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There are few reports on the role of genes associated with the mRNA expression-based stemness index (mRNAsi) in the prognosis
and immune regulation of hepatocellular carcinoma (HCC). This study is aimed at analyzing the expression profile and prognostic
significance of a new mRNAsi-based three-gene signature in HCC. This three-gene signature was identified by analyzing mRNAsi
data from the Cancer Genome Atlas (TCGA) HCC dataset. The prognostic value of the risk score based on the three-gene signature
was evaluated by Cox regression and Kaplan-Meier analysis and then verified in the International Cancer Genome Consortium
(ICGC) database. Meanwhile, the correlations between the risk score and immune cell infiltration patterns, microsatellite
instability (MSI), tumor mutation burden (TMB), immune checkpoint molecules, hypoxia-related genes, immunotherapy
response, and compounds targeting the gene signature were explored, respectively. The results showed that compared with
normal liver tissues, the mRNAsi score of HCC tissues was significantly increased. PTDSS2, MRPLY9, and SOCS were the genes
most related to mRNAsi in HCC tissues. Survival analysis results suggested the risk score based on the three-gene signature was
an independent predictor of the prognosis for patients with HCC. The nomogram combining the risk score and pathological
stage showed a good predictive ability for the overall survival of patients with HCC patients. Meanwhile, the risk score was
significantly related to immune cell infiltration patterns, MSI, TMB, several immune checkpoint molecules, and hypoxia-related
genes. In addition, the risk score was associated with the immunotherapy response, and fifteen potential therapeutic drugs
targeting the three-gene signature were identified. Therefore, we propose to use this three-gene signature including PTDSS2,
MRPL9, and SOCS as a potential prognostic biomarker for HCC.

1. Introduction

Hepatocellular carcinoma (HCC), which accounts for 80%
-90% of all liver cancers, is the fifth most common cancer
in the world and the third leading cause of all cancer-
related deaths. The metastasis and recurrence of HCC make
the disease difficult to cure. Although chemotherapy is a
common method besides surgical resection, local ablation,
and liver transplantation for patients with HCC, the high rate
of drug resistance in cancer cells limits the treatment efficacy.
Recently, the concept of cancer stem cells (CSC) helps to
explain the metastasis, recurrence, and drug resistance of
HCC. There are some CSCs in tumors, which have strong

survival, growth, self-renewal, and resistance capabilities,
thereby promoting tumor development and spread [1]. In
the past few years, CSC was used to identify important genes
in HCC [2]. It is found that CSC status can not only be used
as a prognostic factor but also may be a new target for HCC
treatments [3].

CSCs are generally identified by related biomarkers such
as CD133, CD44s, CD90, and epithelial cell adhesion mole-
cule (EpCAM). We have already known that CD133 (+) liver
cancer cells can promote chemotherapy resistance, and
increased CD133 expression is an independent prognostic
factor for HCC patients. Furthermore, it is reported that the
cytoplasmic expression of CD133 is significantly associated
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with the survival of HCC patients [4-6]. In addition, CD44s is
also associated with poor prognosis in patients with HCC [7].
CD90 expression is associated with early recurrence of HCC
[8]. EpCAM+ HCC cells are associated with the aggressive-
ness and metastasis of HCC and are closely related to overall
survival [9]. Therefore, stem cell characteristics are impor-
tant factors which can affect tumor recurrence and progres-
sion. The mRNAsi is an important index of CSC, and a
higher mRNAsi score is associated with a greater tumor
dedifferentiation. As we know, abnormal mRNA expression
plays an important role in tumor biology, and some abnor-
mal mRNAs can affect the self-renewal, proliferation, and
development of CSCs. Therefore, abnormally expressed
mRNAs in HCC can be used as biomarkers for evaluating
the prognosis of HCC patients.

In this study, we extracted an HCC cohort from the Can-
cer Genome Atlas (TCGA), identified the most important
prognostic genes related to mRNAsi, and established a gene
signature for HCC survival prediction. The expressions of
key genes were verified in the Gene Expression Omnibus
(GEO) and Gene Expression Profiling Interactive Analysis
(GEPIA) databases. The risk score based on the gene signa-
ture was established in the TCGA database and subsequently
verified in the ICGC database. Then, the correlations
between the risk score and immune cell infiltration patterns,
microsatellite instability (MSI), tumor mutation burden
(TMB), immune checkpoint molecules, hypoxia-related
genes, and immunotherapy response were explored, respec-
tively. In addition, we used connectivity map analysis to
identify potential therapeutic compounds targeting the gene
signature. Finally, we established a nomogram for clinical
practice by combining the prognostic gene signature and
pathological stage and then verified the prediction accuracy
of the nomogram by the calibration plot, time-dependent
receiver operating characteristic (ROC) curve, and decision
curve analysis. In summary, in the present study, we compre-
hensively analyzed the prognostic and immunological signif-
icance of a new stemness-related gene signature in HCC. This
gene signature can be used as a potential prognostic
biomarker for HCC.

2. Materials and Method

2.1. Data Source. The training dataset with HCC-mRNA
expression profiles and clinical information obtained from
the TCGA database included 370 HCC tissues and adjacent
non-HCC tissues (ANTTSs). The validation dataset with
HCC-mRNA expression profile and clinical information
used to validate the multigene signature downloaded from
the ICGC database included 232 HCC tissues and ANTTs.
In addition, the mRNA expression profiles of ten HCC
cohorts were downloaded from the GEO database to examine
the mRNA expression profiles of identified key genes with
prognostic significance. Meanwhile, genes were verified in
the GEPIA database (http://gepia.Cancer-pku.cn) [10]. We
obtained the score of immune cell infiltration from TIMER
databases (https://cistrome.shinyapps.io/timer/), and tumor
mutation burden of HCC was calculated based on somatic
mutation. We acquired the microsatellite instability from
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published literature [11]. The above four databases are
publicly available. Therefore, this study did not require a
local ethics committee approval.

2.2. mRNAsi and Its Clinical Significance in HCC. CSCs are
tumor cells that have a self-renew ability and play an impor-
tant role in tumor survival, proliferation, metastasis, and
recurrence. Stemness indices are indicators which can
describe the similarity between tumor cells and stem cells.
So stemness indices can be regarded as the quantification of
the CSC characteristics, including mRNAsi, an index calcu-
lated based on expression data, and EREG-mRNAsi, an
expression index calculated based on stem cell apparent
regulation-related genes. These indices range from zero to
one, and closer to one suggests a lower degree of cell differen-
tiation and stronger characteristics of CSC. To investigate
mRNAsi scores and their clinical prognostic value, we com-
pared mRNAsi scores between HCC samples and matched
normal liver tissues, observed median mRNAsi scores of dif-
ferent tumor grades, and compared the prognosis between
patients with high mRNAsi and low mRNAsi scores.

2.3. Identification of Differentially Expressed Genes (DEGs)
between HCC and Noncancerous Tissues. We downloaded
the original sequencing data of HCC mRNA from the TCGA
database and obtain DEGs (log 2FC>1 or log 2FC < -1,
p<0.05 as a cutoff value) by the Limma R-package. The
DEGs were used for subsequent analysis. The subsequent
analysis methods included establishing a coexpression gene
network based on RNA sequence data, identifying a gene
signature with prognostic value, and verifying the indepen-
dence of the gene signature as a prognostic factor followed
the methods of Li et al. 2020 [12].

2.4. Coexpression Gene Network Based on RNA-Seq Data. We
selected the DEGs identified in the previous step and per-
formed WGCNA to construct a gene coexpression network
[13]. First, we calculated the absolute value of the Pearson
correlation coefficient between gene i and gene j to construct
a gene expression similarity matrix:

5 - (1+cor(xi+yj)> 0

ij = 2 >

x; and J; represent the expression levels of gene i and
gene j, respectively. Then, the gene expression similarity
matrix was converted into an adjacency matrix, which
increased the strong correlation and weakened the weak
correlation in the exponential level. 8 is a soft threshold,
which is actually the Pearson correlation coefficient of each
pair of genes [14]:

R S0

ij — 2
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F1GURE 1: Overall flowchart of this study.

Next, we converted the adjacency matrix into a topolog-
ical matrix. Topological overlap measure (TOM) was used
to describe the degree of association between genes:

oo+ ocij)

(ZP#U )

TOM = .
(min (ZM“W + ) +1- “ij)

3)

TOM indicates the difference degree between gene i and
gene j. The most representative genes in each module are
called feature vector genes, and ME represents the overall
expression level of the genes within the module. We per-
formed average linkage hierarchical clustering based on
TOM’s similarity measure, calculated their similarity, and
built a module tree diagram:

ME = princomp (x;;7).

(4)
Here, i represents the gene in module g, and j represents
the chip sample in module q. We used the Pearson correla-
tion between the expression profile of genes in all samples
and the ME expression profile of feature vector genes to mea-
sure the identity of the genes in the module, which was called

module membership (MM):
MM, = cor(x;, MET).

()

Here, ME represents the expression profile of the i gene.
We calculated the gene importance (GS) to reflect the
importance of each module and used this to measure the
correlation between genes and sample traits. The module
importance (MS) was displayed by the average GS of the
module and was used to measure the correlation between
the module and sample features. In this study, we selected
mRNAsi and EREG-mRNAsi as clinical phenotypes and
selected modules that were significantly related to mRNAsi
for subsequent analysis.

2.5. Definition of a Three-Gene Signature with Prognostic
Values. In this study, univariate, the least absolute shrinkage
and selection operator (LASSO), and multiple Cox regression
analyses were used to explore the correlation between gene
expression levels and the overall survival (OS). We firstly used
univariate Cox regression analysis to identify OS-related genes,
then applied LASSO Cox regression to further narrow the range
of HCC prognostic genes, and used multiple Cox regression
analysis to assess whether prognostic genes can be used as
independent prognostic factors. Next, we established a prog-
nostic gene signature by multiplying the expression coeffi-
cient of the multivariate Cox regression model (f3) with its
expression level. That is, the prognosis index (Pi) = (f3 *
PTDSS2 expression level) + (3 * MRPL9Y expression level) —
(B = SOCS2 expression level). Subsequently, we divided 370
HCC patients of the TCGA into high- and low-risk groups



based on the risk score derived from the prognostic model and
performed Kaplan-Meier (KM) survival curves and ROC
curves to assess the predictive power of the model. In addition,
we validated the prognostic model in an independent HCC
dataset from the ICGC database.

2.6. The Three-Gene Signature Is an Independent Predictor for
OS in HCC. We used univariate and multivariate Cox regres-
sion analysis to assess whether the three-gene signature could
be used as a risk factor independent of other clinical patho-
logical variables such as age, sex, tumor grade, and patholog-
ical stage for HCC patients. We took clinical characteristics
as independent variables, OS as the dependent variable, and
calculated the hazard ratio (HR) (95% confidence interval,
two-sided p value).

2.7. Enrichment Analysis of Genes in the High-Risk Score
Group. HCC samples from the TCGA were divided into
high- and low-risk groups based on the expression level of
the three-gene signature. Then, set enrichment analysis
(GSEA) was performed using GSEA software (https://www
.broadinstitute.org/gsea/) to find pathways in genes of the
high-risk group enriched. Relevant settings were alignment
= gene set, metric = _class difference, #arrange = 2500.

2.8. Validation of the Three-Gene Signature by an
Independent HCC Dataset. We verified the prognostic value
of the three-gene signature in an independent HCC dataset
from the ICGC database. Taking the median risk score of
all HCC patients in the validation dataset as a cutoff value,
we divided HCC patients with follow-up information into
high- and low-risk groups and compared the OS between
the two groups (two-sided p value, and p < 0.05 represents
a significant statistical difference).

2.9. Correlation Analysis between Risk Score and Tumor
Immune Microenvironment (TIME). TIME is an immune-
related complex environment for tumor cells to survive and
develop. In order to evaluate the interaction between risk
score and TIME, we analyzed the correlations between the
risk score and immune cell infiltration patterns, MSI, TMB,
immune checkpoint, and hypoxia-related genes, respectively.
Subsequently, we analyzed the survival rate of HCC patients
from the above aspects (two-factor analysis). The immune
infiltrating cells included in this study were CD8 T cells, B
cells, dendritic cells, CD4 T cells, neutrophils, and macro-
phages. The immune checkpoint molecules included in the
analysis were PDCD1, CTLA4, CD80, CD86, CD274,
PDCD1LG2, CD276, and VTCNI. The hypoxia-related
genes included in the analysis were obtained from previous
literature, including SLC2A1, LDHA, ALDOA, ENOI,
VEGFA, ACOT7, TPI1, CDKN3, MRPS17, MIF, NDRG1,
TUBB6, ADM, PGAMI, and PGAMI [15, 16].

2.10. Quantification of the Risk Score as an Immune Response
Predictor Using Immunophenoscore. Immunophenoscore
(IPS), which is based on major histocompatibility complex-
related molecules, checkpoints/immunomodulators, effector
cells, and suppressor cells, can be used to quantify the deter-
minants of tumor immunogenicity and characterize intratu-
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TABLE 1: Patients’ information in the TCGA and ICGC cohorts.

Clinical characteristics Total %
TCGA 370
. Survival 244 65.95
Survival status
Death 126 34.05
<65years 232 62.70
Age
>65 years 138 37.30
Male 249 67.30
Gender
Female 121 32.70
Gl 55 14.86
. . G2 177 47.84
Histological grade
G3 121 32.70
G4 12 3.24
I 171 46.22
11 85 22.97
Stage
11T 85 22.97
v 5 1.35
T1 181 48.92
T2 93 25.14
T classification T3 80 21.62
T4 13 3.51
TX 1 0.27
MO 266 71.89
M classification Ml 4 1.08
MX 100 27.03
NO 252 68.11
N classification N1 4 1.08
NX 113 30.54
ICGC 232
. Survival 189 81.47
Survival status
Death 43 18.53
<65 years 90 38.79
Age
>65 years 142 61.21
Male 171 73.71
Gender
Female 61 26.29
I 36 15.52
11 106 45.69
Stage
111 71 30.60
v 19 8.19
) ) No 202 87.07
Prior malignancy
Yes 30 12.93

mor immune landscapes and cancer antigenomes. The sum
of the weighted average Z-scores calculated using the sample
Z-scores of each category is called IPS [17]. In this study, IPS
was used to predict the response of anti-CTLA-4 and anti-
PD-1 regimens.

2.11. Prediction of Potential Therapeutic Compounds Using
Connectivity Map Analysis. Using connectivity map analysis,
we identified compounds targeting the three-gene signature
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FIGURE 2: Stemness-characteristic index and its prognostic significance in HCC. (a) Differences in mRNAsi between HCC and matched
normal liver tissues in the TCGA dataset. (b) Comparison of mRNAsi among HCC subgroups divided by pathological grades. (c) Kaplan-
Meier curves of patients assigned to high- and low-risk groups based on the mRNAsi value in the TCGA dataset. The prognosis of the
high-mRNAsi group was poorer than that of the low-mRNAsi group. (d) Volcano plot showing DEGs in HCC samples. Green indicates

downregulated of genes, and red indicates upregulated of genes.

that may lead to novel treatments that trigger differentiation
and exhaust the stemness potential of neoplasms [18].

2.12. Establishment and Evaluation of the Nomogram for
Survival Prediction of HCC. The nomogram is a simplified
OS assessment diagram that converts statistical prediction
models into diagrams suitable for clinical use. In this study,
we combined the risk score based on the three-gene signature
and pathological stage to construct a nomogram that can
assess the 1-, 3-, and 5-year survival probabilities of HCC
patients and compared the predicted probability of the
nomogram with the observed actual survival probability by
a calibration curve to verify the accuracy of the nomogram.
The overlap of the lines indicates that the model is accurate.
Besides, the ROC curve was used to evaluate the prediction
accuracy of the nomogram.

3. Results

3.1. Entire Study Process and Summary of Patients’
Information. Figure 1 is a flowchart of the entire research
work. This figure shows the detailed construction process of
an integrated model for predicting the overall survival of
HCC patients based on a multigene signature through a
network analysis of the transcriptome data stemness indices.
The patients’ information in the TCGA and ICGC cohorts is
shown in Table 1.

3.2. Network Analysis of mRNAsi and DEGs in HCC. Cancer
cell stemness is of clinical importance, and mRNAsi is a
quantitative expression of CSC. In this study, the HCC data-
set from the TCGA database was downloaded to analyze
mRNAsi scores in HCC tissues. As shown in Figure 2. there



was a significant difference in mRNAsi scores between the
HCC tissues and adjacent nontumor tissue (ANTTs)
(Figure 2(a)), and mRNAsi scores increased with increasing
HCC grade (Figure 2(b)). In addition, patients with higher
mRNAsi scores had a poorer prognosis than patients with
lower mRNAsi scores (Figure 2(c)). In order to compare the
mRNA expression profiles of tumor tissues and normal tissues,
the HCC expression matrix from the TCGA database was
downloaded to screen DEGs, and 6,779 DEGs were screened
out (log 2FC > 1 orlog FC < -1, p < 0.05), of which 6356 were
upregulated and 423 were downregulated (Figure 2(d)).

3.3. Identification of the Most Significant Modules Associated
with mRNAsi. In this study, important genetic modules
related to the stemness of cancer cells were identified by
WGCNA. We selected 6779 differential genes for WGCNA
processing, constructed gene coexpression modules, and
assigned these genes to different modules through the cluster
tree diagram (Figure S1A). The gene numbers of each
module in WGCNA were shown in Table 2. It was found
that the modules with a higher coexpression correlation
coeflicient with mRNAsi were the black, blue, and yellow-
green modules (correlation coefficients were -0.59, 0.50, and
0.47, respectively). The correlation coefficient between each
coexpressed gene module and HCC stemness (mRNAsi and
EREG-mRNAsi) was shown in Figure S1B. The results of
modules correlation analysis suggested that there were high
correlations among the black, blue, and green-yellow gene
modules (Figure S1C). And the associations between these
gene modules and phenotypes were the most significant
(Figure S1D). Therefore, the black, blue, and green-yellow
modules were considered to be the most important
modules associated with mRNAsi.

3.4. Constructing a Three-Gene Signature for Survival
Prediction. In order to establish a clinical survival prediction
model for HCC based on CSC, we used a HCC cohort from
the TCGA database as the training dataset and applied
LASSO Cox regression analysis to identify stable markers
from 259 survival-related candidates. We reduced some coef-
ficients to zero by forcing the sum of the absolute values of
the regression coefficients to be less than a fixed value. Next,
we used the relative regression coeflicients to determine the
most stable prognostic indicators and performed cross-
validation to avoid overfitting the LASSO Cox model
(Figure S2A). In the established Cox model, two filter
markers including PTDSS2 and MRPL9 were associated
with high risk (HR > 1), and one filter marker SOCS2 was
associated with low risk (HR < 1) (Figure S2B).

Then, we applied the above 3 genes to construct a multi-
gene signature based on the minimum criteria for the sur-
vival prediction of HCC. We used the coeflicients obtained
from the Cox regression analysis to calculate the risk score
for each HCC patient in the training set. In order to test the
relationship between the three-gene signature and the prog-
nosis of HCC patients, we established a prognosis model
based on the three-gene signature: Prognosticindex =
0.236923 = PTDSS2 + 0.534246 * MRPL9 — 0.50027 = SOCS
2. Then, taking the median risk score of all HCC patients in
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TaABLE 2: Gene numbers of each module in WGCNA.

Module Gene number
Black 94
Blue 421
Brown 250
Green 119
Kelly 60
Grey 3062
Magenta 74
Pink 89
Purple 71
Red 108
Tan 55
Turquoise 2206
Yellow 170

the training dataset as a cutoff value, we divided 370 HCC
patients with follow-up information into high-risk (n = 185)
and low-risk (n=185) groups and compared the gene
expression profiles and survival status of the two groups.
The results suggested that compared with the low-risk group,
the high-risk group had a worse prognosis. In addition, the
expression levels of MRPL9 and PTDSS2 were higher, while
the expression level of SOCS2 was lower in the high-risk group,
compared with those in the low-risk group (Figure S2C).

Next, we verified the survival prediction ability of the
three-gene signature in an independent HCC cohort from
the ICGC database. We extracted the mRNA expression pro-
file data and follow-up information of 232 HCC patients
from this validation set and then calculated the risk score of
each HCC patient using the same formula as the training
set. Similarly, taking the median of the risk score as a cutoft
value, we divided 232 HCC patients into high-risk group
(n=116) and low-risk group (n=116) and compared the
gene expression profiles and survival status of the two
groups. The results showed that compared with the low-
risk group, the high-risk group had a worse prognosis. In
addition, the expression levels of MRPL9 and PTDSS2 in
the high-risk group were higher, while the expression level
of SOCS2 was lower, compared with those in the low-risk
group. These results were consistent with that in the training
set, thus, further verifying the expression profile and prog-
nostic value of the three-gene signature (Figure S2D).

3.5. Kaplan-Meier and ROC Analyses of the Three-Gene
Signature. Subsequently, we used the median risk score as a
cutoff value to divide HCC patients into high- and low-risk
groups and compared the overall survival of the two groups
using the Kaplan-Meier survival curves. In addition, we used
a time-dependent ROC curve to evaluate the predictive
capacity of the three-gene signature. A higher AUC in the
ROC curve means better prediction model performance. As
shown in Figure 3(a), there was a significant difference in
OS between the high- and low-risk groups in the TCGA
cohort (p < 0.0001). The AUCs of the risk scores correspond-
ing to 0.5, 1, 2, 3, and 5-year survival were 0.716, 0.775, 0.757,
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FIGURE 3: Survival analysis with the three-gene signature in the training and validation datasets. (a and b) Kaplan-Meier overall survival
analysis of HCC patients in the TCGA (a) and ICGC (b) datasets assigned to high-and low-risk groups based on the risk score. Patients
with a higher risk score exhibited poorer overall survival in the training and validation cohorts. (c and d) ROC curves showed the
predictive efficiency of the risk signature for HCC patients in the TCGA (c) and ICGC (d) datasets on the survival rate.

0.733, and 0.694, respectively, indicating that the prediction
model had high sensitivity and specificity (Figure 3(c)). As
shown in another Kaplan-Meier curve (Figure 3(b)), the OS
in the low-risk group was significantly better compared to
the high-risk group in an independent validation HCC
cohort from the ICGC (p < 0.001). This result was consistent
with our previous findings in the training cohort from the
TCGA dataset. As shown in Figure 3(d), the AUCs of the risk
scores corresponding to 0.5, 1, 2, 3, and 5-year survival were
0.812, 0.791, 0.708, 0.747, and 0.800, respectively, which
further confirms that the three-gene signature was with high
sensitivity and specificity and can be used as a reliable predic-
tor of OS in HCC.

3.6. Risk Score Was an Independent Prognostic Factor from
the Other Clinicopathological Features. Univariate and multi-
variate Cox regression analyses were used to assess whether
the risk score based on the three-gene signature could be used
as an independent prognostic indicator for OS prediction in
HCC patients. In the TCGA dataset, the results of both uni-
variate and multiple Cox regression analysis suggested that
the risk score and pathological stages were significantly
related to OS, while age, gender, and histological grade were
not related to OS (Figures 4(a) and 4(b)). In the ICGC data-
set, the results of univariate Cox analysis suggested that risk
score, gender, and pathological stage were significantly
related to OS (Figure 4(c)). And the results of multivariate
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FiGURre 4: Cox regression analysis of the association between clinicopathological features and the overall survival of HCC patients.
Univariate/multivariate Cox regression analyses of the association between clinicopathological factors (including the risk score) and
overall survival of patients in the TCGA (a and b) and ICGC (c and d) datasets.

Cox regression analysis showed that risk score, gender, previ-
ous malignant tumors, and pathological stages were signifi-
cantly related to OS (Figure 4(d)). These results confirmed
that the risk score based on the three-gene signature can be
used as an independent predictor of prognosis in patients
with HCC.

3.7. Subgroup Analysis Based on Various Grouping Methods
about Clinical Characteristics. As shown in Figure S3, in
order to further verify the accuracy of risk scoring model
based on the three-gene signature, we classified the HCC
patients based on factors such as age, pathological stage,
and histological grade. Then, we conducted subgroup
survival analysis in the TCGA and ICGC datasets,
respectively. The results proved that the risk score based on
the three-gene signature was a biomarker for predicting OS
in different subgroups, including TNM stage I-1I (p < 0.001),
stage III-IV (p<0.001), G1 & G2 (p<0.001), G3 & 4
(p<0.001), age < 60 (p < 0.001), and age > 60 (p <0.001) in
the TCGA dataset, and TNM stage I-II (p = 0.019), stage III-
IV (p=0.025), age < 60 (p =0.001), and age > 60 (p < 0.001)
in the ICGC dataset.

3.8. Validating the Prognostic Value of Three-Gene Signature
in an Independent HCC Cohort. We further validated the
prognostic value of the risk scores based on the three-gene
signature in an independent HCC cohort from the GEO
database. We extracted the mRNA expression profile data
and follow-up information of 209 HCC patients from this
validation cohort and then calculated the risk score of each
HCC patient using the same formula as the training set. Like-
wise, the median risk was used as a cutoff value. HCC
patients were divided into the high-risk group (n=104)
and low-risk group (n=105), and the gene expression pro-
files and the overall survival rates of the two groups were
compared. The results suggested that the prognosis of the
high-risk group was poorer (p < 0.01), with higher expres-

sion of MRPL93 and PTDSS2, and lower expression of
SOCS2 (Figure S4A-B). These results further validated our
analysis results in the training set. Subsequently, we used
the ROC curve to evaluate the predictive ability of the risk
score. As shown in Figure S4C, the AUCs of the risk scores
corresponding to 0.5, 1, 2, 3, and 5-year survival were
0.723, 0.639, 0.673, 0.640, and 0.654, respectively, indicating
that the prediction model had high sensitivity and specificity.

3.9. Biomarker Performance of the Three-Gene Signature in
HCC. In order to evaluate the performance of PTDSS2,
MRPLY, and SOCS2 as prognostic biomarkers, first, we veri-
fied the differential expression profiles of the three identified
genes in HCC tissues and normal liver tissues in multiple
HCC series of the GEO database. The results showed that
there were significant differences in the expression levels of
PTDSS2, MRPL9, and SOCS2 between HCC tissues and
matched normal liver tissues (Table S1, Table S2, and
Table S3). Meanwhile, we examined the expression trends
of these three genes in different pathological stages of HCC
in the GEPIA dataset. The expression levels of PTDSS2 and
MRPL9 were higher in HCC tissues of more advanced
TNM stage (p < 0.05; Figure S5A-B), while the expression
level of SOCS2 was lower in more advanced TNM stage
(p <0.05; Figure S5C). Besides, we used the Kaplan-Meier
curves to examine the association between the expressions
of three key genes and OS, respectively. We divided HCC
patients into high- and low-expression groups according to
the median expression value of each identified gene. The
results suggested that the high expressions of PTDSS2
(HR = 2.1, p < 0.0001; Figure $5D) and MRPL9 (HR = 1.8,
p=0.0016; Figure S5E) were associated with poorer
prognosis, while lower expression of SOCS2 was associated
with poorer prognosis (HR = 0.41, p < 0.0001; Figure S5F).
In addition, we divided the HCC samples from the TCGA
database into high- and low-risk groups by the risk scores
calculated based on the expression profile of the three-gene
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F1GURE 5: Survival analysis of HCC patients based on the risk score, immune cell infiltration patterns, MSI, and TMB. (a) Correlation analysis
between risk score and immune cell, TMB, and MSI. (b-i) Two-factor survival analyses of risk score and immune cell infiltration indicators
including CD8 T cell (b), B cell (c), dendritic (d), CD4 T cell (e), neutrophil (f), macrophage (g), MSI (h), and TMB (i). MSL: microsatellite

instability; TMB: tumor mutation burden.

signature and used the GSEA to explore the pathways in
which genes of the high-risk group enriched. The results
indicated that the upregulated genes were mainly involved
in the pathways of spliceosome, cell cycle, bladder cancer,
DNA replication, RNA degradation, and proteasome
(Figure S6). The detailed parameters related to the
upregulation of signaling response genes in HCC were
showed in Table S4.

3.10. Correlations between the Risk Score and Immune Cell
Infiltration Patterns, TMB, and MSI with Corresponding
Two-Factor Analysis on Survival Prediction. Heat maps and
Kaplan-Meier analysis were performed to detect the correla-
tion between the risk score and immune cell infiltration with
clinical manifestations. The results showed that the risk score
was related to immune cell infiltration, MSI, and TMB
(Figure 5(a)). Combined risk score and immune cells score
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FIGURE 6: Survival analysis of HCC patients based on the risk score and several immune checkpoint molecules. (a) Correlation analysis
between risk score and several key immune-related molecules. (b-i) Two-factor survival analyses of risk score and immune checkpoint
molecules including PDCD1 (b), CTLA4 (c), CD80 (d), CD86 (e), CD274 (f), PDCD1LG2 (g), CD276 (h), and VTCNT1 (i).

analyses showed that HCC patients with low-risk scores
and high CD8 T cell, B cell, dendritic, CD4 T cell, neutro-
phil, or macrophage cell scores showed the best OS
(Figures 5(b)-5(g)). The group with high-risk scores and
low CD8+ T cells or low B cells scores showed a worse prog-
nosis (Figures 5(b) and 5(c)). It is known that tumor-
associated macrophage cells are negatively correlated with
clinical outcomes. Unsurprisingly, the group combining
high-risk scores and high macrophage cell scores showed
the worst OS (Figure 5(g)). TMB and MSI are related to
genome instability. And the results showed that combined
low-risk scores and low TMB or MSI scores showed a better
prognosis, while combined high-risk scores and high TMB or
MSI scores showed a poorer prognosis.

3.11. Correlations between the Risk Score and Immune
Checkpoints with Corresponding Two-Factor Analysis on
Survival Prediction. Immune checkpoints refer to a series of
molecules expressed on immune cells that can regulate the
degree of immune activation and play an important role in
preventing the occurrence of autoimmunity. Therefore, heat
maps and Kaplan-Meier analysis were performed to detect
the correlation between the risk score and immune check-
point molecules (including PDCD1, CTLA4, CD80, CDS86,
CD274, PDCDILG2, CD276, and VTCN1) with clinical
manifestations. The results showed that the risk score was
associated with the expression of these immune checkpoint
molecules (Figure 6(a)). Combined risk score and immune
checkpoint molecules expressions analysis showed that
regardless of the expression of immune checkpoint mole-
cules, HCC patients with high-risk scores showed a worse

prognosis. Besides, the group with low-risk score and high
expressions of PDCD1, CTLA4, CD80, CD86, CD274,
PDCDILG2, CD276, or VICN1 showed the best prognosis
(Figures 6(b)-6(i)).

3.12. Correlations Analysis between the Risk Score and
Hypoxia-Related Genes with Corresponding Two-Factor
Analysis on Survival Prediction. Hypoxia is an important fac-
tor in the formation of TIME. We obtained 15 genes related
to hypoxia in TIME from previous literature and analyzed
the expression of these 15 genes in the high- and low-risk
groups. The results suggested that the expressions of
SLC2A1, LDHA, ALDOA, ENO1, VEGFA, ACOT7, TPI1,
CDKN3, MRPS17, MIF, and NDRGTI in the high-risk group
were significantly higher than that in the low-risk group,
while the expressions of TUBB6, ADM, PGAMI, and
PGAM1 were not significantly different from that in the
low-risk group (Figure 7(a)). Combined risk score and
hypoxia-related genes expressions analysis showed that
regardless of the expressions of hypoxia genes, the group with
high risk-score and high expressions of SLC2A1, LDHA,
ALDOA, ENOI1, VEGFA, ACOT?7, or TPIl presented the
worst prognosis (Figures 7(b)-7(h)), while the expressions
of CDKN3, MRPS17, MIF, and NDRG1 had no significant
effect on the prognosis (Figures 7(i)-7(1)).

3.13. The Role of Risk Score in Predicting the Benefit of
Immunotherapy. The treatment of ICI represented by
CTLA-4/PD-1 inhibitors has made important progress in
antitumor therapy. Predictors such as TML, PD-L1, and
IPS are widely used to assess immune response [19]. Our
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FIGURE 7: Survival analysis of HCC patients based on the risk score and several hypoxia-related genes. (a) Expression profiles of several
hypoxia-related genes in high-risk and low-risk groups. (b-1) Two-factor survival analyses of risk score and immune checkpoint molecules
including SLC2A1 (b), LDHA (c), ALDOA (d), ENOI (e), VEGFA (f), ACOT7 (g), TPI1 (h), CDKN3 (i), MRPS17 (j), MIF (k), and

NDRGI ().

analysis shows that in the CTLA-4(+) & PD-1(+), CTLA-
4(+) & PD-1(-), and CTLA-4(-) & PD-1(+) immunotherapy
cohorts, IPS in the low-risk group was significantly increased
(p <0.001, Figure S7A-C). These findings indirectly proved
that the three-gene signature played an important role in
mediating the immune response. Therefore, associating the
risk score with the immunotherapy response can further
predict the patient’s prognosis.

3.14. Connection Diagram Analysis Identifies Potential
Compounds Capable of Targeting the Three-Gene Signature.
Connection map (CMap) is a data-driven method for discov-
ering the correlation among genes, chemicals, and biological
conditions. Therefore, we used the CMap to search for candi-
date compounds that may target the identified stemness-
related gene signature. The results suggested that fifteen
compounds related to stemness were significantly enriched
(Table S5). These compounds may have the effect of
inhibiting tumors related to stemness and were potential
drugs for targeting tumors.

3.15. Building a Nomogram to Predict OS in HCC Patients.
In order to establish a clinically applicable method for pre-
dicting the survival rate of patients with HCC, we built a
nomogram combining the risk score and pathological stage
to predict the 1-, 3-, and 5-year survival probability of
patients with HCC (Figure 8(a)). Then, we analyzed the
model accuracy by the calibration curves. The results
showed that the 1-, 3-, and 5-year survival probabilities pre-
dicted by the nomogram were closely related to the observed

survival probability, which confirmed the reliability of the
nomogram (Figure 8(b)).

Then, time-based ROC curve was used to evaluate the
prediction accuracy of the nomogram. The solid yellow line
represents this combined model. As shown in Figure 8(c),
the AUC of the nomogram that combines pathological stage
and risk score was the largest, and all the AUCs of nomogram
predicts for 1-, 3-, and 5-year survival prediction were above
0.75, which indicated that the nomogram constructed by
integrating multiple prognostic factors was a better model
to predict the survival rate of HCC patients compared to
the model constructed by a single prognostic factor. In addi-
tion, as shown in Figure 8(d), we plotted the calculated net
benefit against the threshold probability of patients with 1-,
3-, and 5-year survival rates. These results showed that the
net benefit of the nomogram was better than other models.

4. Discussion

CSCs play an important role in the metastasis and recurrence
of HCC [20]. Therefore, a comprehensive prognostic model
based on mRNAsi, a quantitative indicator of CSCs, can
more accurately predict the overall survival of HCC patients.

In this study, we focused on the construction of a prog-
nostic model of HCC based on the three-gene signature
related to the cancer cell stemness. First, the results of
survival analysis suggested that HCC patients with higher
mRNAsi scores had a worse prognosis than HCC patients
with lower mRNAsi scores. Then, three modules significantly
related to mRNAsi were identified by WGCNA. The blue and
yellow-green modules were positively correlated with
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mRNAsi, while the black module was negatively correlated
with mRNAsi. Next, all genes in the above three modules
were analyzed by univariate, LASSO, and multiple regression
analysis to further screen out key genes with prognostic
value. PTDSS2, MRPL9, and SOCS2 were subsequently iden-
tified. It is worth mentioning that the results of interactive
verification using GEO and GEPIA databases suggested that
PTDSS2 and MRPL9 were overexpressed in HCC tissues,
while that of SOCS2 was decreased in HCC tissues. And
higher expression levels of PTDSS2 and MRPLY, as well as
lower expression levels of SOCS2, were associated with worse
prognosis of HCC patients. Subsequently, the results of
survival analysis using the TCGA and ICGC databases con-
firmed that the risk score based on the three-gene signature
was an independent predictor of the prognosis in HCC.
Meanwhile, the risk score was significantly associated with
immune cell infiltration patterns, MSI, TMB, several immune
checkpoint molecules, and hypoxia-related genes. Besides,

the risk score was related to immunotherapy response and
fifteen compounds targeting the three-gene signature were
identified. Finally, we combined the risk score and patholog-
ical stage to construct a nomogram for clinical practice. The
calibration plot, ROC curve, and decision curve analysis
showed that the nomogram had a good ability to predict
the OS of HCC patients.

Pathological staging is a commonly used method to
assess the prognosis of HCC patients, but its accuracy is
easily affected by the clinical heterogeneity of HCC. The pre-
dictive ability of HCC survival prediction models based on
prognosis-related biomarkers is superior to the pathological
stage. Identification of prognostic-related biomarkers is the
basis for establishing multigenic biomarkers. Due to the
important role of cancer stem cells in tumor progression,
genetic biomarkers based on cancer stem characteristics
may have better predictive capacity. In fact, several
stemness-related biomarkers have been reported until now.
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These biomarkers include mRNAs and noncoding RNAs, for
example, the hypoxic response factor Artemin, which plays
an important role in hypoxia-induced CSC amplification
[21]. Sox2 is significant for the self-renewal of CSCs and is
a predictor of poor prognosis for HCC patients after liver
resection [22]. Sox9 is necessary for maintaining stem char-
acteristics of CSCs [23]. Overexpressions of SALL4 and
Cripto-1 are associated with a poorer prognosis [24, 25]. In
terms of noncoding RNAs, both microRNAs and IncRNAs
are verified in playing a role in the acquisition and mainte-
nance of stem characteristics in HCC. For example, miR-
137 is a prognostic biomarker for HCC patients with HCC
[26]. The downexpression of miR-25 can promote the apo-
ptosis of liver cancer stem cells by the PTEN/PI3K/Akt/Bad
signaling pathway [27]. MiR-106b-5p can promote the stem-
ness maintenance in HCC [28]. Overexpression of miR-150
can lead to cycle arrest and cell apoptosis of CD133 (+)
HCC cells and negatively regulate CD133 (+) HCC stem cells
[29]. Besides, long non-coding RNAs such as Inc-DILC and
IncRNA-DANCR are potential stemness-related prognostic
biomarkers in HCC [30, 31]. In addition, there are potential
correlations between circular RNAs and CSCs [32].

Although many single genes can be considered as prog-
nostic biomarkers of HCC, many experts believe that clini-
cians should be careful to use individual biomarkers as a
single prognostic parameter [33]. It is reported that although
CD90 and OCT4 are independent and reliable biomarkers
for predicting the prognosis of HCC patients after liver resec-
tion surgery, the combination of the two biomarkers can
better predict the prognosis of HCC than using any one bio-
marker alone [34]. In addition, PTEN combined with the
expression of CD133 or EpCAM can better monitor the
recurrence and predict prognosis in HCC [35].

The results of our study suggested that the three-gene sig-
nature including PTDSS2, MRPL9, and SOCS was of good
prognostic value. PTDSS2 is a protein-coding gene involved
in the biosynthesis and metabolic pathways of glyceropho-
spholipids. MRPL9 is a protein-coding gene involved in
mitochondrial translation and viral mRNA translation path-
ways. And SOCS2 is a protein-coding gene involved in the
IL10 signal transduction pathway. Previous studies suggest
that silencing SOCS2 can promote the progression of
HCC, while the roles of PTDSS2 and MRPL9 in HCC have
not been fully understood yet [36]. At the same time, the
enrichment analysis results in this study suggested that the
enrichment pathways of the high-risk score group based
on three-gene signature included spliceosomes, cell cycle,
bladder cancer, DNA replication, RNA degradation, and
proteasome. These results suggest that the mechanisms of
PTDSS2, MRPL9, and SOCS2 involved in tumor progression
deserve further study.

In recent years, tumor immunotherapy has become a hot
spot in the field of tumor therapy, and TIME plays an impor-
tant role in suppressing or enhancing immune response.
Therefore, gene signatures related to TIME and immuno-
therapy response are not only important biomarkers to
exploring the mechanism of tumor occurrence and develop-
ment but also are expected to provide new methods for
improving the therapeutic effects of current immunotherapy.

23

As far as we know, this new three-gene signature associated with
cancer cell stemness, TIME, and immunotherapy response
could be used as a new biomarker which enriches the assess-
ment methods of survival prediction for HCC patients. Never-
theless, further studies are required to clarify the molecular
mechanism involved in this three-gene signature.

5. Conclusion

In summary, we identified a new three-gene signature includ-
ing PTDSS2, MRPL9, and SOCS which can be used as a
potential prognostic biomarker for HCC. Besides, the nomo-
gram based on the three-gene signature is a reliable tool
which could help clinicians develop more personalized treat-
ment for HCC patients.
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