to 
compute Shannon entropy is given by

shannon_entropy(dist, b = 2)

Each measure in the framework takes some number of 
distributions and the logarithmic base as arguments, ensures that 
they are all valid8 , and returns the desired quantity. Inform v1.0.0 
only provides information measures based on Shannon’s notion 
of entropy, but other types are planned for future releases (see 
Section 6).

Inform’s final core component is a suite of measures defined 
over time series. The version 1.0.0 release includes  15  time 
series measures with average and local (sometimes referred to 
as pointwise) variants provided where applicable. Each measure 
essentially performs some variation on the same basic procedure: 
first, accumulate observations from the time series into empirical 
distributions, and then, use them to compute some distribution-
based information measure. Table 1 provides a complete list of the 
time series measures provided in Inform v1.0.0.

8 An empirical distribution is considered invalid if it has no recorded events.
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The final component of Inform is the utility suite. One of the 
greatest challenges of building a general-purpose framework is 
ensuring that it can be applied to problems that are outside of 
the authors’ initial use cases. Inform attempts to do this by first 
exposing the basic components of the library, distributions and 
information measures, and then providing utility functions that 
can be used to augment the core functionality. One particular 
example of this is the black_box9 function which losslessly 
produces a single time series from a collection of time series (see 
Section 5.4 for a detailed description and an example of use of this 
particularly versatile function). The black_box function allows 
Inform to avoid implementing multivariate variants of time series 
measures while still making it straightforward for users to compute 
such quantities. Of course, there are a multitude of uses for such 
a function. Our aim is that the utility suite can extend Inform’s 
functionality well beyond what the authors had in mind when 
implementing the core library.

2.2. Validation
The Inform framework was developed using a test-driven approach: 
unit tests were written for each component before implementing the 
component itself. Consequently, all features in Inform have been 
thoroughly unit tested to ensure that they perform as expected. 
In fact, the bulk of the development effort went into testing, and 
test code accounts for roughly 60% of the entire C source code 
distribution.

9 The naming of this function is intended to bring to mind the process of “black 
boxing” nodes in a network. That is, this function models drawing an opaque box 
around a collection of nodes, treating them as one unit with no known internal 
structure.

To ensure cross-platform support, continuous integration 
services are employed to build and run all unit tests on multiple 
platforms. Travis CI10 builds currently ensure support for Linux 
with the gcc 4.6.3 and clang 3.4 compilers, and Mac OS X with 
AppleClang 7.3.0.7030031. AppVeyor11 builds ensure support for 
Windows with Microsoft Visual Studio 14 2015. Code coverage 
reports for PyInform and rinform are hosted by CodeCov12 and 
currently show a coverage of  97%  and  91% , respectively, while 
coverage for the C implementation is in the works for future 
releases.

3. AnAlysIs of collecTIVe BehAVIoRs

In this section, we illustrate the use of Inform by performing 
information-theoretic analyses of three collective behaviors: 
the dynamics membrane potentials and ion concentrations in 
regenerating planaria, nest-site selection by colonies of the ant 
Temnothorax rugatulus, and collective decision-making in a multi-
agent system. While the following results are interesting in their 
own right, and will likely be considered more deeply in subsequent 
work, our primary focus is on showcasing the utility and range of 
the Inform framework.

3.1. Biochemical collectivity in 
Regenerating planaria
In this first case study, we use partial information decomposition 
(Williams and Beer, 2010) to analyze how various ions contribute to 
the cell membrane potentials in a regenerating planarian. Planaria 
are an order of flatworms which have prodigious regenerative 
abilities (Sheĭman and Kreshchenko, 2015). When a planarian 
is cut in half, each piece will regenerate the missing tissue and 
develop into a fully functional individual. Recent work is stored 
in a complex biophysical circuit which is not hardwired by the 
genome (Oviedo et  al., 2010; Beane et  al., 2011; Emmons-Bell 
et al., 2015; Durant et al., 2017). Many pharmacological reagents 
that target the endogenous bioelectrical machinery (ion channels 
and electrical synapses known as gap junctions) can alter the 
behavior of this circuit and thus alter the large-scale bodyplan to 
which fragments regenerate. An example of this is ivermectin, a 
chloride channel opener, which results in the development of a 
two-headed phenotype upon regeneration (Beane et al., 2011). The 
resulting two-headed morphology is persistent under subsequent 
regeneration events outside of the presence of ivermectin. The 
hypothesis is that these gap-junction inhibitors disrupt proper 
bio-electric communication between cells and lead the organism 
to non-wildtype morphological attractors. As an initial step at 
understanding how the morphological information is stored and 
modified, we can look at how information about the bio-electric 

10 https://travis-ci.org/ELIFE-ASU/Inform, https://travis-ci.org/ELIFE-ASU/
PyInform , https://travis-ci.org/ELIFE-ASU/rinform 
11 https://ci.appveyor.com/project/dglmoore/inform-vx977 , https://ci.appveyor.
com/project/dglmoore/pyinform , https://ci.appveyor.com/project/gvalentini85/
rinform 
12 https://codecov.io/gh/ELIFE-ASU/PyInform , https://codecov.io/gh/ELIFE-
ASU/rinform 

TABle 1 |  The time series measures available in inform v1.0.0. 

Time series measure
local/pointwise 

Variant

Block Entropy (Shannon, 1948)  ✓ 
Cross Entropy (Cover and Thomas, 2005)  × *

(Multivariate) Mutual Information (Tononi et al., 1994; Cover and 
Thomas, 2005) 

 ✓ 

Conditional Entropy (Cover and Thomas, 2005)  ✓ 
Relative Entropy (Kullback and Leibler, 1951; Cover and 
Thomas, 2005) 

 ✓ 

Entropy Rate (Cover and Thomas, 2005)  ✓ 
Active Information (Lizier et al., 2012)  ✓ 
Transfer Entropy (Schreiber, 2000; Kaiser and Schreiber, 2002; 
Lizier et al., 2008) 

 ✓ 

Separable Information (Lizier et al., 2010)  ✓ 
Predictive Information (Bialek et al., 2001a; Bialek et al., 2001b)  ✓ 
Excess Information (Crutchfield and Feldman, 2003; Feldman 
and Crutchfield, 2003) 

 ✓ 

Effective Information (Hoel et al., 2013; Hoel, 2017)  × 
Information Flow (Ay and Polani, 2008)  × 
Partial Information Decomposition (Williams and Beer, 2010)  × 
Evidence of Integration (Biehl et al., 2016)  × 

Local/Pointwise variants are implemented for all measures that reasonably admit them, 
signified by a ✓ . A  ×  denotes measures for which a local variant is not implemented.
*( × ) Cross entropy’s local variant is equivalent to local block entropy, and is thus not 
implemented.
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patterning is stored in specific intracellular ion concentrations of 
 Na+ , K+ ,  Ca2+  and  Cl− .

We use the BioElectric Tissue Simulation Engine (BETSE) 
(Pietak and Levin, 2016) to simulate the planarian regeneration 
process under a simple two-cut intervention (Pietak and Levin, 
2017). For this demonstrative case study, we simulate the planarian 
for  1000  s after two surgical cuts are made, dividing the worm into 
three pieces Figure 1A-C. From the simulation we extract the time 
series, sampled at a frequency of  10Hz   ( 10, 000  time steps), of the 
average cell membrane potentials  Vmem  and the  Na+ , K+ ,  Ca2+  
and  Cl−  ion concentrations for each cell. We use a “threshold” 
binning to bin the average cell membrane potentials using a 
biologically realistic activation threshold of  −40mV  , the cell is 
considered depolarized (state 1 ) when  Vmem  is above  −40mV  , and 
hyperpolarized (state  0 ) otherwise. Each of the ion concentrations 
are separately binned into two uniform bins whose sizes depend 
on the range of the ion’s concentration.

From these binned data, we compute the partial information 
decomposition (PID) of the information about  Vmem  provided 
by the ion concentrations. From the 4  ion variables, Inform 
constructs the full  166 -node redundancy lattice; however, only  13  
of those nodes represent variable combinations that contribute 
unique information, in the sense of (Williams and Beer, 2010). 
We pruned all but those  13  variable combinations. The resulting 
sub-lattice is depicted in Figure 1D. Altogether, the intracellular 
ion concentrations yield approximately  0.425  bits of information 
about the average cell membrane potential – computed as the sum 
of the unique information provided by each node. This is less than 
the theoretical maximum of 1  bits, but that’s hardly surprising given 
that the cell membrane potential is determined by the difference 
between the intra- and extracellular ion concentrations. We also see 
that the only individual ion that provides any unique information 
about  Vmem  is  Na+  –  Na+  is the only ion that appears alone in 
Figure 1D. We know that both  Na+  and K+  play a crucial role 

fIguRe 1 |  The  Vmem  distribution over the body of a BETSE simulated planarian (Pietak and Levin, 2016) over the course of regeneration: (A) pre-surgery, (B)  0
 s post-surgery, (c)  1000 s post surgery. (d) The non-zero redundancy sub-lattice computed via partial information decomposition. Each node presents the 
redundant information provided by the given collection of random variables. Of the  166  nodes in the full redundancy lattice, these  13  are the only nodes which yield 
non-zero unique information. All other nodes were pruned, and the edges were constructed using the Williams-Beer dependency relations. Nodes are colored 
roughly by the order of magnitude of their unique information content.
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in determining  Vmem , so it is surprising to see that  Na+  is the 
dominate information provider. Subsequent work will delve deeper 
into the what this decomposition tells us about the biochemical 
mechanisms of regeneration.

As we conclude this example, it is worthwhile to acknowledge 
that Inform’s current implementation of PID is limited to Williams’s 
and Beer’s  Imin  measure of redundant information (Williams and 
Beer, 2010). A number of alternative measures of redundancy 
and uniqueness could be applied to the redundancy lattice, e.g. 
(Bertschinger et al., 2014), and there is continuing discussion as 
to which is the “correct” measure. A subsequent version of PID 
will allow the user to specify which measure they would prefer, 
and even allow them to implement their own.

3.2. nest-site selection by the Ant 
Temnothorax Rugatulus
In this case study, we use local active information to analyze 
collective decisions made by the ant Temnothorax rugatulus 
(Pratt et  al., 2002; Sasaki et  al., 2013). Specifically, we consider 
nest-site selection, a popular and well-studied collective behavior 
observed both in honeybee swarms and ant colonies (Franks 
et al., 2002). When Temnothorax ants need to choose a new nest, 
individuals in the colony explore the surrounding environment 
looking for possible candidate sites (e.g., a rock crevice). Upon the 
identification of a good candidate, an ant may perform a tandem 
run—a type of recruitment process whereby the ant returns to the 
old nest to lead another member of the colony in a tandem to the 
newly found site for a possible assessment. Tandem runs, together 
with independent discoveries of the same site, allow for a build 
up of a population of ants at that site which in turn triggers the 
achievement of a quorum, i.e., the identification by individual ants 
of the popularity of a candidate site. After quorum is reached, ants 
switch from performing tandem runs to performing transport—a 
type of recruitment process distinct from tandem runs whereby 
an ant returns to the old nest, loads another ant on her back and 
carries that ant to a site. The combination of parallel exploration, 
tandem runs, quorum sensing and transports allows Temnothorax 
ants to concurrently evaluate different candidate sites and converge 
on a collective decision for the best one.

For this study, we look at a live colony of 78 T. rugatulus ants 
repeatedly choosing between a good and a mediocre site in a 
laboratory environment for a total of 5 experiments. We consider 
ants to be in one of three state: uncommitted (state 0), committed 
to the good site (state 1) or committed to the mediocre site (state 
2). All ants in the colony are individually paint-marked using a 
four-color code which allows us to identify individual ants and 
track their commitment state. From video-recordings of the 
experiments, we extract the commitment state of each ant over 
time as follows: initially, all ants are considered uncommitted, and 
ants commit to a certain site after performing a tandem run or a 
transport towards that site or when they are transported to that 
site. We record the commitment state of each ant every second 
and obtain 78 time series for each of the 5 experiments which 
we use to compute the local active information (history length 
 k = 2 ). As different experiments differ in duration due to the 
stochasticity inherent to colony emigrations, time series extracted 

from different experiments also differ in length (but all 78 time 
series within the same experiment have the same length). In our 
analysis, we considered shortened time series of  3× 104  time 
steps (approximately the same duration of the fastest emigration 
experiment) following a procedure described below.

Figure 2 shows the results of our analysis of the local active 
information together with the change of commitment over time for 
the entire colony. Data are aggregated as follows: we first compute 
the mean local active information of individual ants in a colony 
emigration; then, we find the point in time where local active 
information peaks; finally, we center the local active information 
and the colony-level commitment state for each emigration around 
this point in time (i.e., time 0 in Figure 2) and compute mean, 
maximum and minimum values over experiments. The peak in 
the local active information is approximately in the middle of the 
decision-making process (i.e., when half of the colony is committed 
for the good site and half is still uncommitted). This maximum of 
the local active information, approximately 1 bit, identifies a critical 
point in the collective decision.

3.3. multi-Agent simulations
In this final case study, we use transfer entropy to analyze the flow 
of information in a multi-agent system developed to study the 
best-of- n  problem (Valentini et al., 2017). Specifically, we consider 
a system where a collective of agents needs to chose between two 
options:  0  or1 . The behavior of each agent is defined as a probabilistic 
finite-state machine with 2 states for each option: exploration and 
dissemination. In the exploration state, an agent explores the 
environment and evaluates the quality of its currently favored 
option. In the dissemination state, an agent promotes its opinion 
(i.e., broadcast its preference for a particular option to its neighbors) 
for a time proportional to the quality of its favored option. At the 

fIguRe 2 |  Distribution of local active information and colony-level 
commitment state for a live colony of 78 T. rugatulus ants computed over 5 
colony emigrations. Lines represent mean values of local active information 
(lAI), and proportions of ants in the colony that are uncommitted (u), 
committed to the good site (g) and committed to the mediocre site (m). 
Shaded areas correspond to minimum and maximum values of the same 
quantities.
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end of the dissemination state, soon before transitioning to the 
exploration state, the agent collects the preferences of its neighbors 
and applies a decision rule to reconsider its current preference. In 
this case study we consider two decision rules: the majority rule, 
whereby an agent adopts the option favored by the majority of its 
neighbors, and the voter model, whereby an agent adopts the option 
favored by a randomly chosen neighbor (Valentini et al., 2016).

We consider a collective of 100 agents tasked with a binary 
decision-making problem where the best option has quality  1.0  and 
the other option has quality  0.9 . All the agents in the collective apply 
the same decision rule (i.e., either the majority rule or the voter 
model) over a neighborhood represented by the agent’s 5 nearest-
neighbors. For each decision rule, we performed 1000 multi-agent 
simulations where the initial preferences of the agents are equally 
distributed among the two options. We let simulations run for a total 
duration each of  104  seconds. Our aim is to use transfer entropy to 
analyze the flow of information to an agent from its neighborhood 
as it applies its decision rule. We extract a binary-state series of 
preferences for each agent, where each element of the series is the 
agent’s preference immediately prior to apply it’s decision rule. 
We then construct a  6 -state series of neighborhood states, each 
element of which is the number of neighbors with a preference for 
the best option (i.e.,  {0, . . . , 5} ) at the time of the agent’s decision. 
As opposed to the previous case study, each simulation lasts for 
the same amount of time. However, the number of applications 
of a decision rule by an agent within the same simulation and 
across different simulations is stochastic. Consequently, time 
series derived from different agents differ in length (on average, 
 13.93± 3.27  for the majority rule and  13.82± 2.89  for the voter 
model). To mitigate the effect of short time series, we used time 
series from all agents within a simulation to compute the probability 
distributions required for transfer entropy (i.e., an average of  1393  
samples for the majority rule and  1382  for the voter model) and 
consider this quantity an average over all agents of the collective. 
In this system, agents are memoryless and parameters have been 
tuned to approximate a well-mixed interaction pattern. However, 
time correlation may still be present as a result of the interaction 
of agents with their neighborhood. For simplicity, we use a history 
length of  k = 1  and let the investigation of longer history lengths 
for future work.

Figure 3 shows the results of our analyses of the multi-agent 
simulations. Specifically, it depicts the probability density functions 
(PDF) of the average transfer entropy toward an agent applying a 
decision rule over 1000 simulations. To compute the average transfer 
entropy towards an agent, we estimate the required probability 
distributions from the time series of all agents in the collective and 
use these distributions to obtain one sample of transfer entropy 
for each simulation. The PDFs of transfer entropy obtained for the 
majority rule and for the voter model are remarkably different (two 
sample  t  -test,  p -value  < 2.2 · 10−16 ). On average, the majority rule 
has a higher value of transfer entropy ( 0.3106  bits) with respect 
to the voter model ( 0.2019  bits). However, it is also characterized 
by a larger spread with a SD of  0.1302  bits compared to that of 
the voter model,  0.0301  bits. Previous analysis of these decision 
mechanisms under similar conditions showed that the majority 
rule is much faster than the voter model and its consensus time 
has an higher variance as well (Valentini et al., 2016). These results 

are likely correlated and a deeper analysis of this case study is 
currently undergoing.

4. peRfoRmAnce AnAlysIs

In this section, we investigate the performance of PyInform 
by calculating two computationally demanding measures of 
information dynamics: active information (AI) and transfer entropy 
(TE). While we focus on PyInform here, rinform shows comparable 
performance characteristics. We compare the performance of 
PyInform with that of JIDT (Lizier, 2014) which we take as the 
gold-standard for the field. We chose AI and TE as they are the 
primary overlap in the functionality of PyInform and JIDT. The 
time series for the following tests were generated using the same 
multi-agent simulation described in Section 3.3. The state of each 
agent includes its opinion (i.e.,  0  or 1 ) and its control state (i.e., 
dissemination or exploration). As such, the time series for each 
agent is base-4  and runs for the entire duration of the simulation, 
not just the decision points as in Section 3.3. We considered four 
different data sets wherein we varied both the decision rule (i.e., 
majority rule or voter model) and the difficulty of the decision-
making problem (i.e.,  ρ0 = 1.0  and  ρ1 ∈ {0.5, 0.9} ). For each data 
set, we executed  1000  simulations with a duration of  1001  time steps 
using a collective of  50  agents initialized with an equal distribution 
of preferences for both options.

Using the four data sets described above, we computed the AI for 
each agent in the collective and the TE using PyInform and JIDT’s 
built-in time series-based functionality. We computed AI and TE 
for history lengths  1 ≤ k ≤ 11  or until computational resources 
were exhausted. For each data set and history length  k , we repeated 
5 times the calculations and timed the computational process. In 
computing the run times, we considered only the time necessary 
to loop over the agent combinations and to compute the relevant 
values while we disregarded the time spent reading data files and 
comparing results. All performance tests were single-threaded and 

fIguRe 3 |  Probability density functions of the average transfer entropy for 
agents in systems applying the majority rule (purple) and for agents in 
systems using the voter model (green).
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run with Amazon Web Services, using a  c4. large EC2 instance 
relying on a 2 vCPUs and 3.75 GB of RAM13

Figure 4 shows the results of the performance comparison as 
the ratio of execution times between JIDT and PyInform for active 
information (left panel) and transfer entropy (right panel). In 
both experiments, the PyInform package outperforms JIDT with 
a speedup ranging from a minimum of  1.2×  up to a maximum 
speedup of  7× . The computational gain of PyInform over JIDT 
is more pronounced when computing average measures with a 
history length  k > 8  both in the case of AI and in that of TE. It 
is obligatory to note that history lengths  k > 8  are rarely useful 
in practice as the amount of data necessary for the measures 
to show statistical significance grows exponentially in  k . We 
include the longer history lengths, simply to acknowledge that 
both frameworks experience exponential growths in runtime as 
 k  grows. As one would expect, the computational requirements 
of transfer entropy are greater than those of active information 
for both frameworks.

In addition to comparing the runtime performance, we also 
compared the absolute results of the calculations for all values 
of  k . The values computed with the PyInform package never 
differed from those of the JIDT library by more than  10−6 bits . 
PyInform is marginally more computationally efficient than JIDT 
while providing equally accurate calculations of information-
theoretic measures. However, it is important to remember that 
computational performance is not the only aspect that one 
should consider when choosing a software solution. Developer 
time is often more valuable than computation time. For example, 
JIDT offers many benefits over Inform including its support 
for continuously-valued data and a wider range of parameters 
(e.g., source embedding, embedding delays, source-target delay). 
Subsequent versions of Inform will reduce the discrepancy in 
features (see Section 6), and the library wrappers are designed 

13 See https://aws.amazon.com/ec2/instance-types/ for the specifications of the 
c4.large EC2 instance..

to increase programmer productivity. Whether or not speed is 
a deciding factor in a user’s decision to use Inform will depend 
on the requirements of the task at hand.

5. use cAse exAmples

In this section we provide a few examples of how to directly use 
the Python and R wrappers, respectively, PyInform and rinform. 
Live documentation of these wrappers can be found at https:// 
elife- asu. github. io/ PyInform and https:// elife- asu. github. io/ 
rinform.

5.1. empirical distributions
We start with a simple example of how to use the Dist class to 
estimate a probability distribution from a binary sequence of events 
(see Listing 1 for PyInform and Listing 2 for rinform). In Python, 
the from_data static method creates a distribution and records 
observations from an array of discrete events. The same objective 
can be achieved in R using the infer function. In this case, two 
observations are made of the event “ 0 ” and three of event “1 ”. 
The probability method can be used to query the estimated 
probability of a given event. Alternatively, the dump method can 
then be used to return an array of all estimated probabilities.

listing 1 |  estimate a probability distribution from a binary sequence of 
events. (python)

In [1]: from pyinform import Dist
In [2]: dist = Dist.from_data([0,1,1,0,1]) # observe 2 0’s and 3 1’s
In [3]: dist
Out[3]: Dist.from_hist([2, 3])
In [4]: dist.probability(0) # What is the probability of seeing a 0?
Out[4]: 0.4
In [5]: dist.probability(1) # What is the probability of seeing a 1?
Out[5]: 0.6
In [6]: dist.dump() # output the probabilities to an array Out[6]: array([0.4, 0.6])

fIguRe 4 |  Performance ratio versus history length for average and local active information (A) and average and local transfer entropy (B) The dashed lines mark 
a performance ratio of  1.0 . Memory constraints limited computation of transfer entropy with JIDT up to  k = 10 .
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This is only a sample of the functionality provided around 
the Dist class. Further examples can be found in the live 
documentation of PyInform14 and rinform 15

5.2. shannon Information measures
As described in Section 2.1, the Shannon information measures 
are defined around the Dist class. In this subsection, we give an 
example of how to compute the Shannon entropy of a distribution. 
In Listing 3, we demonstrate how to construct a Dist instance 
and compute its entropy using PyInform while Listing 4 shows 
the equivalent implementation using rinform. The resulting 
distribution can record observations of two events, “ 0 ” or “1
 ”. With the distribution in hand, the accumulate function 
accumulates the observations from an array. This is functionally 
equivalent to Dist.from_data which was used in Listing 1 
(Python) and infer which was used in Listing 2 (R). Once the 
distribution has been created, computing its entropy is as simple 
as performing a single function call to shannon.entropy (in 
Python) or shannon_entropy (in R).

A host of information measures are provided in the Inform 
framework. These can be found in the pyinform.shannon 
module16 for PyInform. While rinform is not organized into 
modules, the user has access to all the same information measures 
as described in the rinform’s documentation17

5.3. Time series measures
The time series measures are a primary focus for the Inform 
framework. Listing 5 (Python) and Listing 6 (R) provide a 

14 http://elife-asu.github.io/PyInform/dist.html
15 https://elife-asu.github.io/rinform/#2_empirical_distributions.
16 http://elife-asu.github.io/PyInform/shannon.html
17 https://elife-asu.github.io/rinform/#3_shannon_information_measures

complete example of how to estimate the average and local 
(pointwise) transfer entropy between two base-4  time series — this 
functionality was used in the performance analysis described in 
Section 4. To demonstrate this, we construct18 a source time series, 
src, and then shift and copy it to a target time series, target. 
The expected result is that the average transfer entropy from src 
to target will be near  2.0  bits. The transfer_entropy 
function is employed to compute this value. The examples go on 
to compute the local transfer entropy, which returns an array of 
local (pointwise) values.

Time series measures can fail for a variety of reasons ranging 
from invalid arguments to exhausted system memory. In these 
situations, an error is raised which describes the reason for the 

18 In Python, we use —numpy—, a package that provides a wealth of useful array-
based functionality: http://www.numpy.org/. 

listing 2 |  estimate a probability distribution from a binary sequence of 
events. (R)

In [1]: library(rinform)
In [2]: dist <- infer(c(0,1,1,0,1)) # observe 2 0’s and 3 1’s
In [3]: dist
Out[3]: $histogram: [1] 2 3
Out[3]: $size: [1] 2
Out[3]: $counts: [1] 5
Out[3]: attr(,”class”): [1] ”Dist”
In [4]: probability(dist, 1) # What is the probability of seeing a 0?
Out[4]: 0.4
In [5]: probability(dist, 2) # What is the probability of seeing a 1?
Out[5]: 0.6
In [6]: dump(dist) # output the probabilities to an array
Out[6]: [1] 0.4 0.6

listing 3 |  estimate the entropy of an empirical distribution of binary 
events. (python)

In [1]: from pyinform import shannon
In [2]: from pyinform import Dist
In [3]: dist = Dist(2) # create a Dist over two events
In [4]: dist.accumulate([0,1,1,0,1]) # accumulate some observations
Out[4]: 5 # 5 observations were made
In [5]: shannon.entropy(dist, b = 2) # compute the base-2 Shannon entropy
Out[5]: 0.9709505944546686

listing 4 |  estimate the entropy of an empirical distribution of binary 
events. (R)

In [1]: library(rinform)
In [2]: dist <- Dist(2) # create a Dist over two events
In [3]: dist <- accumulate(dist, c(0,1,1,0,1)) # accumulate some observations
In [4]: shannon_entropy(dist, b = 2) # compute the base-2 Shannon entropy
Out[5]: [1] 0.9709506

listing 5 |  estimate the average and local transfer entropy from discrete 
data. (python)

In [1]: import numpy as np
In [2]: from pyinform import transfer_entropy
In [3]: np.random.seed(2018)
In [4]: src = np.random.randint(0, 4, 100)
In [5]: target = np.zeros(len(source), dtype = int)
In [6]: target[1:] =src[:−1]
In [7]: transfer_entropy(src, target, k = 1) # TE with history length 1
Out[7]: 1.8705725949309469
In [8]: lte = transfer_entropy(src, target, k = 1, local = True) # Local TE
In [9]: lte.shape
Out[9]: (1, 99)
In [10]: np.mean(lte) # the mean local TE is approximately the
Out[10]: 1.870572594930947 # same as Out[7]
In [11]: lte = transfer_entropy(src, target, k = 0)
  … # stack trace removed for brevity
InformError: an inform error occurred - ”history length is zero”

listing 6 |  estimate the average and local transfer entropy from discrete 
data. (R)

In [1]: library(rinform)
In [2]: set.seed(2018)
In [3]: src <- sample(0:3, 100, TRUE)
In [4]: target <- c(src[100], src[1:99])
In [5]: transfer_entropy(src, target, k = 1) # TE with history length 1
Out[5]: [1] 1.912181
In [6]: lte <- transfer_entropy(src, target, k = 1, local = TRUE) # Local TE
In [7]: dim(lte)
Out[7]: (99, 1)
In [8]: mean(lte) # the mean local TE is approximately the
Out[8]: [1] 1.912181 # same as Out[5]
In [9]: lte <- transfer_entropy(src, target, k = 0)
Out[9]: Error: <k > is less then 1!
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function’s failure. At the end of both Listing 5 and Listing 6, we 
provide an example of an erroneous function invocation. Pyinform 
raises an InformError while rinform prints an error message.

All of the time series measures follow the same basic calling 
conventions as transfer_entropy. Further examples of the 
various time series measures can be found in the live documentation 
of PyInform19 and rinform 20

5.4. utility functions
Our next example, Listing 7 and Listing 8, demonstrates how to 
use Inform’s utility functions to estimate the multivariate active 
information of two continuous time series, node1 and node2. 
It begins by binning points in each time series into one of two 
bins,  x < 0.5  or  x ≥ 0.5 , using the bin_series function. Once 
binned, the series are black-boxed, that is, their states are aggregated 
together over a larger state-space, using the black_box function 
to produce a base-4  time series (i.e., the product of the bases of 
node1 and node2). Each time step of this black-boxed time 
series, series, represents the joint state of the two binned time 
series. From series, the multivariate active information with 
 k = 1  is estimated using the active_info function.

19 http://elife-asu.github.io/PyInform/timeseries.html
20 https://elife-asu.github.io/rinform/#4_time_series_measures.

The flexibility of the the black_box function makes it worthwhile 
to elaborate further on precisely what it does. In making concurrent 
observations of a collection of random variables, say  X1,X2, . . . , which 
may or may not be correlated with one another, we are in fact making 
observations of an underlying variable W   defined over a different 
state space Ω . These observed variables can be thought of as views, 
filters or projections of the the underlying system state drawn from 
 Ω . Many information analyses require the reconstruction of Ω  from 
the observations of  X1,X2, . . . . The black_box function covers this 
role in Inform. Given a number of time series, each representing the 
time series of a random variable, black_box losslessly encodes the 
joint state of those time series as a single value in the system’s joint 
state space Ω . As a concrete example, consider the following time 
series of concurrent observations of two random variables

 X : 0, 1, 1, 0, 1, 0, 0, 1,  
 Y : 1, 0, 0, 2, 1, 2, 1, 2.  

Here, X   is a binary variable while Y   is a trinary one. Together, 
observations of X   and Y   may be thought to represent observations 
of an underlying state variable  W = (X,Y) ∈ Ω 21: 

 W : (0, 1), (1, 0), (1, 0), (0, 2), (1, 1), (0, 2), (0, 1), (1, 2).  

As such, these observations can be encoded as a base- 6  time series 
which is precisely what black_box does, yielding

 W : 1, 3, 3, 2, 4, 2, 1, 5.  

The black_box function accepts a host of arguments which 
augment how it constructs the resulting time series, all of which are 
described and demonstrated in the documentation22.

Inform’s collection of utilities allows the user to easily construct 
new information-measures over time series data. Combining utility 
functions such as black_box with common time series measures 
such as mutual_info is a powerful way for the user to extend 
the functionality of the Inform framework to include measures of 
particular interest to their research.

We will now conclude this section with two demonstrative 
examples of how black_box can be combined with the time series 
functions block_entropy23 and mutual_info to implement 
conditional entropy and active information, respectively. First recall 
that the conditional entropy of a random variable X   conditioned on 
a random variable Y   is defined as

 
H(X |Y) = −

∑
x,y

p(x, y) log p(x | y) = H(X,Y)−H(Y).
  (1)

As such, one might compute the conditional entropy by first 
constructing the joint distribution  (X,Y)  (using black_box) and 

21 Note that if we had considered W′ = (Y,X) ′ Ω′ instead, the encoded time 
series would have been different , e.g., 2,1,1,4,3,4,2,5. However, the mutual 
information between them, I(W,W′), tends to the theoretical maximum H(W) 
as the number of observations increases; this indicates that (X,Y) and (Y,X) are 
informationally equivalent representations of the underlying space.
22 http://elife-asu.github.io/PyInform/utils.html , https://elife-asu.github.io/
rinform/#5_utilities.
23 The —block_entropy— function computes the Shannon block entropy of a time 
series. This reduces to the standard Shannon entropy when a block size of k = 1 is 
used, e.g., —block_entropy(series, k = 1)—. 

listing 7 |  estimate the average multivariate active information of two 
continuous time series. (python)

In [1]: from pyinform import active_info
In [2]: from pyinform.utils import bin_series, black_box
In [4]: threshold = 0.5
In [5]: node1, _, _ =bin_series([0.5, 0.2, 0.6, 0.8, 0.7], bounds = [threshold])
In [6]: node1
Out[6]: array([1, 0, 1, 1, 1], dtype = int32)
In [7]: node2, _, _ =bin_series([0.1, 0.9, 0.4, 0.7, 0.4], bounds = [threshold])
In [8]: node2
Out[8]: array([0, 1, 0, 1, 0], dtype = int32)
In [9]: series = black_box((node1, node2))
In [10]: series
Out[10]: array([2, 1, 2, 3, 2], dtype = int32)
In [11]: active_info(series, k = 1)
Out[11]: 1.

listing 8 |  estimate the average multivariate active information of two 
continuous time series. (R)

In [1]: library(rinform)
In [3]: threshold <- 0.5
In [5]: node1 <- bin_series(c(0.5, 0.2, 0.6, 0.8, 0.7), bounds = threshold)$binned
In [6]: node1
Out[6]: [1] 1 0 1 1 1
In [7]: node2 <- bin_series(c(0.1, 0.9, 0.4, 0.7, 0.4), bounds = threshold)$binned
In [8]: node2
Out[8]: [1] 0 1 0 1 0
In [9]: series <- black_box(matrix(c(node1, node2), ncol = 2), l = 2)
In [10]: series
Out[10]: [1] 2 1 2 3 2
In [11]: active_info(series, k = 1)
Out[11]: [1] 1

https://www.frontiersin.org/journals/Robotics_and_AI#articles
http://www.frontiersin.org/journals/Robotics_and_AI
https://www.frontiersin.org


Moore et al.

11 June  2018 | Volume 5 | Article 60Frontiers in Robotics and AI | www. frontiersin. org

Information Analysis of Collective Behaviors

then computing the difference of entropies as in Equation (1) (using 
block_entropy). This is demonstrated using PyInform in Listing 
9 and rinform in Listing 10.

Finally, we will perform a similar process to estimate the active 
information of random variable X   as defined by

 
Ak(X) =

∑
x+,x(k)

p(x+, x(k))log
p(x+, x(k)i )
p(x+)p(x(k))

= I(X+,X(k))
  

(2)

where X+  is the random variable representing the state of X   in 
the next time step and X(k)  is the present  k -history of X  . We can 
use black_box to construct the time series of  k -histories, and 
mutual_info to compute the mutual information between X+  
and X(k)  as in Equation (2). We demonstrate this using PyInform 
and rinform in Listing 11 and Listing 12, respectively.

6. conclusIon And dIscussIon

In this paper we introduced Inform v1.0.0, a flexible and 
computationally efficient framework to perform information-
theoretic analysis of collective behaviors. Inform is a general-
purpose, open-source, and cross-platform framework designed 
to be flexible and easy to use. It builds on a computationally 
efficient C library and an ecosystem of foreign language wrappers 
for Python, R, Julia, and the Wolfram Language. Inform gives the 
user access to a large set of functions to estimate information-
theoretic measures from empirical discretely-valued time series. 
These include classic information-theoretic measures such as 
Shannon’s entropy and mutual information, information dynamics 
measures such as active information storage and transfer entropy, 
and information-based concepts conceived to investigate the 
causal architecture of collective systems. Inform’s low-level API 

is organized around the concepts of probability distributions, 
information measures, time series measures and utilities and its 
flexibility allows users to construct new measures and algorithms 
of their own. We showcased the Inform framework by applying it 
to the study of three collective behaviors: cellular-level biochemical 
processes in regenerating planaria, colony emigration by the ant 
Temnothorax rugatulus, and collective decision-making in multi-
agent simulations. We investigated the performance of the Inform 
framework by comparing them with those of the JIDT library 
showing that Inform have similar or superior performance with 
respect to JIDT. In effect, Inform is a potentially invaluable tool 
for any researcher performing information analysis of collective 
behaviors and other complex systems.

The Inform framework is still a relatively young project 
compared to more mature projects such as JIDT. While it has 
many features that make it unique such as, its computational 
efficiency, the large set of information-theoretic methods, and 
the availability of foreign language wrappers, it does lack some 
important functionality. We are planning three subsequent releases 
to incrementally extend the Inform framework. In the version 1.1.0 
release, we will modify Inform’s interface to provide the user with 
access to the probability distributions used in the computation of 
information dynamics measures and their accumulation functions. 
In Python, for example, the extended API for computing the active 
information may take the following form:

class ActiveInfoAccumulator(Accumulator):
 def __init__(self):
  pass
 def accumulate(self, data):
  pass
 def evaluate(self, local = False):
  pass

The advantage of exposing probability distributions and their 
accumulation functions is that the user can modify the way 

listing 9 |  estimate conditional entropy between two time series using 
black_box and block_entropy. (python)

In [1]: from pyinform import block_entropy, conditional_entropy
In [2]: from pyinform.utils import black_box
In [3]: X = [0,1,2,2,2,2,0,1,0] # the target variable
In [4]: Y = [0,0,1,1,1,1,0,0,0] # the condition variable
In [5]: XY = black_box((X,Y)) # the joint variable (X,Y)
In [6]: conditional_entropy(X, Y) # H(X | Y) =H(X,Y) - H(Y)
Out[6]: 0.5394169969192604
In [7]: block_entropy(XY, k = 1) - block_entropy(Y, k = 1)
Out[7]: 0.5394169969192604

listing 10 |  estimate conditional entropy between two time series using 
black_box and block_entropy. (R)

In [1]: library(rinform)
In [2]: X <- c(0, 1, 2, 2, 2, 2, 0, 1, 0) # the target variable
In [3]: Y <- c(0, 0, 1, 1, 1, 1, 0, 0, 0) # the condition variable
In [4]: XY <- black_box(matrix(c(X, Y), ncol = 2), l = 2) # the joint variable (X,Y)
In [5]: conditional_entropy(Y, X) # H(X | Y) =H(X,Y) - H(Y)
Out[5]: 0.539417
In [6]: block_entropy(XY, k = 1) - block_entropy(Y, k = 1)
Out[6]: 0.539417

listing 11 |  estimate active information of a time series using black_
box and mutual_info. (python)

In [1]: from pyinform import active_info, mutual_info
In [2]: from pyinform.utils import black_box
In [3]: X = [0,0,1,1,1,1,0,0,0]
In [4]: X2 = black_box(X, k = 2) # the 2-histories of X
In [5]: active_info(X, k = 2)
Out[5]: 0.3059584928680418
In [6]: mutual_info(X[2:], X2[:−1]) # align indices of X and X2
Out[6]: 0.3059584928680421

listing 12 |  estimate active information of a time series using black_
box and mutual_info. (R)

In [1]: library(rinform)
In [3]: X <- c(0, 0, 1, 1, 1, 1, 0, 0, 0)
In [4]: X2 <- black_box(X, l = 1, r = 2) # the 2-histories of X
In [5]: active_info(X, k = 2)
Out[5]: 0.3059585
In [6]: mutual_info(matrix(c(X[3:9], X2[1:7]), ncol = 2))
Out[6]: 0.3059585
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that probabilities are estimated. As opposed to the version 1.0.0 
where Inform’s time series measures require that all time series 
be stored in memory prior to the estimation of distributions, this 
new release will allow the user to write their own accumulation 
functions which could incrementally update distributions from 
very large time series stored on the hard-drive or with data that is 
generated in real-time. In the version 1.2.0 release, we will provide 
support for non-Shannon entropy functions. Shannon’s entropy 
of a discrete random variable is the unique functional form of 
entropy that satisfies all Shannon’s four axioms (Shannon, 1948). 
However, many functional forms of entropy become possible as 
soon as these four axioms are relaxed or otherwise modified. Two 
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2000; Kaiser and Schreiber, 2002), with the aim of extending 
Inform’s reach towards continuously-valued data. More advanced 
estimation techniques, such as Kraskov-Stögbauer-Grassberger 

estimation  (Kraskov et  al., 2004), are planned for subsequent 
releases once we have a standardized API support of continuous 
data. Some additional details concerning future releases of the 
Inform framework are described on the Issues page24 of the GitHub 
repository where users are encouraged to suggest features or  
report bugs.
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