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a b s t r a c t 

Different regions of Infra-Red (IR) light absorption by guest molecules inside a zeolitic crystal are measured and 

quantified to determine binary adsorption isotherms and transport diffusivities. This has been achieved using 

a vacuum capable setup which includes an Infra-Red Microscope (IRM) and Fourier Transform Infra-Red (FTIR) 

Spectrometer. By utilizing IR light and FTIR spectroscopy, this method can be used to describe the behavior of 

low concentrations of relatively fast molecules inside zeolitic crystals as an alternative to chromatographic pulse 

methods. To demonstrate the capabilities of this method, binary adsorption isotherms and transport diffusivities 

of CO 2 in mixtures composed of CO 2 and N 2 inside silicalite have been determined. From the fundamental 

measurements determined using this method, complex gas separation processes such as swing adsorption and 

multi stage membrane systems can be designed for novel zeolite materials. This method can also be used to 

develop models for complex adsorption and diffusion systems, and validate sophisticated molecular simulation 

models. 

• IR microimaging with static gas dosing system for measuring transient uptake, diffusion and chemical reactions 

of gases and their mixtures in individual crystals or particles of nanoporous materials 
• Using giant crystals the setup allows to study adsorption and transport of single components and mixtures in 

nanoporous materials also for fast diffusing guest molecules 
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Nomenclature 

A Absorbance spectra 

APR 266 Pressure transducer model 

CMR 361, 363 Pressure transducer models 

CO 2 Carbon Dioxide 

FTIR Fourier Transform Infra-Red 

I Transmittance spectra 

I 0 Reference spectra 

IR Infra-Red 

IRM Infra-Red Microimaging 

N 2 Nitrogen 

PKR 251 Pressure transducer model 

R Reference spectra 

T Transmittance spectra 

Specifications table 

Subject Area 
• Chemical Engineering OR 
• Physics and Astronomy 

More specific subject area: Zeolite characterization 

Method name: Infra-Red Microimaging Analysis of Gases in Mixtures. 

Name and reference of 

original method 

C. Chmelik, L. Heinke, P. Kortunov, J. Li, D. Olson, D. Tzoulaki, J. Weitkamp, J. Kärger, 

Ensemble Measurement of Diffusion: Novel Beauty and Evidence, ChemPhysChem 10 

(2009) 2623–2627. 

Resource availability Infra-Red Microscope (Bruker, Hyperion 30 0 0) 

Fourier Transform Infra-Red Spectrometer (Bruker, Vertex 80V) 

Turbo molecular pump (Pfeifer, HiCube 80) 

Tubular furnace (Carbolite Gero Ltd, Carbolite MTF 12/38/400) 

High purity gases 

Zeolitic crystal 

Method details 

Equipment and materials 

The experimental setup that was used in this method consists of two stainless steel gas reservoirs,

several pressure transducers, a turbomolecular pump, and multiple gate valves that were connected 

to a quartz sample cell containing the zeolite crystal to be characterized. The quartz cell of this

system was placed on the stage of an Infra-Red Microscope (IRM), which was connected to a Fourier

Transform Infra-Red (FTIR) Spectrometer in order to measure the amount of Infra-Red (IR) light 

absorbed by the sample crystal under different experimental conditions. Details of this setup can 

be seen in Fig. 1 . Additionally, convoluted vacuum tubing and VCO type fittings have been used so

that the quartz cell can be removed from the stage of the IRM and placed inside a portable tubular

furnace without disconnecting the quartz cell from the setup. The IRM and FTIR devices that were

used in this method are the Hyperion 30 0 0, and Vertex 80V models respectively, which are made by

Bruker (Ettlingen, Germany). The portable furnace was a Carbolite MTF 12/38/400 made by Carbolite 

Gero Ltd (Neuhasen, Germany), and the turbomolecular pump was a Highcube 80 made by Pfeifer

(Asslar, Germany). 

Experimental method 

The following method has been used to characterize various combinations of zeolite crystals and

gas mixtures, and has been developed from the work of Chmelik et al [1 , 2] . The diffusivities of large

molecules which diffuse slowly in microporous materials (e.g. n- butane and i-butane) are typically 

measured using IRM, and so the novelty of the following method lies in its ability for determining the
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Fig. 1. The schematic diagram showing the experimental setup that was used in this method. P1 – P4 are pressure transducers, 

and T1 is a K type thermocouple which can be used to measure room temperature in the vicinity of the quartz cell. V-101 - 

V-109 are gate valves. R-101 and R-102 are stainless steel reservoirs, and P-101 is a vacuum pump. The regeneration furnace is 

not shown. The pressure transducers are made by Pfeifer (Asslar, Germany) and have operating ranges of 0.1 – 1100 kPa (APR 

266, accuracy ± 2% full scale), 1 × 10 −4 – 1.1 kPa (CMR 363, accuracy ± 0.2% full scale), 1 × 10 −2 – 110 kPa (CMR 361, accuracy 

± 0.2% full scale), and 5 × 10 −8 – 100 kPa (PKR 251, accuracy ± 30%) for P1 – P4 respectively. The gas reservoirs R-101 and 

R-102 are made from 316 stainless steel, and have capacities of 0.473 L and 3.785 L, respectively. 
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iffusivities of rapidly diffusing molecules such as CO 2 . The proposed method additionally enables the

etermination of adsorption behaviour as an alternative to volumetric, gravimetric, piezometric and

hromatographic methods. 

1. The zeolite crystal to be characterized was placed inside a quartz sample cell and connected

to the experimental setup. The quartz cell was then placed inside the portable tubular furnace,

valves V-101 to V-109 were opened, and the system was evacuated using vacuum pump P-101.

During evacuation, the quartz cell was subjected to an appropriate temperature for the removal

of moisture from the crystal (which is dependent on the crystal type, and is typically in the

range of 400 °C – 450 °C). Once evacuated, the quartz cell was removed from the portable oven

and placed onto the stage of the IRM. V-101 to V-109 were then closed. 

2. For pure gas uptake experiments, reservoir R-102 was then filled from the gas cylinder up to

the desired maximum experimental pressure as measured by P1 by opening V-101, V-102, and

V-104. An additional amount of gas was then added to R-102 in order to compensate for the

system volume at the maximum pressure. V-101, V-102 and V-104 were then closed. For gas

mixture uptake experiments at room temperature, ideal gas behavior has been assumed, and

the partial pressure of each gas as a fraction of the total gas pressure was manipulated in order

to fill R-102 with a predetermined molar composition. Since there is only one sample gas port

in the setup shown in Fig. 1 , it was necessary to re-evacuate the process lines after the second

cylinder had been connected to the system. This was done by opening V-101, V-106, and V-108.

Once the process lines were re-evacuated, V-101, V-106, and V-108 were closed. 

3. Gas uptake experiments to determine transport diffusivities were then conducted according to

the following procedure: 

3.1. The IRM was first operated in optical mode, and its IR laser was focused on the zeolite

crystal. The IRM was then switched to IR transmittance mode, and the IR transmittance

spectrum of the crystal was determined. This spectrum was the reference spectrum. 

3.2. Reservoir R-101 was filled with gas from R-102 by opening V-103 as well as V-105,

and then slowly opening V-104 until the desired pressure was reached. V-104 was then

closed. For a step change in pressure from 0 to 10 kPa, R-101 was filled with gas from

R-102 until the pressure measured by P3 was observed to be 10.2 kPa (where 0.2 kPa of
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pressure was required to compensate for the sample cell volume in order to reach a final

pressure of approximately 10 kPa in the system). 

3.3. The FTIR was set to continuously determine IR transmittance spectra of the bulk gas 

phase and crystal, which was subjected to a step change in pressure by quickly opening

V-109. Spectra were continuously determined until equilibrium had been realized, which 

was confirmed by observing that the IR transmittance spectra did not change with time. 

These spectra were analyzed subject to the reference spectrum determined in step 3.1. 

4. The amounts of gas adsorbed by the zeolite crystal at equilibrium were then determined

according to the following procedure: 

4.1. The FTIR was used to determine the IR transmittance spectra of the bulk gas phase and

crystal at equilibrium. 

4.2. The IRM was switched back to optical mode, and the quartz cell was translocated on the

IRM stage such that the IRM laser was focused on a region of the quartz cell where no

crystal was present. The IRM was then switched back to IR transmittance mode, and the

IR transmittance spectra of this space, which describes the bulk gas phase only, were

determined. The equilibrium spectra determined in step 4.1 were analyzed given the 

reference spectra of both the crystal as determined in step 3.1, and the bulk gas phase as

determined in this step; step 4.2. 

4.3. The IRM was again switched back to optical mode, and the quartz cell was translocated

back to its original location such that the IR laser was focused on the zeolite crystal as

before. V-109 was then closed. 

5. Steps 3 and 4 were repeated for all pressure steps of interest. 

Analysis of experimental data 

From the IR transmittance spectra (I) that were obtained in steps 3 and 4, IR absorption spectra

(A) were determined. This has been achieved by dividing the reference spectrum (I 0 ) by each

transmittance spectrum, and then taking its logarithm in accordance with the Beer-Lambert law [3] ,

as described by Eq. (1 ) [4] . Given IR absorption spectra, the molecular bonds of guest molecules

and zeolitic crystals can be distinguished from each other according to their different bands in

IR absorbance spectra. Molecules with dissimilar IR spectra (including isomers) can therefore be 

distinguished from each other using IRM, and this method can be used to determine binary and

possibly multicomponent concentrations depending on the characteristics of the gases and the crystal. 

These different bands can be observed as IR absorption spectra peaks, and were quantified by

integration. 

A = log 

(
I 0 
I 

)
(1) 

In order to determine transport diffusivities from IRM data, the previously published method by 

Chmelik et al has been used [1 , 2] . In this method, time dependent IR absorbance spectra peaks

from step 3 corresponding to the guest molecules of interest have been integrated. Relative uptake

as a fraction of complete uptake was then determined based on these integrals, and was used in

combination with an appropriate analytical expression in order to find the transport diffusivity of the

guest molecules by regression analysis. Analytical expressions which describe the diffusion of guest 

molecules inside different shapes such as slabs, spheres, and cylinders have been published by Crank

and can be applied to appropriately shaped crystals as required [5] . 

In order to generate binary adsorption isotherms from experimental data using IRM, the 

relationship between guest molecule IR absorbance and molar gas concentration was correlated to 

generate a calibration curve. For ideal systems, a single literature adsorption isotherm value can be

used to generate the required calibration curve in accordance with the Beer-Lambert law, which

describes absorbance as a linear function of path length and concentration [3] . For non-ideal systems,

IR absorption spectra peak integrals pertaining to the guest molecules at numerous pressures can be

correlated to literature isotherms to generate the required calibration curve. 
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Fig. 2. Calibration curve describing the relationship between experimentally determined IR absorbance spectra which were 

integrated between wavelengths of 3550 and 3740 cm 

−1 for CO 2 , and the amount of CO 2 adsorbed on silicalite. IR absorbance 

spectra were determined from experiments that were conducted at pressures between 0 kPa and 250 kPa using pure CO 2 . The 

amounts of CO 2 adsorbed on silicalite have been taken from the isotherm data obtained by Li and Tezel [11] . Temperature 

effects have been accounted for by utilizing the temperature dependent Sips model for isotherm data at a temperature of 32 °C. 
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c  
ethod validation 

This method has been validated using a crystal of silicalite with pure CO 2 gas, and gas mixtures

omposed of CO 2 and N 2 . In this investigation, the silicalite crystal was cuboid shaped, and had

eight, width, and length dimensions of 510 μm, 490 μm, and 1200 μm, respectively. This crystal

as fabricated according to a similar method to the one published by Kida et al using quartz as the

ilica source [6] . The CO 2 and N 2 gases that were used for pure gas and gas mixture experiments had

urities of 99.998%, and were purchased from Sigma (Schnelldorf, Germany). Adsorption isotherms

nd transport diffusivities were found for CO 2 but not N 2 since it does not absorb IR light, and so

annot be detected using IRM. These results have been published elsewhere [7] . Isotherms for pure

O 2 and silicalite determined using other methods have been published by others [8–11] , which are

n agreement with the isotherms generated in this study, and confirm that this method is reliable.

s a result, the binary adsorption isotherms for CO 2 can also be considered reliable since their IR

bsorbance spectra is distinct from that of N 2 . 

Order of experiments and crystal regeneration conditions for silicalite and mixtures composed of

O 2 /N 2 were as follows: 

I. The zeolite crystal was first regenerated by removing all adsorbed species from its structure

under a vacuum pressure of less than 10 −4 mbar at a temperature of 450 °C for 11 hours as

described in step 1 of the experimental method section. Heating and cooling temperature rates

of 5 °C per minute were used. 

II. A gas mixture composed of 15% / 85% CO 2 / N 2 was prepared, and gas uptake and amounts

adsorbed at equilibrium were investigated for CO 2 at pressure steps of 10 kPa from 0 to 100

kPa, and then pressure steps of 25 kPa from 100 kPa to 250 kPa. Pure N 2 was not investigated

due to its poor absorption of IR light at the experimental conditions. 

III. The zeolite crystal was regenerated at room temperature by removing all adsorbed species from

its structure under a vacuum of less than 10 −4 mbar. 

IV. Step II and then III were repeated in turn for gas mixtures composed of 30% / 70%, 50% / 50%,

70% / 30%, 85% / 15% CO 2 / N 2 , and then 100% CO 2 . 

Two gas phase compositions could be tested in a single day, and so three days were required to

ompletely characterize the zeolite crystal in this way. To ensure that there was no contamination
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Fig. 3. Amount of CO 2 adsorbed at equilibrium on a single crystal of silicalite when present as a pure gas, and in binary CO 2 
and N 2 mixtures, as a function of a) total pressure, and b) partial pressure. The experimental uncertainty is smaller than the 

symbol size. All these experiments were conducted at 32 ± 2 °C. 

Fig. 4. Apparent CO 2 transport diffusivities expressed as a function of CO 2 concentration in the adsorbed phase. The 

experimental uncertainty is about twice the symbol size. Concentration in this figure refers to the average amount of CO 2 
adsorbed between the initial and final pressures of the uptake experiment. Experiments were conducted at a temperature of 

32 ± 2 °C and total pressures between 0 and 100 kPa using a range of mixture compositions. The crystal was assumed to be 

cuboid shaped and infinitely long in order to determine transport diffusivity by regression analysis. The height, width, and 

length dimensions of the crystal were 510 μm, 490 μm, and 1200 μm respectively. 

 
of the crystal when the crystal was not being characterized (during the night), the crystal was

regenerated as described in step I overnight. 

Figs. 2 –4 show the calibration curve, binary adsorption isotherms, and transport diffusivities for 

CO 2 inside silicalite at various compositions and pressures with N 2 in silicalite, respectively. 
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