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ABSTRACT

Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome
(HPS). The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, dysregulation of
components of the immune response is often suggested as a possible cause. Alveolar macrophages are found in the alveoli of the
lung and represent the first line of defense to many airborne pathogens. To determine whether alveolar macrophages play a role
in HPS pathogenesis, alveolar macrophages were depleted in an adult rodent model of HPS that closely resembles human HPS.
Syrian hamsters were treated, intratracheally, with clodronate-encapsulated liposomes or control liposomes and were then chal-
lenged with ANDV. Treatment with clodronate-encapsulated liposomes resulted in significant reduction in alveolar macro-
phages, but depletion did not prevent pathogenesis or prolong disease. Depletion also did not significantly reduce the amount of
virus in the lung of ANDV-infected hamsters but altered neutrophil recruitment, MIP-1� and MIP-2 chemokine expression, and
vascular endothelial growth factor (VEGF) levels in hamster bronchoalveolar lavage (BAL) fluid early after intranasal challenge.
These data demonstrate that alveolar macrophages may play a limited protective role early after exposure to aerosolized ANDV
but do not directly contribute to hantavirus disease pathogenesis in the hamster model of HPS.

IMPORTANCE

Hantaviruses continue to cause disease worldwide for which there are no FDA-licensed vaccines, effective postexposure prophy-
lactics, or therapeutics. Much of this can be attributed to a poor understanding of the mechanism of hantavirus disease patho-
genesis. Hantavirus disease has long been considered an immune-mediated disease; however, by directly manipulating the Syr-
ian hamster model, we continue to eliminate individual immune cell types. As the most numerous immune cells present in the
respiratory tract, alveolar macrophages are poised to defend against hantavirus infection, but those antiviral responses may also
contribute to hantavirus disease. Here, we demonstrate that, like in our prior T and B cell studies, alveolar macrophages neither
prevent hantavirus infection nor cause hantavirus disease. While these studies reflect pathogenesis in the hamster model, they
should help us rule out specific cell types and prompt us to consider other potential mechanisms of disease in an effort to im-
prove the outcome of human HPS.

Hantaviruses are enveloped members of the family Bunyaviri-
dae that contain a trisegmented, negative-sense, single-strand

RNA genome. The three gene segments, L, S, and M, encode the
RNA polymerase, nucleoprotein (NP), and envelope glycopro-
teins (G1 and G2), respectively. While these pathogens are carried
chronically and asymptomatically in rodent hosts, in humans
hantaviruses cause two unique vascular-leak syndromes that
cover a spectrum of severity ranging from proteinuria to pulmo-
nary edema and frank hemorrhage (1–4). Old World hantavi-
ruses, including Puumala virus (PUUV), Dobrava virus (DOBV),
Seoul virus (SEOV), and Hantaan virus (HTNV), have been asso-
ciated with a mild-to-severe disease known as hemorrhagic fever
with renal syndrome (HFRS). HFRS has a case-fatality rate be-
tween �0.1% and 15% and is characterized by fever, vascular
leakage resulting in hemorrhagic manifestations, and renal failure.
New World hantaviruses have been associated with a highly lethal
disease, hantavirus pulmonary syndrome (HPS). HPS caused by
the most prevalent North American and South American hanta-
viruses, Sin Nombre virus (SNV) and Andes virus (ANDV), re-
spectively, has a case-fatality rate of 30 to 50% and is characterized
by fever and vascular leakage resulting in noncardiogenic pulmo-

nary edema followed by shock. Hantaviruses alter the barrier
properties of the microvascular endothelial cells that they infect,
causing vascular leakage in the kidneys or lungs (5). The specific
mechanism underlying this endothelium dysfunction remains
unknown, but hantavirus infection of endothelial cells is nonlytic,
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suggesting that other factors, possibly host derived, render the
endothelium unable to regulate barrier integrity, leading to pul-
monary edema (6).

While hantaviruses are known to cause disease by multiple
routes of infection (5), the predominant route of human exposure
is thought to be inhalation of excreta from infected rodent
hosts (reviewed in references 6 and 7), suggesting that cells in
the alveoli may play an important role in clearing, or alterna-
tively, contributing to disease caused by aerosolized hantaviruses.
Alveolar macrophages (AM�) are found in the alveoli and alveolar
ducts of the lung and represent the first line of defense against
many airborne pathogens (8). Not only are they crucial regulators
of immune system activity through their secretion of either pro-
or anti-inflammatory cytokines, but also they are vitally impor-
tant in the maintenance and remodeling of lung tissue via the
production of growth factors, cytokines, and proteinases and can
play a key role in the generation of protective cellular immune
responses following intranasal vaccination (9–11). Activated AM�
are known to provide a critical element of protection against
pathogens (12, 13) by releasing chemokines that recruit other in-
nate immune cell types to areas of infection and secreting antiviral
cytokines. However, activation of AM� can also contribute to pa-
thology by releasing the same cytokines that are important in pro-
viding protection from pathogens (14–17). Alveolar macrophages
secrete multiple cytokines when activated, including interleukin-1
(IL-1), IL-6, IL-8, transforming growth factor � (TGF-�), induc-
ible nitric oxide synthase (iNOS), and tumor necrosis factor alpha
(TNF-�). Notably, the production of TNF-� further upregulates
the release of other proinflammatory cytokines such as IL-1�,
IL-6, and IL-8, which contribute to the initiation of adaptive im-
mune responses (18). While these cytokines and chemokines act
locally to choreograph immune responses that are important for
protection against pulmonary pathogens, a number of these cyto-
kines have been shown to promote vascular permeability and pul-
monary edema, which are the hallmarks of pathogenic hantavirus
infection (19–23). Correspondingly, studies of humans infected
with hantavirus have detected high titers of proinflammatory and
vasoactive cytokines in lung tissue of hantavirus pulmonary syn-
drome patients and high numbers of cytokine-producing cells
correlated with the severity of HPS pathology (24). Moreover,
systemic levels of inflammatory cytokines have also been reported
in plasma of patients with hemorrhagic fever with renal symptoms
(25), suggesting a role for these cytokines in disease pathogenesis.

Alveolar macrophages are known to be permissive to hantavi-
rus infection (26, 27) but do not appear to be primary targets of
infection, as hantavirus replication in alveolar macrophages is less
efficient than in endothelial cells. Furthermore, AM� have been
found to be associated with hantavirus antigen in cases of human
HPS (28) caused by SNV or in cases of “European HPS” following
PUUV infection (29), but it isn’t clear if that is a result of direct
infection of alveolar macrophages or a result of phagocytosis.
Despite these associations, hantavirus infection of human AM�
induced only modest antiviral responses and cell culture superna-
tants from SNV-infected AM� failed to cause increased permea-
bility of endothelial cell monolayers (27), suggesting that soluble
mediators secreted by infected AM� do not contribute to hanta-
virus disease.

ANDV causes a lethal disease in adult Syrian hamsters (30) that
resembles HPS in humans, including the clinical signs of dyspnea,
fluid in the pleural cavity, histopathology in the lungs and spleen,

the disease incubation period, and the rapid progression from first
signs to death (31). To determine if AM� contribute to hantavirus
disease in hamsters, we depleted AM� using clodronate-encapsu-
lated liposomes, delivered prior to ANDV challenge. Clodronate
treatment significantly reduced the percentage and number of
AM� in hamster bronchial alveolar lavage (BAL) fluid during in-
tramuscular (i.m.) and intranasal (i.n.) ANDV challenge but had
little effect on disease pathogenesis. Depletion did result in a
slightly more rapid and uniform disease course during intranasal
infection, suggesting that AM� may provide some protection
against exposure to airborne ANDV, but overall, these data sug-
gest that AM� do not directly contribute to hantavirus disease
pathogenesis in the Syrian hamster model of human hantavirus
pulmonary syndrome.

MATERIALS AND METHODS
Virus, cells, and medium. ANDV strain Chile-9717869 (30) was propa-
gated in Vero E6 cells (Vero C1008, ATCC CRL 1586). The preparation of
twice-plaque-purified ANDV stock has been described previously (30).
Cells were maintained in Eagle’s minimum essential medium with
Earle’s salts containing 10% fetal bovine serum (FBS), 10 mM HEPES
(pH 7.4), 1� penicillin-streptomycin (Invitrogen), and gentamicin
sulfate (50 �g/ml) at 37°C in a 5% CO2 incubator.

Challenge with hantavirus. Female Syrian hamsters 6 to 8 weeks of
age (Harlan, Indianapolis, IN) were anesthetized by inhalation of vapor-
ized isoflurane using an IMPAC 6 veterinary anesthesia machine. For i.m.
challenges, anesthetized hamsters were injected with 80 PFU (10 50%
lethal doses [LD50]) of virus diluted in phosphate-buffered saline (PBS;
0.2 ml, caudal thigh) delivered with a 1-ml syringe with a 25-gauge, five-
eighths-inch needle. For i.n. challenges, anesthetized hamsters were ad-
ministered 50 �l delivered as 25 �l per naris with a plastic pipette tip (total
amount of ANDV, 4,000 PFU; 42 LD50). Groups of 8 hamsters were typ-
ically used for experimental treatments, unless otherwise stated. All work
involving hamsters was performed in an animal biosafety level 4 (ABSL-4)
laboratory. Hamsters were observed two to three times daily. Euthanasia
was performed on animals meeting early endpoint criteria.

Macrophage depletion. Clodronate-encapsulated liposomes (5 mg/ml
clodronate; Clodrosome) (referred to here as liposomal clodronate) and
control PBS-encapsulated liposomes (Encapsome) (referred to here as
control liposome) were purchased from Encapsula Nano Sciences. Ham-
sters were anesthetized using 0.2 ml/100 g of body weight rat KAX (ket-
amine-acepromazin-xylazine) administered by i.m. injection. Each ani-
mal was then placed in a dorsal recumbent position, and an otoscope
(Welch Allyn) was used to visualize the vocal folds. The vocal folds were
numbed by topically administering a 2% lidocaine HCl jelly (Akorn), and
then a 16-gauge 1.25-in Surflo catheter (Terumo) was passed between the
vocal folds. Hamsters were then treated with either 0.2 ml liposomal clo-
dronate or 0.2 ml control liposome by attaching a loaded syringe to the
catheter and aspirating the contents into the lung.

Flow cytometry analysis. Hamsters were deeply anesthetized (0.4 ml
Rat KAX/100 g) and then extensively perfused with sterile saline (Baxter)
before being euthanized. To isolate alveolar macrophages, animals were
placed in a dorsal recumbent position, and then a midline neck incision
was made and downward dissection was performed carefully so that the
trachea was exposed. A second incision was made near the xyphoid pro-
cess, and scissors were used to remove the rib cage and expose the lungs.
Care was taken to ensure the lungs were not damaged. A 16-gauge 1.25-in
catheter was inserted into the trachea, and the lungs were lavaged 3 times
using 1 ml of a 0.02% EDTA solution. BAL samples were then centrifuged
at 514 � g for 5 min. Cells were then collected and washed twice in PBS
containing 2% FBS. In some experiments, cells were incubated at 4°C for
15 min in a blocking buffer consisting of PBS containing 2% FBS and 2%
normal rat serum (Sigma-Aldrich) prior to staining with antibody. Ap-
proximately 106 cells were stained with mouse-anti-hamster MARCO
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(32) (clone PAL-1; 10 �g/100 �l; AbD Serotec) followed by anti-mouse
IgM (clone RMM-1; 0.4 �g/ml; BioLegend) for 15 to 20 min at 4°C.
Stained cells were then fixed in Cytofix buffer (BD Biosciences) for 15 min
at 4°C before being analyzed on a FACSCalibur flow cytometer (BD Bio-
sciences) using CellQuest software (BD Biosciences) or FACSCanto II
flow cytometer (BD Biosciences) using FACsDiva software (BD Biosci-
ences). AM and neutrophil cell numbers in BAL fluid preparations were
mathematically determined by comparing cell numbers to numbers of
PKH26 reference microbeads (Sigma) using the following formula:
Ncells/ml � (Ncell events � dilution factor/Nbead events � dilution factor) �
Nbeads/ml, where Ncells/ml is the number of cells per milliliter, Ncell events is
the number of cell events, Nbeads/ml is the number of beads per milliliter,
and Nbead events is the number of bead events. Data were analyzed using
FlowJo software (Treestar).

Plaque assay. Hantavirus plaque assays were performed as previously
described (33).

Isolation of RNA and real-time PCR. Approximately 250 mg of lung
tissue was homogenized in 1.0 ml TRIzol reagent using gentleMACS M
tubes and a gentleMACS dissociator on the RNA setting. RNA was ex-
tracted from TRIzol samples as recommended by the manufacturer. The
concentration of the extracted RNA was determined using a NanoDrop
8000 instrument and raised to a final concentration of 10 ng/�l. Real-time
PCR was conducted on a Bio-Rad CFX thermal cycler using an Invitrogen
Power SYBR green RNA-to-CT one-step kit according to the manufactur-
er’s protocols. Primer sequences are as follows (26): ANDV S 41F, 5=-GAA
TGA GCA CCC TCC AAG AAT TG-3=; ANDV S 107R, 5=-CGA GCA
GTC ACG AGC TGT TG-3=. Cycling conditions were 30 min at 48°C, 10
min at 95°C, and 40 cycles of 15 s at 95°C and 1 min at 60°C. Data acqui-
sition occurred following the annealing step.

Hamster cytokine ELISAs. Anti-hamster MIP-1� (MBS033532),
MIP-2 (MBS006761), TNF-� (MBS046042), and vascular endothelial
growth factor A (VEGF-A) (MBS024541) enzyme-linked immunosor-
bent assay (ELISA) kits were purchased from MyBioSource and were used
according to the manufacturer’s recommendations.

Preparation of tissues for histology. Tissues were fixed in 10% neu-
tral buffered formalin, trimmed, processed, embedded in paraffin, cut at 5
to 6 �m, and stained with hematoxylin and eosin (H&E) for histopathol-
ogy analysis. To determine the presence of ANDV antigens in association
with alveolar macrophages or colocalized with endothelial cells, serial
sections were then stained as follows. For ANDV immunohistochemistry,
a monoclonal antibody (USAMRIID number 1244) against ANDES virus
was used on all tissue slides. Normal mouse IgG was used as the negative
serum control for the control slides. Briefly, the unstained sections were
deparaffinized, rehydrated, and pretreated with Tris-EDTA buffer for 30
min at 95 to 100°C. Slides were rinsed, and a serum-free protein block
with 5% horse serum was applied for 30 min. The monoclonal antibody
was then applied to the tissue at a dilution of 1:1,200 and incubated for 1
h at room temperature. The slides were then treated with alkaline phos-
phatase-labeled secondary mouse IgG antibody (catalog number MP-
5402; Vector Laboratories, Burlingame, CA) for 30 min at room temper-
ature. All slides were exposed to ImmPACT Vector Red (catalog number
SK-5105; Vector Laboratories, Burlingame, CA) substrate-chromogen for
30 min, rinsed, counterstained with hematoxylin, dehydrated, and cover-
slipped with Permount (catalog number SP15-500; Fisher). For CD31
immunohistochemistry, an immunoperoxidase assay was performed us-
ing a rabbit anti-CD31 polyclonal antibody (catalog number ab28364;
Abcam). A normal rabbit IgG was used as the negative serum control for
the control slides. Briefly, the unstained sections were deparaffinized, re-
hydrated, subjected to a methanol hydrogen peroxide block, rinsed, and
pretreated with Tris-EDTA buffer for 30 min at 95 to 100°C. Slides were
rinsed, and a serum-free protein block with 5% goat serum was applied for
30 min. The polyclonal antibody was then applied to the tissue at a dilu-
tion of 1:75 and incubated overnight at room temperature. The slides were
then treated with the EnVision horseradish peroxidase-labeled secondary
antibody (catalog number K4007; Dako, Carpinteria, CA) for 30 min at

room temperature. All sections were exposed to a DAB (3,3-diaminoben-
zidine) substrate-chromogen for 5 min, rinsed, counterstained with he-
matoxylin, dehydrated, and coverslipped with Permount.

Statistical analysis. Survival curves were compared with Kaplan-
Meier survival analysis with log rank comparisons and Dunnett’s correc-
tion. Comparisons of viral genome, infectious virus, alveolar macrophage,
and neutrophil percentages and numbers and ELISA cytokine titers were
done using a one-way analysis of variance (ANOVA) with Tukey’s multi-
ple-comparison test. P values of less than 0.05 were considered significant.
Analyses were conducted using GraphPad Prism (version 5).

Ethics statement. Research at the U.S. Army Medical Research Insti-
tute of Infectious Diseases (USAMRIID) was conducted under an Insti-
tutional Animal Care and Use Committee (IACUC)-approved protocol
in compliance with the Animal Welfare Act, PHS Policy, and other federal
statutes and regulations relating to animals and experiments involving
animals. The facility where this research was conducted is accredited by
the Association for Assessment and Accreditation of Laboratory Animal
Care, International, and adheres to the principles stated in the Guide for
the Care and Use of Laboratory Animals, National Research Council,
2011.

RESULTS
Depletion of AM� does not prevent disease following intramus-
cular ANDV challenge. Liposomal clodronate has been used ex-
tensively to deplete AM� in many animal models, including the
Syrian hamster (34). In the Syrian hamster, AM� were identified
as high forward light scatter, high side light scatter (FSChiSSChi),
MARCO-expressing cells in hamster BAL fluid (Fig. 1a) and in-
tratracheal administration of clodronate-encapsulated liposomes
was found to effectively reduce the number of AM� in hamsters
during ANDV infection as determined by a reduction in either
MARCO	 cells (Fig. 1b and d) or FSChiSSChi cells (Fig. 1c and d)
and histolopathologic analysis of hamster lung tissue (Fig. 1e)
during ANDV infection of hamsters. To begin to understand the
role that AM� play during ANDV disease pathogenesis, hamsters
were treated intratracheally with clodronate-encapsulated lipo-
somes (Clodrosomes) or control PBS-encapsulated liposomes
(Encapsomes) on days 
3 and 
1. One group of hamsters was left
untreated. Hamsters were then challenged with 80 PFU (10 LD50)
ANDV i.m. Ten days later, the number and percentage of AM� in
hamster BAL fluid were determined. Control liposome treatment
did induce an increase in the number of alveolar macrophages
(Fig. 2a), but by comparison, clodronate treatment resulted in a
significant reduction in the total number of alveolar macrophages
(Fig. 2a). Macrophage depletion did not prevent disease in ham-
sters (Fig. 2b) or significantly alter the mean time to death (lipo-
somal clodronate, 12.88 days; control liposome, 13.13 days; un-
treated, 11.38 days). The mean time to death following control
liposome treatment was significantly longer than that in untreated
animals (13.13 days versus 11.38 days; P � 0.05) but not longer
than that in clodronate-treated animals. Depletion of AM� also
did not result in increased ANDV titers in the lung as measured by
PCR (Fig. 2c). These data suggest that despite becoming activated,
AM� are not important for protection against an intramuscular
ANDV challenge, nor do they contribute to disease pathogenesis
following intramuscular challenge.

Serial sections of lung tissue from these groups further revealed
the presence of ANDV antigen colocalized to CD31-positive
endothelial cells in both capillaries and larger vessels (Fig. 3a to
d). Regardless of treatment, no differences were observed in the
pathogenesis of HPS-like disease in ANDV-infected hamsters.
Hamsters in all groups exhibited signs of mild to moderate inflam-
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FIG 1 Identification and depletion of AM� in Syrian hamsters. (a) AM� from Syrian hamster BAL fluid were analyzed for the expression of the MARCO
scavenger receptor by flow cytometry. Hamsters were treated intratracheally with liposomal clodronates or control liposomes on days 
3 and 
1 prior to an
80-PFU ANDV i.m. challenge. Ten days post-ANDV challenge, the ability of Encapsome or liposomal clodronate treatment to deplete AM� was determined by
analyzing the percentage of MARCO	 cells (b) or FSChi/SSChi cells (c) in hamster BAL samples. The percentage of MARCO	 cells or FSChi/SSChi cells was then
quantified (d) (*, P � 0.05; ***, P � 0.001). (e) Staining of lungs of day 10 ANDV-infected hamsters with H&E (total magnification, �400). Sections (5 to 6 �m)
of one of the cranial lung lobes was stained with H&E to visually determine if the number of alveolar macrophages is affected when treated with liposomal
clodronate or control liposome or when left untreated. Black arrows indicate alveolar macrophages.
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mation, interstitial pneumonia, alveolar fibrin deposition, and
edema characteristic of ANDV infection.

Also noticed were multifocal foci of neutrophilic inflamma-
tion, along with mesothelial hypertrophy and atelectasis. The

presence of necrotic/apoptotic debris was rare. Consistent with
the detection of viral genome by PCR, immunohistochemistry
analysis revealed little to no difference in overall viral load within
endothelial cells following clodronate treatment. Interestingly, all

FIG 2 Depletion of AM� does not prevent disease following intramuscular ANDV challenge. Hamsters were treated intratracheally with liposomal clodronate
or control liposome on days 
3 and 
1 or were left untreated. On day 0, all hamsters were challenged with 80 PFU ANDV by intramuscular infection. (a) Ten
days post-ANDV challenge, the number of AM� was determined by flow cytometry by gating on FSChi/SSChi cells (as described for Fig. 1) in hamster BAL samples
(**, P � 0.01; ****, P � 0.0001). (b) The depletion of AM� did not prevent disease in hamsters. Lung tissue specimens isolated from all hamsters 10 days
postchallenge were evaluated for viral genome (c) by real-time (RT)-PCR (not significant).
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identifiable alveolar macrophages found in ANDV-infected ham-
sters were negative for Andes virus although positive for cytoplas-
mic CD31 staining (Fig. 3e).

Depletion of AM� does not prevent disease following intra-
nasal ANDV challenge. Alveolar macrophages are more likely to
be involved in the defense against airborne pathogens. To under-
stand the protective or pathogenic responses that AM� elicit to

inhaled hantaviruses, AM� were depleted prior to intranasal
ANDV challenge. Groups of hamsters were treated intratracheally
with liposomal clodronate or control liposome on days 
3 and

1. One group of hamsters were left untreated. Hamsters were
then challenged with 4,000 PFU (42 LD50) ANDV i.n. Ten and 17
days later, the number and percentage of AM� in hamster BAL
fluid were determined. Similar to what was seen after intramus-

FIG 3 Depletion of AM� does not alter the localization of ANDV NP to CD31 positive endothelial cells. Serial sections (5 to 6 �m) from one of the cranial lobes
of day 10 i.m. ANDV-infected hamsters treated with liposomal clodronate (a) or control liposome (b), untreated ANDV-infected hamsters (c), or normal
uninfected hamsters (d) were stained with antibodies specific for CD31 (DAB; brown) or ANDV NP (alkaline phosphatase; red). ANDV NP staining colocalized
to CD31-positive cells in adjacent serial sections. Normal hamster tissue remained negative for ANDV NP. No differences were seen in the pattern of CD31 and/or
ANDV NP staining across treatment groups. (e) Alveolar macrophages from untreated ANDV-infected hamsters were evaluated for the presence of ANDV NP
and CD31. All were found to be CD31 positive, but no evidence of positive staining for ANDV NP was detected.
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cular challenge, 10 days after intranasal challenge the percentage
and total number of AM� in untreated or control liposome-
treated animals were comparable (Fig. 4a). control liposome treat-
ment resulted in a trend toward increased numbers of AM� com-

pared to untreated animals, but this difference was not significant.
By comparison, liposomal clodronate treatment resulted in a sig-
nificant reduction in both the percentage and total number of
AM�. The percentage of AM� remained significantly reduced fol-

FIG 4 Depletion of alveolar macrophages does not prevent disease following intranasal ANDV challenge. Hamsters were treated intratracheally with liposomal
clodronate or control liposome on days 
3 and 
1 or were left untreated. On day 0, all hamsters were challenged with 4,000 PFU ANDV by intranasal infection.
(a and b) Ten days (a) and 17 days (b) post-ANDV challenge, the number of AM� was determined by flow cytometry by gating on FSChi/SSChi cells (as described
for Fig. 1) in hamster BAL samples (**, P � 0.01; ***, P � 0.001; ns, not significant). (c) The numbers of AM� on days 10 and 17 in untreated, ANDV-challenged
hamsters were directly compared (**, P � 0.01). (d) The depletion of AM� did not prevent disease in hamsters. All surviving animals seroconverted, indicating
that they had been exposed to virus (data not shown). (e) Lung tissue isolated from all hamsters 10 and 17 days postchallenge were evaluated for viral genome by
RT-PCR.
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lowing liposomal clodronate treatment 17 days after intranasal
challenge (Fig. 4b). Surprising, though, was the observation that
the number of AM� at day 17 in the untreated group was signifi-
cantly lower than the number of AM� in the untreated group at
day 10 (Fig. 4c). This phenomenon was seen only in the untreated
groups, as the number of AM� in the control liposome-treated
animals remained similar between days 10 and 17. Although the
total number of AM� in the liposomal clodronate-treated animals
was lower on day 17 than on day 10, the difference between the
number of AM� in the liposomal clodronate-treated animals and
untreated animals on day 17 was not significant. However, the
difference in the number of AM� in the control liposome-treated
animals and untreated animals on day 17 was significant. The
reduction in AM� did not prevent disease in hamsters (Fig. 4d),
but depletion did result in a more uniform and slightly more rapid
disease course (mean time to death: liposomal clodronate, 14.75
days; control liposome, 21.43 days; no treatment, 19.13 days).
ANDV titers in the lung were not significantly different in lipo-

somal clodronate-treated hamsters at either day 10 or day 17 as
determined by the presence of viral genome measured by PCR
(Fig. 4e). However, there was a trend toward increased ANDV M
copy number in the lungs of liposomal clodronate-treated animals
10 days postchallenge.

TNF-� levels in hamster BAL samples were significantly higher
at the peak of disease than at earlier time points (Fig. 5a; day 17
versus day 10), but AM� depletion affected TNF-� expression
only early after infection. Interestingly, treatment with either lipo-
somal clodronate or control liposome resulted in an increase in
detected TNF-� compared to that in untreated hamsters, which
could reflect the higher numbers of neutrophils and AM� present
in the BAL samples from these groups, respectively (Fig. 4b and
6d). The reduction in AM� did not reduce the amount of TNF-�
detected in BAL samples 10 days after intramuscular challenge
(Fig. 5b), which was similar to the amount of TNF-� detected in
BAL samples 10 day after intranasal challenge. Remarkably,
TNF-� levels at the peak of disease following intranasal challenge

FIG 5 Depletion AM� alters TNF-� expression but only early after intranasal ANDV challenge. Hamsters were treated intratracheally with liposomal clodronate
or control liposome on days 
3 and 
1 or were left untreated. On day 0, all hamsters were challenged either with 4,000 PFU ANDV by intranasal infection or
with 80 PFU ANDV by intramuscular infection. BAL samples were collected from all hamsters 10 and 17 days after intranasal challenge (a) or 10 days after
intramuscular challenge (b), and TNF-� expression was analyzed by ELISA. The depletion of AM� resulted in increased TNF-� levels 10 days after intranasal
ANDV challenge (a) (**, P � 0.01) but did not affect TNF-� levels 17 days after intranasal challenge or 10 days after intramuscular ANDV challenge (b). (c)
TNF-� expression levels in BAL samples from untreated ANDV-challenged hamsters following either intranasal or intramuscular virus challenge were directly
compared (****, P � 0.0001).
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(day 17) were nearly twice those detected at the peak of disease
following intramuscular challenge, possibly reflecting the differ-
ences in AM� activation when virus is administered directly to the
lung. These data suggest that AM� do not contribute to disease
pathogenesis but may contribute some degree of protection
against intranasal ANDV challenge.

Depletion of AM� alters neutrophil recruitment early, but
not late, after intranasal ANDV challenge. Alveolar macrophages
coordinate many aspects of immune responses to airborne patho-
gens, including the recruitment of other immune cell types such as
neutrophils. At the peak of hantavirus disease following intramus-
cular infection with ANDV (day 10), we observed a decrease in the
neutrophil chemoattractant MIP-1� in BAL samples from AM�-
depleted hamsters compared to untreated ANDV-infected ham-
sters, suggesting that AM� may be an important source of MIP-1�
during hantavirus infection in the lung (Fig. 6a). However, the
expression of the neutrophil chemoattractant MIP-2 in BAL sam-
ples from all hamsters remained unchanged (Fig. 6b), and, corre-
spondingly, there was also little significant change in the number
of neutrophils found in hamster BAL samples 10 days after intra-
muscular challenge (Fig. 6c). By comparison, when we investi-
gated the role of AM� in the recruitment of neutrophils following
intranasal challenge, we found that early in disease pathogenesis
(day 10), MIP-1� and MIP-2 expression were reduced in both
liposomal clodronate- and control liposome-treated hamsters
compared to untreated ANDV-infected hamsters (Fig. 6d and e).
We also found that control liposome treatment resulted in in-
creased numbers of recruited AM� (Fig. 4b) while liposomal clo-
dronate treatment resulted in an increased number of neutrophils
(Fig. 6f). At the peak of disease following intranasal ANDV chal-
lenge (day 17), the expression of MIP-1� and MIP-2 was reduced
approximately 50% compared to the expression seen on day 10.
Moreover, the expression of MIP-1� and MIP-2 was not depen-
dent on treatment, as equivalent amounts of MIP-1� and MIP-2
were detected in BAL samples from all hamsters (Fig. 6d and e).
Neutrophil numbers were reduced in liposomal clodronate-
treated animals by day 17 compared to the numbers observed on
day 10, but neutrophil numbers in the control liposome-treated
and untreated hamsters remained virtually unchanged between
days 10 and 17 (Fig. 6g). In contrast, AM� numbers in control
liposome-treated hamsters remained elevated on days 10 and 17
despite an overall drop in AM� numbers in untreated hamsters
(Fig. 4a and b). These data suggest that AM� may regulate neutro-
phil recruitment to the lung early after hantavirus infection but do
not contribute significantly to neutrophil recruitment toward the
peak of disease pathogenesis.

Depletion of AM� alters VEGF-A expression early after in-
tranasal ANDV challenge. Recently, vascular endothelial growth
factor (VEGF) has been hypothesized to play a role in hantavirus
disease pathogenesis. Moreover, AM� are known sources of
VEGF. We therefore asked whether VEGF expression in the lungs
of hamsters infected with ANDV was dependent on the presence
of AM�. Compared to normal uninfected hamsters, VEGF-A ex-
pression in the BAL of hamsters 10 days after intranasal ANDV
challenge was only slightly, but not significantly, elevated (Fig. 7).
Interestingly, at the time of peak disease on day 17, there was
almost a 2-fold increase in VEGF-A protein. Macrophage deple-
tion did not further enhance VEGF-A in BAL samples late into
infection (day17), as we observed no difference in VEGF titers in
ANDV-infected hamster BAL samples in the presence or absence

of AM�. However, when AM� were depleted, VEGF-A expression
in the BAL fluid on day 10 was equivalent to the amount of
VEGF-A detected in all hamster BAL samples on day 17. A similar
increase in VEGF was observed in control liposome-treated ham-
sters. These data demonstrate that VEGF expression is enhanced
in hamsters infected with ANDV but suggest that while AM� may
regulate the expression of VEGF by other cell types in the lung,
they are not a major source of VEGF during hantavirus disease
pathogenesis.

DISCUSSION

The human lung has a surface area of approximately 70 m2 and
contains, on average, 480 million alveoli (35), which are in con-
stant contact with the outside world. In this environment, homeo-
stasis along the endothelial/epithelial border must be maintained
to allow oxygen and carbon dioxide to freely exchange; however,
these homeostatic mechanisms must remain pliable enough to
allow immune responses to clear invading pathogens. Often con-
sidered the first line of defense against respiratory pathogens, the
estimated 2 billion AM� residing in the alveoli of the human lung
(36) are uniquely juxtaposed to maintain lung homeostasis as well
as orchestrate protection against airborne viruses and bacteria
(37). In the case of hantaviruses, the predominant route of human
exposure is thought to be inhalation of excreta from infected ro-
dent hosts (reviewed in references 6 and 7), suggesting that alve-
olar macrophages may play an important role in clearing or, alter-
natively, contributing to disease caused by aerosolized
hantaviruses. Albeit rare, several cases of hantavirus disease have
been reported in humans following parenteral exposure resulting
from the bite of infected rodents. In these cases, the disease result-
ing from parenteral infection is virtually identical to the disease
following aerosol infection, the only differences being slight dif-
ferences in disease kinetics. Similarly, Syrian hamsters experimen-
tally infected with ANDV by intramuscular challenge develop a
disease that is indistinguishable from the disease exhibited follow-
ing intranasal exposure, the only differences being slight differ-
ences in disease kinetics and the number of PFU needed to develop
uniformly lethal disease. Given the extensive similarities in dis-
ease, it is likely that the mechanism of disease or the cell type
responsible for disease is identical regardless of the route of expo-
sure. Consistent with this hypothesis, we demonstrate here that
alveolar macrophages play only a marginal role in protecting ham-
sters from lethal hantavirus infection but do not contribute to the
disease caused by either intranasal or intramuscular hantavirus
infection.

Alveolar macrophages contribute to the defense against many
aerosolized pathogens, and in many cases, these responses are crit-
ical for host protection. In models of vaccinia virus, respiratory
syncytial virus (RSV), and influenza virus infection, the depletion
of alveolar macrophages results in greater viral replication and
dissemination and an overall increase in the severity of infection
(9, 38–40). In some cases, the reduced levels of protection in the
absence of alveolar macrophages are likely due to the impaired
initiation of antiviral responses that result in abolished early cyto-
kine and chemokine release and inhibited immune cell activation
and recruitment (40, 41). In addition, Schneider et al. (42) dem-
onstrated that when alveolar macrophages were depleted in mice
prior to infection with influenza virus, the mice exhibited lower
percent oxygen saturation (sO2) and oxygen partial pressure
(pO2), arguing that AM� are important for maintaining lung
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function during infection. However, the same mechanisms that
alveolar macrophages use to protect against pathogens have also
been implicated in causing disease and increased vascular perme-
ability in models of acute lung injury caused by infectious disease

agents, such as human metapneumovirus (hMPV) (43) and Pseu-
domonas aeruginosa (44), as well as chronic obstructive pulmo-
nary disease (COPD) (45) and nonischemic inflammatory lung
injury (46). Alveolar macrophages may also serve as a reservoir for

FIG 6 Depletion of AM� alters neutrophil recruitment and neutrophil chemoattractant expression early after intranasal ANDV challenge. BAL samples were
collected from all hamsters 10 days after intramuscular challenge (a to c) or 10 and 17 days after 4,000 PFU intranasal ANDV challenge (d to g) and were analyzed
for the presence of neutrophils by flow cytometry and MIP-1� and MIP-2 by ELISA. Both liposomal clodronate and control liposome treatments resulted in a
decrease in MIP-1� (a) but did not alter MIP-2 expression (b) or the number of neutrophils (c) compared to untreated hamsters after intramuscular challenge.
liposomal clodronate and control liposome treatments resulted in a decrease in both MIP-1� (d) and MIP-2 expression (e). liposomal clodronate treatment
resulted in an increase in the number of neutrophils in hamster BAL fluid on day 10 (f) but not on day 17 (g) after intranasal challenge (*, P � 0.05; **, P � 0.01;
***, P � 0.001; ****, P � 0.0001; ns, not significant).
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pathogens such as hMPV (43), measles virus (47), and Legionella
pneumophila (48) and may indirectly contribute to the pathogen-
esis of the different diseases caused by these pathogens by allowing
their replication and dissemination. Still, the enhancement of dis-
ease in the presence of alveolar macrophages may not always re-
flect a direct contribution by AM� by way of proinflammatory
cytokines or angiogenic factors but may indirectly be the result of
increased immune cell recruitment by AM� as seen in mouse
models of mouse hepatitis virus type 1 (MHV-1) infection (49).

The role that AM� play in disease caused by classical hemor-
rhagic fever viruses is less well understood. Alveolar macrophages
express the primary and secondary receptors (50) for both hanta-
viruses (�v�3 integrin [51] and complement receptors 3 and 4
[CR3/CR4] [52]) and Ebola virus (DC-SIGN and DC-SIGNR
[53]) and, correspondingly, are known to be permissive to hanta-
virus (26, 27) and Ebola virus infection (54). However, in these
cases, infection is less efficient than, or fails to induce a sustained
inflammatory response compared to, the primary targets of infec-
tion for these viruses, and there is no evidence that hantavirus
infection of AM� induces apoptosis. Antigens of yellow fever vi-
rus, which is transmitted by the bite of the Aedes aegypti mosquito,
can be found inside the rough endoplasmic reticulum and Golgi
complex of AM�, suggesting that viral replication can occur in
these cells (55, 56), but it is unknown whether AM� play any role
in disease pathogenesis other than acting as a virus reservoir. It is
also unknown whether other hemorrhagic fever viruses that com-
monly target monocyte lineage cells, such as dengue virus and
Crimean Congo hemorrhagic fever virus, target AM� in a way that
contributes to human disease. Alveolar macrophages are known
to be permissive to hantavirus infection (26, 27), but it has been
less clear to what extent AM� act as a reservoir for hantaviruses. In
some of the earliest characterizations of HPS, Mori and colleagues
described finding viral antigen in only a low number of “large

cells,” identified as macrophages, in the lung (24). Similarly, Li
and Klein further demonstrated that while Norway rat alveolar
macrophages could be infected with Seoul virus, their ability to
support efficient replication of the virus was significantly reduced
compared to endothelial cells (26).

Our analysis of ANDV nucleoprotein (NP) associated with
AM� was limited to intramuscular challenge, but a similar trend
has been reported by Safronetz and colleagues, who noted that
even during the end stages of hantavirus disease in hamsters in-
fected intranasally with ANDV, only occasional alveolar luminal
cells, most likely alveolar macrophages, were found to stain posi-
tive for hantavirus antigen (57). Coupled with this, we see no
difference in HPS pathology in hamsters following either i.n. or
i.m. challenge, and our analysis was done at the peak of disease
pathogenesis following i.m. challenge (day 10), when ANDV NP
staining of the lung endothelium was nearly continuous, suggest-
ing that the likelihood of ANDV/AM� interactions would be as
high as that following intranasal challenge. Taken together, our
observation that the depletion of AM� resulted in no significant
change in lung ANDV titers (Fig. 2c and 4e) and our inability to
detect the presence of ANDV NP associated with hamster AM�
(Fig. 3e) suggest that AM� do not serve as a primary reservoir for
hantavirus replication and AM� dysfunction due to direct hanta-
virus infection is unlikely.

How hamster AM� respond to ANDV infection is not entirely
clear. Alveolar macrophages, in general, need to walk a fine line
between homeostasis and host defense to protect the host while
preventing catastrophic inflammation. One way AM� contribute
to lung protection is by phagocytizing most of the particulate mat-
ter that enters the lungs. This suggests that they may also contrib-
ute to the clearance of ANDV from the lungs of hamsters. Early
after intranasal ANDV challenge, we saw a trend toward increased
detection of viral genome in hamsters that were depleted of AM�,
although depletion of AM� does not significantly alter the amount
of live virus or viral genome detected in lung tissue at late time
points after infection (Fig. 3e and f). Hamsters devoid of AM�
also developed disease faster than untreated or control-treated
ANDV-infected hamsters. Interestingly, the highest number of
surviving animals was found in control liposome-treated animals
(Fig. 3d). Correspondingly, this group also had greater numbers
of AM� than liposomal clodronate-treated or untreated animals
(Fig. 3a to c). Like other models, this could suggest that early after
infection, AM� help prevent the spread of infection by reducing
infectious virus in the lung and by so doing may help control the
rate at which disease pathogenesis progresses. At later times after
infection, similar levels of viral genome and/or infectious virus
were found in the lung of all hamsters, supporting the argument
that AM� contribute more substantially to the immune response
against ANDV early after infection but less so at later times once
ANDV is primarily replicating in endothelial cells. This is also
consistent with the reduced numbers of AM� detected on day 17
compared to day 10.

A second way AM� contribute to lung protection is by modu-
lating immune responses in the lung (37, 58). In the presence of
harmless particulates such as dust, they may go as far as suppress-
ing antigen-specific adaptive immune responses either by directly
suppressing tissue-resident T cells (59, 60) or by suppressing lung-
resident dendritic cells (61), thus preventing them from migrating
to draining lymph nodes and initiating immune responses. How-
ever, in the case of aerosolized pathogens, activation of AM� re-

FIG 7 Depletion of AM� alters VEGF-A expression early after intranasal
ANDV challenge. BAL samples were collected from all hamsters 10 and 17
days after 4,000 PFU intranasal ANDV challenge and were analyzed for the
presence of VEGF-A by ELISA. Both liposomal clodronate and control
liposome treatments resulted in increased VEGF-A expression 10 days
post-ANDV challenge comparable to VEGF-A levels found in all hamsters
17 days postchallenge (**, P � 0.01; ***, P � 0.001; ****, P � 0.0001; ns,
not significant).
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sults in a change in phenotype from a regulator of lung homeo-
stasis to that of a cell capable of coordinating and participating in
inflammatory immune responses (62, 63). Human AM� make
little TNF-� when exposed to SNV compared to lipopolysaccha-
ride (LPS) (27), suggesting that hantavirus may be ineffective at
activating AM�. Correspondingly, we noticed little difference in
the amount of TNF-� in the BAL fluid of hamsters in the presence
or absence of AM� following infection with ANDV intramuscu-
larly (Fig. 4a) or at late times after intranasal infection (Fig. 4b). In
the case of intramuscular injection of virus, it is not clear whether
AM� would be effectively stimulated since it is assumed that in-
fection of the endothelium would occur directly via the blood and
not by inhalation. We did observe an increase in the amount of
TNF-� in BAL samples between day 10 and day 17 postintranasal
challenge, indicating that an inflammatory response was occur-
ring. However, at late times, depletion of macrophages did not
reduce the amount of TNF-� detected, suggesting that AM� are
not a major source of TNF-� that late in infection. Somewhat
surprisingly, at early times (day 10) after intranasal challenge, the
depletion of AM� resulted in an increase in TNF-� in BAL sam-
ples. One explanation is that in hamsters, AM� are more prone to
an immunosuppressive phenotype and by depleting them, other
cell types, including neutrophils, endothelial cells, T cells, and
epithelial cells are no longer prevented from producing TNF-�.
The fact that control liposome-treated animals also had increased
levels of TNF-� may be reflected in the increased numbers of AM�
induced by control liposome treatment. Resident AM� at the time
of control liposome treatment may retain their immunosuppres-
sive phenotype, but any newly recruited AM� could be expected to
have a markedly different phenotype prior to adopting suppres-
sive functions (64).

As immune sentinels, one of the primary roles of AM� is to
orchestrate immune responses by recruiting other immune cell
types to the lung. In some models of acute lung injury (46, 65, 66),
including pneumonia induced by LPS or P. aeruginosa pneumo-
nia infection, depletion of AM� attenuates the recruitment of neu-
trophils to the lung, indicating that AM� can be a key source of
neutrophil chemoattractants. Conversely, in other models, AM�
appear to play a greater role in the negative regulation of neutro-
phil migration in that the depletion of AM� amplifies neutrophil
recruitment (38, 44, 67–71). Neutrophils migrate in response to a
number of chemoattractants (72) including CXCL2 (MIP-2
[mouse]/GRO� [human]) and CCL3 (MIP-1�), of which AM�
can be a major source (40, 73–75). Liposomal clodronate treat-
ment resulted in a decrease in MIP-1� detected in BAL samples on
day 10 following intramuscular ANDV challenge (Fig. 5a) and also
resulted in a decrease in MIP-1� and MIP-2 on day 10 following
intranasal challenge (Fig. 5b). Surprisingly, the decrease in
MIP-1� and MIP-2 in liposomal clodronate-treated animals fol-
lowing intranasal challenge was accompanied by an increase in
BAL neutrophils (Fig. 5d). Moreover, control liposome treatment
also resulted in decreases in MIP-1� and MIP-2 but recruitment
of new AM� rather than neutrophils. One possible explanation for
this apparent paradox is that AM� are an important source of
MIP-1� and MIP-2 in the hamster but hamster neutrophils pref-
erentially respond to other chemokines, such as monocyte che-
moattractant protein-1 (MCP-1) or KC, that may be more abun-
dant in the absence of MIP-1� and MIP-2. Alternatively, MIP-1�
and MIP-2 are preferentially secreted by cell types other than neu-
trophils in the hamster and the presence of AM� suppresses neu-

trophil migration. When alveolar macrophages are depleted, neu-
trophils freely migrate to the lung and act as a MIP-1�/MIP-2
“sponge” that soaks up free chemokine and reduces the overall
levels of bioavailable MIP-1�/MIP-2. A similar explanation could
hold true for the decreased abundance of MIP-1� and MIP-2 fol-
lowing control liposome treatment in which newly arrived AM�
act as the chemokine sponge. A closer analysis of the kinetics of
MIP-1� and MIP-2 expression following alveolar macrophage de-
pletion would be necessary to elucidate these possibilities. The
expression of MIP-1� and MIP-2 on day 17 following intranasal
ANDV challenge was similar across all treatment groups and sub-
stantially lower than that detected in ANDV-alone hamsters on
day 10. Whether this reflects decreased numbers of AM� at day 17
versus day 10 or whether this is a natural attempt by the hamster to
downregulate lung inflammation has yet to be determined.

IL-8 (CXCL8) is another potent neutrophil chemoattractant
that can be produced by a number of cell types in the respiratory
tract, including activated alveolar macrophages, airway epithelial,
airway smooth muscle, and airway endothelial cells responding to
inflammatory stimuli (76, 77), but like MIP-1a, MIP-2, and
MCP-1, there are only limited data on how these chemokines are
regulated during human hantavirus infection. Neither Sin Nom-
bre virus nor Hantaan virus induces IL-8, MCP-1, MIP-1a, or
MIP-1b within 72 h of in vitro infection of human lung microvas-
cular endothelial cells (78), and only HTNV induces IL-8 at times
later than 72 h (79), suggesting that IL-8 may be more relevant to
HFRS than to HPS. Analysis of sera from human HPS cases failed
to detect changes in MIP-2, MIP-1a, IL-8, or MCP-1, although
significant increases in granulocyte-macrophage colony-stimulat-
ing factor (GM-CSF) and M-CSF were detected (80). As myeloid
cell differentiation, growth, and activation factors, GM-CSF and
M-CSF could implicate such as macrophages and dendritic cells in
disease (81, 82), although these results suggest that it is not neces-
sarily due to the recruitment of other cell types by macrophages.
Intriguingly, higher concentrations of IL-8 and GM-CSF in serum
are found in female HFRS patients infected with PUUV than in
their male counterparts, potentially linking IL-8 expression with
HFRS severity (83). However, more males than females are likely
to develop clinical HFRS following PUUV infection (84, 85) and
there is no difference in HFRS disease severity in humans infected
with PUUV (86), rendering the link between IL-8 and HFRS dis-
ease suspect. Whether chemokines such as MCP-1, MIP-1a, or
MIP-2 follow a similar pattern of expression during human HFRS
has yet to be determined.

We believe that this is the first report of hamster-specific ELISA
kits from a commercial vendor to be used with the Syrian hamster
animal model. Given the relatively short time interval between the
publishing of the Syrian hamster genome and the commercial
availability of these ELISA kits, we cannot discount the possibility
that the cytokine expression patterns that we see following lipo-
somal clodronate/control liposome treatment of ANDV-infected
hamsters are related to the specificity of these kits. As such, while
these measurements are reproducible, they should be interpreted
within the context of the other parameters measured in these ex-
periments (e.g., survival and AM� numbers) until verified by
other independent reports.

The potential role of VEGF in hantavirus disease pathogenesis
has recently received a great deal of attention. In vitro, hantavirus
infection sensitizes endothelial cells to VEGF, rendering them hy-
perpermeable (87) in a process involving VE-cadherin (88, 89)
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and potentially �3 integrin (90). Similarly, increased levels of
VEGF can be detected in pleural effluent from patients with acute
HPS (91) or in serum samples of acute-phase HFRS patients (92).
Alveolar macrophages are known to express VEGF during pulmo-
nary infection and other forms of acute lung injury (93–98), sug-
gesting that AM� may respond similarly to hantavirus infection.
Still, the fact that all hamsters infected with ANDV developed
disease (Fig. 2e and 3d) suggests that AM� do not significantly
influence the expression of VEGF in hamsters. A significant in-
crease in VEGF expression in the BAL fluid of ANDV-infected
hamsters late after infection (day 17) was observed compared to
what was seen in normal hamsters, but as expected, the levels of
VEGF detected in the BAL fluid of ANDV-infected animals were
nearly identical at later times after infection (day 17) regardless of
the presence or absence of AM� (Fig. 6). However, contrary to our
expectations, the depletion of AM� resulted in a significant in-
crease in the level of VEGF in the BAL fluid of ANDV-infected
hamsters at early times after intranasal challenge. Interestingly,
when macrophages were depleted in animals prior to intranasal
challenge, those animals developed disease faster than either un-
treated ANDV-infected animals or animals receiving control lipo-
some treatments. This would seem to support the suggestion that
VEGF contributes to hantavirus disease, but it would argue that
AM� are not the sole source of VEGF. Pulmonary epithelial cells
(99, 100) and neutrophils (101, 102) are other known sources of
VEGF in the lung and could be contributing to the increased levels
of VEGF seen in ANDV-infected hamsters. Epithelial cells are not
the primary targets of hantaviruses and are thus unlikely to be
expressing VEGF as a result of direct infection, but expression
could be induced by inflammatory cytokines produced by other
cells during infection or by hypoxia caused during HPS (103).
Recently, a role for neutrophils in vascular leakage caused by
HTNV infection of SCID mice has been suggested (104). Corre-
spondingly, liposomal clodronate treatment resulted in a signifi-
cant increase both in BAL fluid VEGF and in neutrophil numbers
early after infection (day 10). Whether the depletion of neutro-
phils in hamsters alters hantavirus disease pathogenesis and the
expression of VEGF in hamsters remains to be determined.

The role that immune cell types may play in disease pathogen-
esis may not be limited to direct antiviral responses or cytokines.
As cells such as neutrophils, monocytes, and lymphocytes are re-
cruited to sites of infection, they undergo the process of transen-
dothelial cell migration, which is highly regulated by integrins,
cadherins, and junctional adhesion molecules to prevent vascular
leakage during the process (105, 106). Hantaviruses inactivate and
dysregulate beta 3 integrins and VE-cadherin (88, 89), making it
possible that infected endothelial cells may not be able to reform
junctional complexes following paracellular diapedesis, leading to
vascular leakage. Presumably, this would lead to visible gaps be-
tween endothelial cells, not borne out in electron microscopy
(EM) analysis of hantavirus-infected endothelium from humans
or hamsters (28, 33). Alternatively, neutrophils also possess the
ability to migrate directly through endothelial cells via transcellu-
lar migration. During this process, endothelial cells form a dome,
controlled by RhoA and F-actin (107), over the neutrophil to pre-
vent vascular leakage. Endothelial cells to which polymorphonu-
clear leukocytes (PMNs) adhered often display many vesicles that
can extend continuously between the cell membranes of the en-
dothelial cells (108) similar to those seen in endothelial cells from
hantavirus-infected hamsters (33). Dysregulation of dome forma-

tion could potentially allow for the direct flow of serum proteins
through infected endothelial cells in a manner irrespective of no-
ticeable gap formation in the endothelium.

Small-animal models are invaluable tools to study the patho-
genesis of diseases caused by neglected infectious disease agents
such as Andes virus. However, the utility of the hamster model, as
well as the role of the immune response in hantavirus disease
pathogenesis, is contentious. Previously, we and others have dem-
onstrated that the ablation of adaptive T and B cell responses to
ANDV infection in hamsters does not alter the course of disease
(109, 110). Here, using the Syrian hamster/Andes virus lethal dis-
ease model, we demonstrate that another component of the im-
mune system is not directly responsible for the HPS-like disease
cause by ANDV in hamsters. The mechanism by which hantavi-
ruses cause disease in humans and hamsters alike is not clear, and
many mechanisms of disease, both immune related and virus in-
trinsic, have been proposed. Making this more difficult is that
aspects of the immune response to hantavirus infection are likely
to be important for protection and viral clearance, even as they are
viewed as contributing to disease. Still, it will be necessary to con-
tinue to evaluate other immune cell types, as we seek to under-
stand their role in contributing to disease or protection following
hantavirus infection.
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