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Temporal lobe epilepsy is the fourth most common neurological disorder, with about 40% 

of patients not responding to pharmacological treatment. Increased cellular loss is linked to 

disease severity and pathological phenotypes such as heightened seizure propensity. While the 

hippocampus is the target of therapeutic interventions, the impact of the disease at the cellular 

level remains unclear. Here, we show that hippocampal granule cells change with disease 

progression as measured in living, resected hippocampal tissue excised from patients with 

epilepsy. We show that granule cells increase excitability and shorten response latency while 

also enlarging in cellular volume and spine density. Single-nucleus RNA sequencing combined 

with simulations ascribes the changes to three conductances: BK, Cav2.2, and Kir2.1. In a network 

model, we show that these changes related to disease progression bring the circuit into a more 

excitable state, while reversing them produces a less excitable, “early-disease-like” state.

In brief

The cellular changes brought about by temporal lobe epilepsy in humans remain unknown. Buchin 

et al. generate a multimodal dataset from human hippocampal surgical tissue to map cellular 

changes linked to disease progression. They find three ion conductances that explain changes 

across modalities.
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INTRODUCTION

Epilepsy is one of the most common neurologic ailments, and temporal lobe epilepsy 

(TLE) is its most commonly diagnosed form, affecting approximately 65 million people 

worldwide. Despite considerable advances in the diagnosis and treatment of such seizure 

disorders, the cellular and molecular mechanisms leading to TLE-related seizures remain 

unclear. Notably, approximately 40% of patients with TLE exhibit pharmaco-resistance, 

i.e., lack of response to conventional anticonvulsive treatments.1 Hippocampal sclerosis 

(HS), a neuropathological condition correlated with cell loss and gliosis, has been linked 

to increased occurrence of TLE, with an elevated degree of HS contributing to the disease 

progression (though other factors like seizure duration may also affect it, e.g., see Fuerst 

et al.2). The sclerotic hippocampus is thought to be the most likely origin of chronic 

seizures in patients with TLE and is the target of temporal lobe resection intervention. 

The efficacy of these surgical interventions (i.e., 65%–80% of patients with TLE become 

seizure free) further implicates the sclerotic hippocampus as a prominent member of 

the pathophysiological network.3,4 Patients with increased HS typically suffer from more 

frequent seizure activity,5–9 an observation also replicated in rodents.10 Furthermore, HS has 

been associated with a spectrum of adverse effects such as longer epilepsy duration11–14 and 

an earlier stage of onset,9,15,16 as well as the presence of early aberrant neurological insults 

such as febrile convulsions.9,15,16

To mechanistically understand the link between disease progression and increased seizure 

propensity in patients with TLE, we studied live human brain tissue excised during temporal 

lobectomy (Figure 1; Table S1). The excised brain tissue was quantified neuropathologically 

via the Wyler grade (WG; WG range: 1–4)17 based on light microscopic examination of the 

mesial temporal damage in temporal lobectomy specimens (Figure 1A): degree 1 (WG1) 

corresponds to none/mild HS, while degree 3 or 4 (WG4) corresponds to severe HS. We 

use a data generation and analysis platform18 to characterize disease-related features in gene 

expression (single-nucleus RNA sequencing [RNA-seq]), electrophysiology, morphology, 

spine density, and gene expression at single-cell resolution. Specifically, we concentrated 

on granule cells (GCs) of the dentate gyrus (DG), a hippocampal region. Studies in animal 

models and human neurosurgical specimens have implicated DG GCs in the generation and 

support of seizure activity by a plethora of mechanisms spanning from altered excitability, 

changes in morphology, protein expression, neuronal loss, synaptic re-organization, and 

altered connectivity patterns.19–21 We pursued the multimodal characterization of human 

GCs across patients and report how their properties change with disease progression, i.e., 

increasing WG (Figures 1B, 1C, S1, and S2).

RESULTS

Single-cell gene expression changes in human GCs with TLE progression

To look at broad changes brought about by TLE in the human epileptic hippocampus, we 

analyzed the gene expression of 230 ion-channel-coding and 1,600 projection-coding genes 

specific to GCs (https://www.brainspan.org/; Figure 1B). Analysis of the single-nucleus 

RNA-seq (snRNA-seq) data after integration (https://scvi-tools.org/; see STAR Methods) 

shows that a large number of genes are differentially expressed with disease progression 
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that separates WG1 from WG4 GCs (Figure 1B). Differential expression implicates a large 

number of genes with the largest change (effect size) seen in FSTL4, GABRC3, EFNA5, 

and KCNC2 (Figure S3). FSTL4 is involved in cell differentiation; GABRG3 encodes the 

GABA-A receptor beta 3 subunit; EFNA5 is involved in cell migration during neuronal 

development; and KCNC2 is a potassium-channel-coding gene. In addition, we found that 

the proportion of GCs was larger in WG1 compared with WG4 patients (57% vs. 30% of all 

cells, respectively).

Transcriptomics broadly implicate a large number of GC-related genes to TLE progression. 

Thus, a number of GC properties change with disease progression in parallel to progressive 

cell loss in human hippocampus. To shed light into the cellular changes implicated by 

snRNA-seq as well as attribute these changes to specific mechanisms, we performed a 

single-cell electrophysiology and a morphology survey of GCs in human brain slices from 

the same patients and examined how these properties change with disease progression 

(Figures 1C and S3). The hypotheses for the mechanisms and the cellular changes 

affected by TLE progression are, thus, predominantly driven by the electrophysiology 

and morphology differences found in human GCs, with snRNA-seq used to further 

support changes we detect in the computational models related to ion-channel-related gene 

expression.

Excitability changes in GCs with TLE progression

We employed whole-cell patch clamping in human DG GCs, imposing a battery of 

intracellular stimuli to assess electrophysiological changes associated with HS. The standard 

protocol (1-s-long direct current [dc] injections of different amplitudes) was applied 

to 112 patch-clamped GCs (Figure 2A). A set of 31 electrophysiological features was 

extracted for every experiment (Table S2) and evaluated over the range of injected current 

amplitudes. Based on these electrophysiology features, we observed robust separation 

between WG1 and WG4 cases (Figures 2B and 2C; t-distributed stochastic neighbor 

embedding [t-SNE]22). To identify the electrophysiology features separating WG1 vs. WG4, 

we used two methods: (1) pairwise feature comparison in combination with Mann-Whitney 

U testing (p < 0.05/n, Bonferroni corrected for multiple comparisons n), which resulted 

in 9 out of 30 features exhibiting statistically significant difference (Figure 2D); and (2) 

random forest classification reaching classification accuracy of 81% (chance level: 50%; 

classifier trained on all electrophysiological features; out-of-bag error; Figure 2E). When 

comparing the classifying features resulting from the two methods, we found that 5 out of 

9 statistically significant features were shared (Figures 2D and 2E). The most prominent 

electrophysiological features affected by disease progression are the spike frequency-current 

(f-I) gain (WG1 GCs have a higher gain than WG4) and the time-to-spike (WG4 GCs have 

a shorter time-to-spike duration than WG1), two prominent excitability parameters of a 

neuron (Figure 2F). To cross-validate against patient-specific effects, patient-out-validation 

(classifier trained on data from 6 patients predicting the WG score of a seventh patient) 

classification performance reached 71% (chance level: 50%; Table S3).
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Altered GC morphology and spine density

Next, we ask to what extent the morphology of human GCs is affected by disease 

progression. To do so, we reconstructed the dendritic morphology of 102 single GCs (Figure 

3A) and used a set of 49 morphology features to assess WG-dependent alterations (Table 

S4). We found that morphologies differ between neurons from different levels of disease 

progression (Figures 3B and 3C) but are not clustered by patients (Figure S4). Following 

the same methodology as for electrophysiology features, we used two tests to detect 

the features leading to the morphology separation (Figures 3D and 3E). Random forest 

classification (out-of-bag error) resulted in a morphology-based classification performance 

of 74%, i.e., comparable to that of electrophysiology features. Notably, most features point 

to disease progression correlating with thicker (i.e., increased surface area and volume) 

GC morphologies. When training on both electrophysiological (Figure 2) and morphology 

features (Figure 3) for the subset of GCs (n = 77) where both data modalities are present, 

classifier performance reached 81% (Figure S5).

To what extent is synaptic input along GCs affected by disease progression? To determine 

the amount of excitatory synaptic input along GCs, we estimate the spine density in a subset 

of the morphological biocytin reconstructions (Figure 3F). Average spine density increases 

approximately 2-fold from WG1 to WG4. This suggests an increase in synaptic drive of 

GCs with disease progression. Notably, differences in spine density occurred both along the 

apical and basal dendrites. Overall, our results from spine density measurements indicate 

that DG GCs in severe stages of HS receive increased excitatory synaptic drive compared 

with mild HS.

Ion conductance changes

To investigate the functional consequences of TLE and HS on electrophysiological, 

morphological, and connectivity properties of human GCs, we generated a series of 

biophysically detailed, anatomically realistic, conductance-based single-neuron models.23 

To produce faithful single-neuron models, a key question is which ionic conductances 

to account for. Our starting point for the ionic conductance recipe relied on a detailed 

GC model based on the rodent literature that involves 7 voltage-dependent K channels, 

4 voltage-dependent Ca channels, and 2 Ca-dependent K channels, as well as two voltage-

dependent Na and Na/K (HCN) channels distributed along different parts of the morphology 

(Figure 4A; see also Beining et al.24). To assess to what extent these conductances are 

truly present in human GCs, in a second step, we analyzed fluorescence-activated cell-sorted 

snRNA-seq data from four human brain specimens25 to test for the expression of genes 

associated with the ionic conductances used in our models. We found that the vast majority 

of the genes associated with the conductances are expressed in human DG neurons (Figure 

4B).

To generate human GC single-neuron models, we used a 3-stage approach leveraging 

a computationally intensive, genetic optimization framework that relies on comparisons 

between experimental and model electrophysiology features for a particular morphology 

reconstruction (Figure S6). Using this optimization framework, we generated GC models 

accounting for active ionic conductances along their entire soma, axonal, and dendritic arbor. 
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In total, we developed 12 single-cell models per WG (data originating from multiple single 

cells and patients) in an unbiased manner. The resulting models captured a multitude of 

experimental observables such as differences between WG1 and WG4 in terms of spike 

frequency response to increasing injection currents, time to spike, etc. (Figures 4C and 

S7) As a result, when classifying electrophysiology features from these models, WG1 vs. 

WG4 models are clearly separated, and, importantly, the features leading to this separation 

are in agreement with the ones leading to separation of experimental electrophysiology 

features (Figures 4D and S7) (note that while the models were optimized on a set of 

11 electrophysiological features, model validation was performed on a different set of 31 

electrophysiological features; STAR Methods). The agreement observed between modeling 

and experimental data is highly non-trivial (Figures 4D and S7). Specifically, while the 

models are optimized around a set of electrophysiology features, whether they turn out to 

accurately reflect the experimental data remains questionable, particularly so for differences 

between two conditions (WG1 vs. WG4) within a particular cell type (human DG GCs). The 

reason is because the morphologically detailed conductance-based models we generate are 

non-linear and high dimensional. For any optimization procedure, this is a very demanding 

scenario since convergence between model and experimental features is not guaranteed. The 

fact that we show such convergence is non-trivial and speaks to the power and quality of 

the computational optimization procedure employed. Moreover, the fact that the resulting 

models exhibit the same type of separation as experiments in an unbiased manner is unique 

and, once more, speaks to the quality of the parameter optimization procedure and the 

resulting models. We conclude that the human GC models generated by the computational 

workflow faithfully reproduce within-cell-type similarities as well as degree-of-pathology 

differences measured in our experiments.

The development of realistic conductance-based models and the inclusion of 15 distinct 

ionic conductances shown to express in human GC neurons offers a computational 

framework to study disease progression changes at a mechanistic level. Pairwise comparison 

between WG1 vs. WG4 models pointed to three conductances exhibiting the most 

prominent, WG-related difference: Ca-dependent K channel (BK), Cav2.2, and Kir2.1. 

Specifically, we found that reducing BK and increasing Cav2.2 and Kir2.1 conductance 

from their respective WG1 value (percentage change of median conductance from WG1 

to WG4: BK, 56% increase; Cav2.2, 28% decrease; Kir2.1: 52% decrease) resulted in 

electrophysiology properties closely resembling WG4 cases (Figures 4E, left, and S8). To 

test these model predictions, we also performed snRNA-seq in the resected hippocampal 

tissue of a subset of our patient cohort (4 out of 7 patients; 2 WG1, 2 WG4) and quantified 

the expression of genes associated with the three conductances, namely KCNMA1 (BK), 

CACNA1B (Cav2.2), and KCNJ2 (Kir2.1). We found that the trends (size effect) predicted 

by the models for the two ionic conductances are supported by the snRNA-seq data 

(their absolute numbers expressed in unique molecular identifiers [UMIs]). Specifically, 

we observed upregulation of BK and downregulation of Cav2.2 with disease progression 

(Figure 4E). Such agreement between conductance level and RNA expression is by no 

means guaranteed given that snRNA-seq does not necessarily translate to expression of 

proteins in the membrane. The direction of changes associated with Kir2.1 was inconclusive 

because of a low number of gene reads.
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How do the three identified ion conductances affect changes observed in electrophysiology 

properties, i.e., the f-I slope and time to first spike? We used the aforementioned single-

neuron models and performed a sensitivity analysis by perturbing parameters such as 

somatic Cav2.2 and Kir2.1 conductances and measuring their impact on the f-I slope 

and time to first spike (Figure S9). Importantly, the conductance perturbations in this 

analysis were similar to the ones brought about by the disease progression. Out of the 

three conductances, we found that only the decrease in somatic Cav2.2 from WG1 to 

WG4 affected the f-I gain in the same manner as observed experimentally (Figure S9). 

Moreover, a decrease in dendritic Kir2.1 conductance was the only perturbation that resulted 

in a reduction of spike latency (Figure S9). It follows that changes in somatic Cav2.2 

and dendritic Kir2.1 conductances brought about by the disease best explain the changes 

observed in the most salient electrophysiology properties, respectively.

Circuit excitability

How are the differences observed at the single-cell level manifested in a network setting? We 

used the single-neuron models to generate a network mimicking key features of DG circuitry 

consisting of biophysically realistic and connected excitatory (GCs) and inhibitory (human 

basket cells [BCs]) neurons (network: 500 GC models, 6 human BCs19) (Figure 5A). We 

tested the role of WG-dependent alterations on network dynamics via two independent 

manipulations: (1) by altering the network GC composition between WG1 and WG4 GC 

models while maintaining all other aspects of the network identically (i.e., BC composition, 

connectivity, synaptic weights, external inputs, etc.) and (2) by doubling the synaptic density 

between GCs from WG1 to WG4 (Figure 5B). While Poisson-like, external input resulted in 

asynchronous GC and BC output for an unconnected network (“WG1 no syn”), instantiating 

recurrent connectivity between WG1 GCs and BCs (“WG1”) resulted in recurring burst 

activity. We use burst activity as a proxy for hippocampal circuit excitability. During 

bursting, the WG1 network exhibited an increase of GC firing rate (42 Hz at the peak) 

accompanied by interneuron firing rate increase (56 Hz at the peak; Figure 5C), with 

the firing rate between bursts being substantially lower (GCs: approx. 1 Hz; BCs: 10 

Hz). Substituting WG1 GC models with WG4 ones while preserving all other aspects of 

the circuit (“WG4”) resulted in increased frequency of burst occurrence (Figures 5B and 

5C). Markedly, increased excitability for the “WG4” network occurred despite WG4 GCs 

exhibiting decreased spike-frequency gain (Figures 2F and 4C) compared with WG1. This 

can be attributed to their shorter reaction time (i.e., broadly related to the “time-to-spike” 

feature), which effectively translates into reduced rheobase. Following our observation of 

the approximate doubling of spine density from WG1 to WG4 (Figure 3F), we instantiated 

a 2-fold increase in recurrent connectivity between WG4 GCs in the network (“WG4 ×2”) 

that resulted in even stronger, sharper, and more frequent burst events (Figures 5B and 5C). 

Importantly, network excitability is substantially reversed when the three ionic conductances 

found to be differentially expressed between WG1 and WG4 GCs (BK, Cav2.2, Kir2.1) are 

substituted in “WG4” GC models with their “WG1”-like values, while all other aspects of 

the network remained unperturbed (“WG4 alt”). We conclude that GC-specific alterations 

observed during TLE progression in the human hippocampus can readily lead to increased, 

recurring circuit excitability congruent with clinical observations of patients with increased 

HS resulting in more frequent seizures.5–9 Moreover, combined, disease-related alterations 
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in BK, Cav2.2, and Kir2.1 conductances predicted via data-driven biophysical modeling and 

supported by independent snRNA-seq analysis critically influence circuit dynamics dictating 

the transition from suppressed (WG1) to elevated (WG4) circuit excitability.

DISCUSSION

How cells in the human brain change with disease progression and become hyperexcitable, 

contributing to TLE seizures, remains unanswered. This is particularly true for neurons in 

the human hippocampus, a brain region tightly linked to seizure initiation and support. We 

found that human GCs, a prominent excitatory cell type in the hippocampus that survives 

disease progression, alter a number of their properties that are significantly affected by 

TLE and HS progression as witnessed in their genomic signature. How are these changes 

manifested? Electrophysiologically, the most prominent difference in GCs with disease 

progression is the decreased f-I gain. Yet, shorter spike latency of WG4 GCs vs. their WG1 

counterparts leads to elevated, recurring circuit excitability (despite reduced f-I gain), an 

observation in line with clinical observations that patients with increased HS typically suffer 

from an increased number of seizures and an earlier stage of onset.9,15,16 Our work suggests 

that alteration of GC and network excitability with disease progression is mainly attributed 

to changes in three ionic conductances: BK, Cav2.2, and Kir2.1.

In the context of human epilepsies, BK channels have gathered considerable attention, e.g., 

Du et al.26 Yet, gain of function of BK exhibited in our patient cohort as well as described 

in patients of genetic epilepsies has been difficult to explain mechanistically.27–29 Here, we 

offer a mechanistic framework relating gain of function in BK channels of human GCs, key 

regulators of hippocampal excitability,21 with increased network excitability. Our findings 

in human GCs also broadly agree with observations in rodents, in which a seizure-induced 

switch in BK channels results in an excitability increase of cortical and DG neurons.30,31

Concurrently, our single-cell perturbation analysis attributed changes in f-I slope and time 

to first spike in the reduction of the Cav2.2 and Kir2.1 conductances, respectively, during 

TLE progression. Also referred to as an N-type Ca current, it has been implicated in TLE, 

with a number of anticonvulsant medications impacting it.32–35 Notably, our data suggest 

that to revert disease progression, a gain of function in Cav2.2 is required. Alteration in 

the expression level of Kir2 channels has also been linked to excitability changes of GCs 

in TLE.36,37 While we detected WG-dependent Kir2-conductance differences in our GC 

models, snRNA-seq revealed that overall expression of these channels is comparatively 

low (Figure 4B; in agreement with Beck et al.38). Notably, correspondence between model-

based conductance levels and the transcripts measured by snRNA-seq is welcome, but not 

guaranteed, as the extent to which RNA expression reflects protein expression in membrane 

is unclear. Moreover, because conductance-based models accounting for electrophysiology 

and morphology features are high dimensional and their optimization is non-convex, it 

cannot be completely excluded that a combination of different conductances can lead 

to similar cellular phenomenology. Yet, the fact that the models produced in this study 

in an unsupervised manner and “from first principles” replicate cellular WG-dependent 

phenomenology as well as give rise to network dynamics that recapitulate functional 

changes supports the herein presented mechanism as an important candidate.
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Using biophysically detailed network simulations, we investigated the role of synaptic 

connectivity and cellular biophysics in the context of seizure generation. We found that 

perturbations in ion channel composition as well as network connectivity can bring the 

network toward a more excitable, highly synchronized state (Figure 5). We found that ion 

conductance manipulation in a manner that brings the models from WG4 to WG1 (i.e., by 

adjusting the three conductances from their WG4 to their WG1 level while keeping all other 

aspects of the network unperturbed) reduced network excitability. Thus, targeting these three 

conductances and the related ion channels presents itself as a possible drug target for human 

patients with WG4 epilepsy. At the same time, a spectrum of other cell types has also been 

implicated in epilepsy pathophysiology in humans as well as in animal models of disease. 

Our framework of investigation for collecting and reconciling between multimodal cellular 

data can be used to delineate the changes in and the contribution of other cell types related to 

human epilepsy pathophysiology.

We also observed significant differences in the morphology and spine density of GCs, with 

disease progression in cells from severely sclerotic cases exhibiting thicker dendrites and 

double the spine density.39 Despite a clear indication that recurrent excitation between GCs 

impacts network excitability and dynamics, our simulations, in agreement with experiments 

in rodents,40 demonstrate that three ionic conductances, if reverted to their WG1 level (i.e., 

reducing the BK and increasing the Cav2.2 and Kir2.1 conductances by approx. 30%–50%), 

can substantially reduce network excitability. This is encouraging given that targeting ion 

channels is an established way of therapeutic intervention compared with bringing about 

structural changes in cellular morphology. We conclude that such mechanistic understanding 

of differences brought about with disease progression underlying TLE can improve 

therapies, e.g., gene therapy approaches targeting specific electrical conductances and/or 

potentially cellular morphology in a cell-type-specific manner, to reverse the deleterious 

pathophysiology effects of epilepsy.

Limitations of the study

We used two statistical methods independently, non-parametric Mann-Whitney U testing 

and random forests, to analyze the electrophysiology and morphology features of single 

cells and to look at cellular properties associated with disease progression. Both methods 

independently pointed to the same features separating WG1 from WG4 in terms of 

electrophysiology and morphology (we also observed the same separation in t-SNE). While 

this approach offers increased robustness in the analyses and trends observed in this unique 

human multimodal cellular dataset, the field will benefit from more extensive human 

snRNA-seq datasets and analysis to fully identify gene expression changes associated with 

disease progression.

Furthermore, pairwise comparisons between patients having different neuropathological 

scoring can be prone to patient-specific batch effects. Specifically, neuropathology scoring 

resulted in all cells from a particular patient receiving the same score (WG1 or WG4), 

ignoring the fact that different cells may be in a different state during the course of disease 

development within the same patient. While our study did not address such confounding 

factors, new methods based on disease trajectory may offer novel insights by assigning the 
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cells of a given patient to different states along disease progression trajectory (e.g., Saelens 

et al.41).

Conclusion

This work presents a multimodal, single-cell dataset in an effort to understand the diseased 

brain and how disease progression manifests itself on properties of a major hippocampal 

cell class, GCs, in human patients with TLE. Our multimodal approach links across scales 

(from ion channels and single-cell physiology to circuit dynamics and pathophysiology) 

in the epicenter of the disease, the human hippocampus. These insights shed light on the 

biophysical underpinnings of the disease while rejecting a few existing hypotheses (e.g., 

about the key role of Ih in human GCs in TLE). Furthermore, this work has implications 

beyond TLE and also sheds light on mechanisms related to human seizure disorders in 

general, as well as disorders related to the same ion channels. Finally, the herein suggested 

mechanisms will be informative for several disorders implicating GCs as well as other 

excitatory cells in the human brain.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Costas A. Anastassiou 

(costas.anastassiou@gmail.com, costasa@alleninstitute.org, costas.anastassiou@cshs.org).

Materials availability—The all-active single-neuron models as well as the single-cell 

RNA-seq data used in this manuscript are publicly available for download (see key resources 

table). This study did not generate new unique reagents.

Data and code availability

• This paper analyzes existing, publicly available data. The accession numbers for 

the datasets are listed in the key resources table.

• Sequencing data is available on Gene Expression Omnibus: GSE216877

• The automated staged optimization workflow is available as a python package, 

with BluePyOpt being the main procedure for the evolutionary multi-objective 

optimization. The data analysis, visualization, and the all-active models 

developed in this work have been deposited in a separate repository. All code 

is publicly accessible as of the date of publication. DOIs are listed in the key 

resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human biospecimens and data used for this research was obtained from a study approved by 

the Swedish Neuroscience Institute’s Institutional Review Board and informed consent was 
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obtained from the participants in this study. Human brain tissue from neurosurgical origin 

was made available through the generosity of tissue donors, Table S1:

All experiments on human data were performed after receiving the written permission from 

every patient whose data were used in the study. Excised human brain tissue was collected 

from the brain within 1–3 min of resection (up to 5 min in rare cases), and transported 

in chilled, oxygenated ACSF.VII from the hospital to the Allen Institute laboratories 

within 15–30 min. Tissue was then mounted for slice preparation on the chuck of a 

Compresstome VF-200 or VF-300 vibrating microtome (Precisionary Instruments) to be 

sliced perpendicular to pial surface. Each human tissue slice was mounted in the recording 

chamber and inspected to ensure that the entire hippocampal depth was intact. Regions of 

the hippocampus were identified visually. Dentate gyrus granule cells along the granule cell 

layer were targeted for the full dataset. More details on tissue preparation can be found in42 

under section “Electrophysiology overview”. We have not evaluated the influence of sex on 

our results, all data were pooled together.

METHOD DETAILS

Single nucleus RNA sequencing analysis—Intact nuclei from the hippocampus 

of four human tissue donors — H16.06.008 (WG1), H17.06.015 (WG1), H16.06.009 

(WG4) and H16.06.010 (WG4) — were collected and processed for sequencing using 10x 

Genomics as follows. To generate single nuclei, flash frozen hippocampal samples were 

Dounce homogenized, stained with mouse anti-NeuN antibody (Millipore, FCMAB317PE), 

and NeuN+ (~70%) and NeuN− (~30%) nuclei were collected using fluorescence-activated 

cell sorting (FACS). Sorted nuclei suspensions were concentrated to ~1000 nuclei/μl and 

loaded onto a 10x Genomics version 3 single-cell RNA-sequencing chip with a targeted 

capture of ~8000 nuclei per specimen. Nuclei (n = 29,212) were sequenced at a median 

read depth of 83,474 ± 24,111 reads/nucleus (median ±standard deviation). Median gene 

detection was 5295 ± 240 genes/nucleus and the median number of UMIs/nucleus was 

16,088 ± 1790. For more information on RNA-seq technology applied in human brain tissue, 

see.43,44

RNA-seq data was curated to remove nuclei with less than 1′000 genes detected, leaving 

27,242 nuclei remaining. Nuclei were then assigned to broad classes (GCs, other excitatory, 

inhibitory, and non-neuronal) via supervised clustering (k = 4), using the 100 most selective 

genes for each class. GC genes were defined as genes with the most significant differential 

expression between “DG” and “HiF” (Hippocampal Formation) in the “Differential Search” 

in the Allen Human Brain Atlas (http://human.brain-map.org/ 25). Similarly, markers for 

the other classes were selected using the RNA-seq Data Navigator: Human—a part of the 

Allen Cell Types Database (http://celltypes.brain-map.org 44) — by running “Find Marker 

Genes” for “Cell Category” against all other cells. This identified genes specific for each 

class based on single nucleus RNA-seq in human middle temporal gyrus. The RNA-seq 

data was normalized by taking the unique molecular identifier (UMI) count for each cell, 

calculating counts per million (CPM), transforming the data to zero mean and unit variance 

and then converting it to logarithmic space: EXPR_norm = log2 (CPM(UMI)+1). We then 

performed supervised k-means clustering with k = 4 on all normalized data (4158 genes) 

Buchin et al. Page 11

Cell Rep. Author manuscript; available in PMC 2023 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://human.brain-map.org/
http://celltypes.brain-map.org/


for nuclei using only these differential genes to identify cells most likely corresponding to 

each cell class. 12′011, 6′386, 5′302, and 3′543 nuclei were found corresponding to GCs, 

other excitatory, inhibitory, and non-neuronal cells, respectively. Expression of selected ion 

channels across broad classes is shown in Figure 4B. For dimensionality reduction we used 

the Seurat method45 and performed principal component analysis using the first 30 principal 

components. For the visualizations we used the first two principal components.

Integration of the normalized sn RNA-seq data was performed using scvi-tools v0.14 

(https://scvi-tools.org/) and scanpy v1.9 (https://scvi-tools.org/). To compensate for batch-

effects associated with samples from different patients, we used the patient ID for all cells 

from the same patient as a batch-parameter. The low-dimensional embedding is computed 

based on a variational auto-encoder trained on gene expression data from GCs using scvi-

tools. We used the following variational auto-encoder neural network architecture: 100 

(input layer), 10 (internal layer) and 100 (output layer). The network was trained using the 

stochastic gradient descend algorithm. We used standard parameters provided by scvi-tools 

v0.14. In the final stage, we applied UMAP on the internal network representation of the 

data provided by the auto-encoder. For the final data visualization, we used 2 dimensions 

from UMAP algorithm (UMAP1, UMAP2). For pairwise comparisons between WG1 and 

WG4 granule cells we used Wilcoxon signed rank test implemented in scanpy.

For the differential gene expression analysis, we used the ‘rank_genes_groups’ function 

from scanpy together with the Wilcoxon rank-sum test. All computations were performed on 

normalized data. After pairwise testing, genes were ranked according to Z score and the top 

20 genes were reported.

Slice electrophysiology—For electrophysiological recordings, human brain slices were 

mounted in a custom designed chamber and held in place with a slice anchor (Warner 

Instruments). The slice was bathed in ACSF at 34 ± 1°C (warmed by an npi hpt-2 flow-

through heater and thermafoil, controlled by an npi TC-20) at a rate of 2 mL per minute 

(Gilson Minipuls 3 pump). As a target temperature, 34°C was chosen to approximate 

physiological conditions, but with a safety buffer so as to not exceed 37°C. Bath temperature 

was continuously monitored. ACSF oxygenation was maintained by bubbling 95% O2, 5% 

CO2 gas in the specimen reservoir as well as delivering across the surface of the incubation 

bath via the custom designed specimen chamber. Solution oxygen levels, temperature and 

flow rate were monitored; values were measured, documented, and calibrated weekly to 

verify system quality.

Thick walled borosilicate glass (Sutter BF150-86-10) electrodes were manufactured (Sutter 

P1000 electrode puller) with a resistance of 3–7 MΩ. Prior to recording, electrodes were 

filled with 20 μL of internal solution SOP consisting of potassium gluconate, HEPES and 

other components42 with biocytin, which was thawed fresh every day and kept on ice. The 

pipette was mounted on a Multiclamp 700B amplifier headstage (Molecular Devices) fixed 

to a micromanipulator (PatchStar, Scientifica).

Electrophysiology signals were recorded using an ITC-18 Data Acquisition Interface 

(HEKA). Commands were generated, signals processed, and amplifier metadata was 
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acquired using a custom acquisition software program, written in Igor Pro (Wavemetrics). 

Data were filtered (Bessel) at 10 kHz and digitized at 50 kHz. Data were reported 

uncorrected for the measured −14 mV liquid junction potential between the electrode and 

bath solutions.

Upon break-in and formation of a stable seal (typically within the first minute and not more 

than 3 min after break-in), the resting membrane potential of the neuron was recorded. All 

recordings were bridge balanced and systematically checked for access resistance matching 

the quality control criteria described in46 under section “Electrophysiology overview”.

Electrophysiological feature analysis—For the electrophysiological feature analysis 

we used the AllenSDK library (https://allensdk.readthedocs.io/en/latest/) to extract passive 

and spiking features from electrophysiological recordings of single neurons and biophysical 

models, Table S2. The same set of features was used for Figure 4 and all other 

electrophysiology analyses.

To perform the dimensionality reduction of the electrophysiological data we first normalized 

(zero mean and unit variance) the features in our analysis (Table S2). Next, we applied the 

tSNE with the perplexity parameter equal to 30. We also performed additional runs of tSNE 

algorithm on the data with different perplexity values to ensure the stability of the results. 

Finally, we used k-means clustering with k = 2 to find the boundaries between WG1 and 

WG4 cells and visualized the projection on the tSNE plot in Figure 2B (broken line).

Morphology reconstruction and feature extraction—Morphological reconstructions 

were generated using previously described methods42 under section “Morphology and 

Histology Overview”. Briefly, biocytin-filled neurons were stained via diaminobenzidine 

reaction and imaged at 63x magnification on a Zeiss Axio Imager 2. Individual cells 

were digitally reconstructed with custom-written software (Vaa3D and Mozak) to create 

accurate, whole-neuron representations saved in the SWC format (Figure S10). A feature 

extraction suite was adopted and customized enabling the analysis of dendritic and somatic 

reconstructions and extraction of a number of features related to branching pattern, size, 

density, soma position, etc. resulting in 49 morphology features (Table S4).

Dendritic spine densities were assessed using Neurolucida 360 (v2017.01.1) and Imaris 

(v9.3). Initial and terminal 100 μm sections of the dendritic region outside the granule cell 

layer were visualized for manual spine density estimation along 10 μm-long segments per 

dendritic branch.

To perform the dimensionality reduction of the morphological features we first normalized 

the morphological features (zero mean, unit variance). Then, we applied tSNE to project 

the data in 2 dimensions. Every cell in Figure 3 is colored according to its WG-group 

(WG1: blue; WG4: red). Finally, we performed k-means clustering on all 49 normalized 

morphology features (Table S4) and show the 2 dimensional projection in Figure 3B (broken 

line).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis—We used the standard scientific Python libraries for analyzing the 

electrophysiological and morphological data: Mann-Whitney U-testing (mannwhitneyu with 

p value = 0.05 with Bonferroni correction, statistics library), random forest classification 

(RandomForestClassifier with 200 decision trees, gini impurity, min_samples per leaf = 1, 

min samples per split = 2, out of bag score for classification, scikit-learn) and regression 

analysis (least squares method, numpy library). All corresponding p values and numbers of 

samples are present in relevant figure captions. All univariate statistical tests were performed 

on Figures 2, 3, 4, 5, S2, S3, S5, S7, and S8 with Bonferoni corrections for multiple 

comparisons. We used non-parametric methods, such as Mann-Whithney U-testing for all 

relevant pairwise comparisons. In Figure 2, we compared electrophysiological features; 

in Figure 3, we compared morphological features and average spine density per neuron; 

in Figure 4, we compared the estimated conductances from the computational models 

and UMI counts in snRNA-seq data; in Figure 5, we compared the properties of burst 

events in biological neural network; in Figure S2, we compared the numbers of cells; in 

Figure S3, we compared the UMI counts; in Figure S5, we compared the morphological 

and electrophysiological properties; in Figure S7, we compared the electrophysiological 

properties; in Figure S8, we compared the computational model conductances. The mean 

of the distribution was used to compare the effect size and the standard deviation as a 

measure of the spread (shown in error bars). We used pairwise comparisons and analyzed the 

classifier weights (random forest) for hypothesis testing. All comparisons were performed 

using scipy Python package version 1.9.3 For the random forest classifier, we tested whether 

increasing the tree number in the forest improves the classification score and found it 

was not the case. For dimensionality reduction, we used tSNE as implemented in the 

sklearn.manifold package and used perplexity equal to 30. Notably, we also evaluated tSNE 

for a number of perplexity values (10, 20, 30, 40, 50) to ensure the stability of the results and 

found that the main outcomes of analysis remained broadly unchanged.

Electrophysiology feature extraction and single-cell model setup—From whole-

cell patch-clamping experiments, electrophysiological responses to a battery of standardized 

current stimuli (1 s-long dc current injections of increasing amplitude) were analyzed 

resulting in a set of subthreshold and spiking features for each experiment (Table S2). 

Electrophysiology features such as spike timing, amplitude, width, etc. were obtained for 

each experiment. For a subset of features, regression was used to assess how a particular 

electrophysiology feature changes with increasing intracellular stimulation amplitude. In 

total, 30 electrophysiology features were extracted from our in vitro experiments (Table 

S2) and analyzed with a number of statistical techniques for WG-dependent differences. 

Details on the implementation of the feature extraction analysis and relevant code is publicly 

available through.47

The model optimization procedure for generating biophysically realistic single-neuron 

models is feature-based and attempts to set the somatic, axon initial segment, and dendritic 

properties in such manner to capture features of intracellular somatic responses for a number 

of standardized current stimulation waveforms. For model generation, electrophysiology 

features were extracted using a feature extraction library (eFEL) developed in.48 
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Specifically, 11 electrophysiology features were extracted for each experiment (Figure S4) 

and their mean and standard deviation (std) was computed for a particular stimulation 

waveform. If more than one sweep of the same stimulation waveform exists (majority of the 

experiments), then the std of that particular waveform was used. If only a single sweep of the 

experiment exists, a default value of 10% was used for the std.

The compartments of human granule and basket cells were separated into three zones: the 

axon initial segment (AIS), the soma and dendrites. In our models, the AIS was represented 

by one fixed-length section with a total length of 30 μm and 1 μm diameter.

In all models, passive and active properties were optimized using the same fitting procedure. 

For passive properties, one value for the specific capacitance (cm), passive conductance 

(g_pas), passive reversal potential (e_pas), and cytoplasmic resistivity (Ra) was uniformly 

set across all compartments. Notably, the values of these parameters were part of the genetic 

optimization procedure (see below). Active channel mechanisms were spatially uniformly 

distributed in the AIS, soma, and dendrites with every zone receiving a separate set of 

channels (Tables S5 and S6).

We used the model generation workflow to create the biophysically detailed models of 

excitatory granule cells from human hippocampus as well as the inhibitory basket cells from 

human medial temporal gyrus (neocortex). The latter are used in Figure 5. For the human 

inhibitory basked cells, the morphological and electrophysiological data originate from46 

(specimen IDs: 529,807,751, 541,536,216; Table S6).

The final set of excitatory and inhibitory models are available on: https://

github.com/anastassiou-team/human-epilepsy-project. The dentate gyrus circuit model 

is available under: https://github.com/anastassiou-team/human-epilepsy-project/tree/master/

Fig_5/network_simulations. The Github repo has been added to a Zenodo repository: https://

zenodo.org/badge/latestdoi/256053700.

Parameter optimization and single-cell generation workflow—For the single-

cell model optimization and generation, the BluePyOpt framework was adopted (https://

github.com/AllenInstitute/All-active-Workflow, https://github.com/AllenInstitute/All-active-

Manuscript, https://github.com/AllenInstitute/epilepsy_human_dg_public) 48 which utilizes 

multi-objective optimization relying on an evolutionary optimization algorithm. Every 

cell used for the optimization had two data modalities present: a unique reconstructed 

morphology as well as a set of ephys features (see previous sections). It follows that the 

morphology of each model was unique and not identical with one exception: in Figure 4E, 

10 models per cell were produced in order to pursue pairwise conductance comparisons (see 

also next section). For the rest, the rule “one-model-per-cell each with a unique morphology 

and set of ephys properties” applies.

After performing the simulations of the biophysical models, the time traces of the model 

output was analyzed. For every time trace, a standard set of electrophysiological features 

was analyzed and extracted (Table S2). In order to develop and optimize the single-cell 

models, a smaller set of electrophysiology features needed to be considered as the 
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computational cost and complexity strongly depends on the number of objectives used for 

the multi-objective, genetic optimization. We decided to use 11 electrophysiological features 

for the multi-objective optimization (Figure S6). For every feature, an absolute standard 

score was calculated Zi = |fi−μi|/σi with the current feature value (fi) measured from the 

output traces of the models and μi, σi being the experimentally measured mean and standard 

deviation, respectively.48

The development of every biophysically detailed single-cell model involved a 3-stage 

optimization workflow that iteratively focused on a set of conductances. In the first 

stage, passive model properties like membrane resistance and capacitance were set by 

fitting subthrehold responses and subthreshold features such as voltage_sag, voltage_base 
and voltage_after_stim (Table S2). In the second stage, 15 active ionic conductances 

were included while keeping the membrane capacitance and passive reversal potential 

fixed. Notably, the initial parameter ranges for all GC models (both for passive and 

active ion channels) were chosen irrespective of WG (Table S5) and optimized for 100 

generations. In this stage, ten spiking traces were used for model training along with 

subthreshold responses. In the final stage, the best model from the previous stage was 

chosen, its parameter range extended by two-fold for all conductances and optimization 

was re-initialized for at least 50 generations. As part of the BluePyOpt framework, multiple 

models were generated for every cell with the best individual considered after ranking 

and measuring their performance performance on the training set (best model: the smallest 

sum of objective values). The best model for each experiment was used in the pool of 

models selected for the network simulations (Figure 5). Concurrently, for every cell, the 10 

best models (“hall of fame” models according to48) were selected and used for pairwise 

conductance comparisons between WG1 and WG4 (Figure S8).

For the multi-objective evolutionary algorithm used to generate the single-cell models, a 

population size of typically 320 individual models per cell on 320 cores of a BlueGene/P or 

Cori Haswell (Cray XC40) supercomputer was used. Generation of a single, biophysically 

detailed, single-neuron model required approximately 200′000 core-hours of computational 

time on the aforementioned architectures.

Biophysical model selection—Every cell has been optimized with 10 

electrophysiological spiking traces as well as a number subthreshold voltage traces (range: 

−90 to −60 mV). The cellular morphology was reconstructed in 3d in a supervised manner 

from experiments where electrophysiological recordings were performed. In a subset of 

experiments, biocytin staining did not allow for the cellular morphology reconstruction 

resulting in the difference between the number of experiments with electrophysiology vs. 

reconstructed morphologies (cells with ephys vs. morphology reconstructions; for WG1: 61 

vs. 52; for WG4: 51 vs. 50).

The pool of cells used to generate models was 2 cells from case H16.06.008 (WG1), 6 cells 

from H16.06.013 (WG4), 11 cells from H17.06.012.21 (WG4), 11 cells from H17.06.014 

(WG1), and 12 cells from H17.06.015 (WG1). The best 12 models (model quality assessed 

by the distance between experiments and model features) were chosen for Wyler grade 

1 and 4 comparisons stratified by the patients. For the pairwise comparisons of model 
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conductances (Figures 4 and S8), we used a slightly different approach. Specifically, we 

decided to produce multiple models per cell, as the multi-objective optimization framework 

allows it. Then, we chose the 10 best models per cell coming out of the multi-objective 

optimization procedure (sometimes referred to as “hall-of-fame” models). Since each Wyler 

grade was represented by 12 cells, each Wyler grade group comprised of (12 cells) × (10 

models per cell) = 120 models. The statistical comparison was then performed in a pairwise 

fashion across active conductance parameters for all models of each group.

Hippocampal network model setup—A bio-plausible DG network model was 

constructed consisting of 506 single-cell models with the details of the network relying 

on.19 Briefly, GC and BC cells in our network were positioned via a topographic approach 

with somata of the models positioned in 3D space along a ring with a radius of 1500 μm for 

GCs and 750 μm for BCs. The ring was opened to form the arch roughly corresponding to 

the physical extent of human DG (Figure 5A).

Synaptic connectivity in the network depends on the location of a neuron along the ring 

(characterized by the arch-angle). The overall neural network structure was adapted from.19 

We have modified the number of connections per synapse to make it more realistic and in 

agreement to.49 The following connectivity structure was chosen to represent the DG circuit 

with periodic boundary conditions (compensating for border artifacts). Every GC formed 

50 connections with its 100 closest GCs along the ring with the exact connectivity between 

the postsynaptic target pool chosen randomly. Every GC also projected to 3 of its closest 

BCs along the ring. Recurrent GC-GC connections formed 2 to 5 synapses with the exact 

number chosen randomly. The location of GC synapses was chosen along dendrites within 

150 μm from the soma. All excitatory connections of GCs corresponded to AMPA synapse 

kinetics.19

Every BC created 100 out of 140 possible connections with its topographically closest 

GCs with synapses located on the soma of GCs. Recurrent BC connectivity was also 

implemented so that every BC is connected to its two closest neighbors with the exact 

location of inhibitory synapses chosen randomly within 150 μm from the BC soma. All 

inhibitory connections correspond to GABA-A synapse kinetics.19 Synaptic kinetics were 

approximated using biexponential synapse models (‘exp2syn′ in50) involving two time 

constants (τ1 and τ2) as well as the reversal potential (Vrev). The values used for these 

parameters are the following (adopted from19):

To activate the network, GCs and BCs received background synaptic input along their 

dendrites. GCs received 5 external connections per cell with 5–15 synapses each – the exact 

number of synapses was chosen randomly from a homogeneous distribution. BCs received 

the same amount of background synaptic input. Every background connection was activated 

by a Poisson process (rate: 3 Hz) emulating perforant path input. Background synaptic input 

corresponded to AMPA synapse kinetics both for GCs and BCs.19

All network simulations were setup and performed using inhouse developed software based 

on.51 The versions of the DG network presented in Figure 5 is publicly available through 

https://github.com/AllenInstitute/epilepsy_human_dg.
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Highlights

• Transcriptomics in human granule cells separate early vs. late disease state

• Phenotypic changes in human granule cells occur across modalities

• Changes in granule cell excitability are linked to three ionic conductances
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Figure 1. Human data collection from patients with drug-resistant temporal lobe epilepsy
(A) Human dentate gyrus (DG), cornu ammonis (CA) 1–4, and pro-subiculum (ProS) and 

subiculum (Sub) areas typically resected during temporal lobectomy.

(B) Single-cell gene expression data of 230 ion-channel-coding and 1,600 projection-coding 

genes specific for human granule cells separate cells with respect to disease state. Left: 

principal-component analysis of 1,600 projection genes for nuclei with the expression 

profiles mapped to human DG granule cells. Only the first 2 components are shown. Right: 

expression level of ion channel and projection genes for different patients (n = 2 for Wyler 

grade 1, n = 2 for Wyler grade 4). Rows correspond to genes and columns to patients. 

Expression levels are shown in counts per million (CPM) base pairs. Colors correspond 

to the minimal and maximal value of gene expression of the particular cell type. Warmer 

colors correspond to high levels of expression, and colder ones correspond to low levels of 

expression. The max value of gene expression is shown on the right for every gene.

(C) Human hippocampal slices retrieved from surgical specimens (DG granule cell [GC] 

layer designated by neuronal nuclei stain). Hippocampal sclerosis (HS), as assessed by 

Wyler grade, is associated with cell loss in hippocampal subfields such as CA1 (e.g., 

compare cellular density in area CA1 for WG1 versus WG4 in A). Locations along 

the human DG where whole-cell patch clamping and morphological reconstructions were 

gathered across patients. Somatic trace (top) and raster (bottom; lines: experiment trials 

from the same cell) from whole-cell patch-clamp experiments involving intracellular somatic 

current dc injection of increasing magnitude in DG GCs from a WG1 (blue) and a WG4 

(red) patient case.
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Figure 2. Electrical behavior of human GCs change with disease severity and degree of 
histological degeneration
(A) Whole-cell patch clamping of DG GCs across patients and somatic spiking responses 

to 1-s-long dc current injections (blue: WG1; red: WG4). Intracellular somatic spike 

waveform (thick line: average waveform; thin lines: individual waveforms from a particular 

experiment).

(B) t-SNE visualization using 31 electrophysiological features from 112 human DG GCs 

(WG1: 61; WG4: 51 cells; blue: WG1, red: WG4; broken line: k-means decision boundary 

in t-SNE space between the two main clusters; Table S2).

(C) Two key electrophysiology features leading to WG separation: time-to-spike slope 

(ms/pA) versus spike-frequency slope (Hz/pA).

(D) Pairwise comparison of electrophysiological features between WG1 and WG4 GCs 

across feature space (left) and in decreasing levels of statistical significance (right). 

Statistical significance is calculated using Mann-Whitney U test with the significance level 

(orange line) Bonferroni corrected for the number of features (*p < 0.05/30 = 0.002).

(E) Electrophysiology feature weights of random forest classifier. Shared (green) and 

non-shared (blue) electrophysiology features between pairwise comparison and random 

forest classifier among the 10 most influential ones are shown (one out-of-bag validation; 

classification accuracy = 81%).

(F) Spike frequency and time-to-first-spike response to dc current injections for WG1 (top) 

versus WG4 (bottom) exhibit altered GC excitability (thick line: average; thin lines: mean 

response curves from individual experiments; gray points: first spike time in all experimental 

sweeps).
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Figure 3. Morphology and spine density of human GCs are affected by disease severity
(A) Reconstructed morphologies of GCs from mild and severe HS donors (green: apical 

dendrite region; brown: basal dendrite region; violet: axonal region).

(B) t-SNE visualization based on 49 single-cell morphology features of a total of 102 GC 

reconstructions (see Table S4) illustrates separation (blue: WG1, 52 reconstructions; red: 

WG4, 50 reconstructions; broken line: k-means clustering).

(C) Two morphology features leading to WG separation: dendritic volume (μm3) versus 

dendritic and soma surface area (μm2).

(D) Pairwise comparison between WG1 and WG4 morphologies (two-sample Mann-

Whitney U test, orange line: significance level Bonferroni corrected for the number of 

features, p < 0.05/49 = 0.001).

(E) Weights of the random forest classifier trained solely on morphology features for WG1 

and WG4 GCs, out-of-bag classification accuracy 74% (right: features shared between 

pairwise comparison and random forest classifier shown in green, non-shared ones in blue).

(F) Spine density along human GCs depends on WG. (Left) Morphological reconstructions 

of single neurons including region-dependent spine density estimation (yellow box: basal 

region 100 μm after GC layer; green box: apical region 100 μm after GC layer). Individual 

reconstructed sections with spines along various regions for two WG1 and WG4 neurons 

are also shown. (Right) Spine density along apical and basal dendrites (boxplots: median, 
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first and third quartile, and data max/min; significance level = 0.05; p value calculated via 

Mann-Whitney U test, *p < 0.05).
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Figure 4. Computational modeling and single-cell RNA sequencing implicate alterations in 
specific conductances with disease progression
(A) Single-cell model setup using 15 ionic conductances distributed along axonal, somatic, 

and dendritic sections of the morphology reconstruction. A genetic optimization framework 

was used to estimate conductance properties (Figure S4) and set parameter values (Table S5) 

at the single-cell level. Colors indicate ion conductances responsible for model-based WG 

separation based on conductance values (green: statistically significant differences between 

WG1 versus WG4 conductances; blue: no statistical significance; p value calculated using 

Mann-Whitney U test; significance level: p < 0.05/61 = 0.001, Bonferroni corrected for 

multiple comparisons).
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(B) Expression profiles of nuclei from human DGs mapped to major cell classes for a 

subset of genes associated with the ion channels from the GC model setup (A). Columns 

correspond to different cell classes (left to right): all cells in human DG, excitatory and 

inhibitory neurons, and non-neuronal cells. Expression levels are shown in CPM base pairs. 

Colors correspond to the minimal and maximal values of gene expression in the particular 

cell type. Warmer colors correspond to higher gene expression, and colder colors correspond 

to lower expression levels. The max value of gene expression is shown on the right for every 

gene.

(C) Simulated electrophysiological recordings from the GC models resulting from the 3-

stage model generation workflow (STAR Methods; see also Figure S4). (Left) GC model 

responses to 1-s-long dc current injection. (Right) f-I curves from the GC models (thick line: 

mean; gray lines: individual responses).

(D) t-SNE visualization (left) of the electrophysiology features from the GC models based 

on their response to 1-s-long somatic dc current injections (blue circles: WG1, red: WG4; 

left, broken line: k-means clustering). The two most prominent electrophysiology features 

(right) separating GC models based on WG are the same ones as for experiments (Figures 

2C and 2D).

(E) Pairwise comparison of differentially expressed conductances between WG1 and WG4 

GCs predicted by the computational models of GCs and 10× snRNA-seq data for BK 

(KCNMA1), Cav2.2 (CACNA1B), and Kir2.1 (KCNJ2). (Left) For model-based ionic 

conductance comparisons, the 10 best GC models per cell were chosen (10 models per 

cell * 12 cells per WG = 120 models per WG; STAR Methods). (Right) Expression profiles 

of human GCs measured via snRNA-seq from 2 WG1 (blue) and 2 WG4 (red) patients. 

For BK, Cav2.2, and Kir2.1 (log2 fold change shown; boxes: 25th/75th percentile; whiskers: 

±1.5× interquartile range). Numbers above the pairwise comparisons show the effect size 

measured by Cohen’s d. Note that statistical significance could not be estimated using 2 

samples per WG.
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Figure 5. Systematic alterations in GC properties with disease progression reproduce increased 
pathophysiological excitability in a model of human DG
(A) DG network model consisting of human single-cell models: 500 GCs (black) and 6 

BCs (magenta). (Top) Arrows indicate the synaptic connectivity of excitatory (AMPA) and 

inhibitory (GABA) synapses. Large arrows on the bottom correspond to excitatory synaptic 

drive from the perforant pathway, and smaller arrows signify within-network synaptic 

connectivity (see STAR Methods). (Bottom) Morphologically and topographically realistic 

depiction of the DG network structure.

(B) Raster plots of network dynamics during 2 s of activity driven by perforant path, 

Poisson-like input (total simulated time: 30 s; black: GC spikes, magenta: BC spikes). (Top 

to bottom) Unconnected network (only feedforward, “WG1 no syn”); WG1-type network 

with recurrent connectivity (“WG1”); WG4-type network identical to previous one (“WG1”) 

but with all WG1 GC models substituted with WG4 GC models (“WG4”); same network 

as before (“WG4”) but with double the recurrent connectivity between GCs (“WG4 ×2”); 

and same network as “WG4” but with altered sets of ionic conductances (green in Figure 

4A) setting them to their WG1-value (“WG4 alt”). Network dynamics in the presence of 

recurrent connectivity results in recurrent burst activity (BA; marked in cyan).

(C) Analysis of BA event properties for various DG network configurations. In total, 5 

network permutations, each with shuffled connectivity between GCs, were instantiated and 

simulated for each network configuration. (Top) Definition of three BA event properties: 

event frequency (i.e., number of BA events per unit of simulated time) and event amplitude 
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and duration (as defined by fitting a Gaussian envelope to each event; gray: average GC 

firing rate measured in 10-ms time bins; black: Gaussian fit of BA-event envelope). (Below) 

BA feature analysis for WG-dependent network configuration (blue: “WG1”; red: “WG4” 

and “WG4 ×2”; green: “WG4 alt”; line: mean; boxplots: standard error mean across 5 

network realizations for each condition). Statistical testing is performed using one-way 

ANOVA with statistical significance: *p < 0.05, **p < 10−3, ***p < 10−4.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Single nucleus RNA-sequencing data This manuscript https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE216877

Deposited data

Single-neuron biophysical all-active models Allen Institute for Brain Science https://portal.brain-map.org/explore/models/
perisomatic-single-neurons

Data repositories for each figure Cedars-Sinai and Allen Institute 
for Brain Science

https://github.com/anastassiou-team/human-epilepsy-
project

Software and algorithms

Python Python.org RRID: SCR_008394

Neuron 7.5 Simulator NEURON RRID: SCR_005393

scikit-learn: machine learning in Python http://scikit-learn.org RRID:SCR_002577

Brain Modeling Toolkit Allen Institute for Brain Science https://github.com/AllenInstitute/bmtk

Allen Institute Software Development Kit Allen Institute for Brain Science http://github.com/AllenInstitute/AllenSDK

Blue Brain Optimization Toolbox (BluePyOpt) Blue Brain Project https://github.com/BlueBrain/BluePyOpt

Electrophys Feature Extraction Library (eFEL) Blue Brain Project https://github.com/BlueBrain/eFEL

Neuron Morphology Analysis Toolkit 
(NeuroM)

Blue Brain Project https://github.com/BlueBrain/NeuroM

All-active Modeling Workflow This manuscript https://github.com/AllenInstitute/All-active-Workflow

Clustering, Classification, RNA-seq data 
analysis, Simulation, Visualization and All-
active Models

This manuscript https://github.com/AllenInstitute/All-active-Manuscript

Network simulation setup and running This manuscript https://github.com/anastassiou-team/human-epilepsy-
project/tree/master/Fig_5/network_simulations
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